1
|
Visentin A, Murphy CD, Alvarado-Morales M, Angelidaki I, Sweeney JB. Escherichia coli-based biorefining process yields optically pure lactic acid from fermented second-generation feedstocks. N Biotechnol 2024; 83:155-162. [PMID: 39128541 DOI: 10.1016/j.nbt.2024.08.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/17/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Within the circular bioeconomy the production of optically pure LA from 2nd generation feedstocks would be ideal but it is very challenging. In this paper genetically engineered Escherichia coli strains were created to resolve racemic LA solutions synthesised and produced from the fermentation of organic waste or ensiled grass. Refining LA racemic mixtures into either a D- or L-LA was achieved by cells being able to consume one LA isomer as a sole carbon and energy source while not being able to consume the other. A D-LA refining strain JSP0005 was grown on fermented source-sorted organic household waste and different grass silage leachates, which are 2nd generation feedstocks containing up to 33 g/L lactic acid racemate. In all growth experiments, L-LA was completely removed leaving D-LA as the only LA stereoisomer, i.e. resulting in optically pure D-LA, which also increased by as much as 248.6 % from its starting concentration, corresponding to 38 g/L. The strains resulting from this study are a promising first step towards a microbial based LA biorefining process.
Collapse
Affiliation(s)
- Anna Visentin
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Merlin Alvarado-Morales
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Joseph B Sweeney
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Yang S, Li Y, Nie M, Liu X, Wang Q, Chen N, Zhang C. Lifecycle Management for Sustainable Plastics: Recent Progress from Synthesis, Processing to Upcycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404115. [PMID: 38869422 DOI: 10.1002/adma.202404115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Plastics, renowned for their outstanding properties and extensive applications, assume an indispensable and irreplaceable role in modern society. However, the ubiquitous consumption of plastic items has led to a growing accumulation of plastic waste. Unreasonable practices in the production, utilization, and recycling of plastics have led to substantial energy resource depletion and environmental pollution. Herein, the state-of-the-art advancements in the lifecycle management of plastics are timely reviewed. Unlike typical reviews focused on plastic recycling, this work presents an in-depth analysis of the entire lifecycle of plastics, covering the whole process from synthesis, processing, to ultimate disposal. The primary emphasis lies on selecting judicious strategies and methodologies at each lifecycle stage to mitigate the adverse environmental impact of waste plastics. Specifically, the article delineates the rationale, methods, and advancements realized in various lifecycle stages through both physical and chemical recycling pathways. The focal point is the attainment of optimal recycling rates for waste plastics, thereby alleviating the ecological burden of plastic pollution. By scrutinizing the entire lifecycle of plastics, the article aims to furnish comprehensive solutions for reducing plastic pollution and fostering sustainability across all facets of plastic production, utilization, and disposal.
Collapse
Affiliation(s)
- Shuangqiao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| |
Collapse
|
3
|
Shalem A, Yehezkeli O, Fishman A. Enzymatic degradation of polylactic acid (PLA). Appl Microbiol Biotechnol 2024; 108:413. [PMID: 38985324 PMCID: PMC11236915 DOI: 10.1007/s00253-024-13212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Environmental concerns arising from the increasing use of polluting plastics highlight polylactic acid (PLA) as a promising eco-friendly alternative. PLA is a biodegradable polyester that can be produced through the fermentation of renewable resources. Together with its excellent properties, suitable for a wide range of applications, the use of PLA has increased significantly over the years and is expected to further grow. However, insufficient degradability under natural conditions emphasizes the need for the exploration of biodegradation mechanisms, intending to develop more efficient techniques for waste disposal and recycling or upcycling. Biodegradation occurs through the secretion of depolymerizing enzymes, mainly proteases, lipases, cutinases, and esterases, by various microorganisms. This review focuses on the enzymatic degradation of PLA and presents different enzymes that were isolated and purified from natural PLA-degrading microorganisms, or recombinantly expressed. The review depicts the main characteristics of the enzymes, including recent advances and analytical methods used to evaluate enantiopurity and depolymerizing activity. While complete degradation of solid PLA particles is still difficult to achieve, future research and improvement of enzyme properties may provide an avenue for the development of advanced procedures for PLA degradation and upcycling, utilizing its building blocks for further applications as envisaged by circular economy principles. KEY POINTS: • Enzymes can be promisingly utilized for PLA upcycling. • Natural and recombinant PLA depolymerases and methods for activity evaluation are summarized. • Approaches to improve enzymatic degradation of PLA are discussed.
Collapse
Affiliation(s)
- Adi Shalem
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Omer Yehezkeli
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
4
|
Raj A, Yousfi M, Prashantha K, Samuel C. Morphologies, Compatibilization and Properties of Immiscible PLA-Based Blends with Engineering Polymers: An Overview of Recent Works. Polymers (Basel) 2024; 16:1776. [PMID: 39000632 PMCID: PMC11244106 DOI: 10.3390/polym16131776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Poly(L-Lactide) (PLA), a fully biobased aliphatic polyester, has attracted significant attention in the last decade due to its exceptional set of properties, such as high tensile modulus/strength, biocompatibility, (bio)degradability in various media, easy recyclability and good melt-state processability by the conventional processes of the plastic/textile industry. Blending PLA with other polymers represents one of the most cost-effective and efficient approaches to develop a next-generation of PLA-based materials with superior properties. In particular, intensive research has been carried out on PLA-based blends with engineering polymers such as polycarbonate (PC), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT) and various polyamides (PA). This overview, consequently, aims to gather recent works over the last 10 years on these immiscible PLA-based blends processed by melt extrusion, such as twin screw compounding. Furthermore, for a better scientific understanding of various ultimate properties, processing by internal mixers has also been ventured. A specific emphasis on blend morphologies, compatibilization strategies and final (thermo)mechanical properties (tensile/impact strength, ductility and heat deflection temperature) for potential durable and high-performance applications, such as electronic parts (3C parts, electronic cases) to replace PC/ABS blends, has been made.
Collapse
Affiliation(s)
- Amulya Raj
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, 59000 Lille, France
| | - Mohamed Yousfi
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, 69621 Villeurbanne Cedex, France
| | - Kalappa Prashantha
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, 59000 Lille, France
- ACU-Centre for Research and Innovation, Faculty of Natural Sciences, Adichunchanagiri University, B.G. Nagara, Mandya 571448, Karnataka, India
| | - Cédric Samuel
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, 59000 Lille, France
| |
Collapse
|
5
|
Sobieraj J, Strzelecka K, Sobczak M, Oledzka E. How Biodegradable Polymers Can be Effective Drug Delivery Systems for Cannabinoids? Prospectives and Challenges. Int J Nanomedicine 2024; 19:4607-4649. [PMID: 38799700 PMCID: PMC11128233 DOI: 10.2147/ijn.s458907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Cannabinoids are compounds found in and derived from the Cannabis plants that have become increasingly recognised as significant modulating factors of physiological mechanisms and inflammatory reactions of the organism, thus inevitably affecting maintenance of homeostasis. Medical Cannabis popularity has surged since its legal regulation growing around the world. Numerous promising discoveries bring more data on cannabinoids' pharmacological characteristics and therapeutic applications. Given the current surge in interest in the medical use of cannabinoids, there is an urgent need for an effective method of their administration. Surpassing low bioavailability, low water solubility, and instability became an important milestone in the advancement of cannabinoids in pharmaceutical applications. The numerous uses of cannabinoids in clinical practice remain restricted by limited administration alternatives, but there is hope when biodegradable polymers are taken into account. The primary objective of this review is to highlight the wide range of indications for which cannabinoids may be used, as well as the polymeric carriers that enhance their effectiveness. The current review described a wide range of therapeutic applications of cannabinoids, including pain management, neurological and sleep disorders, anxiety, and cancer treatment. The use of these compounds was further examined in the area of dermatology and cosmetology. Finally, with the use of biodegradable polymer-based drug delivery systems (DDSs), it was demonstrated that cannabinoids can be delivered specifically to the intended site while also improving the drug's physicochemical properties, emphasizing their utility. Nevertheless, additional clinical trials on novel cannabinoids' formulations are required, as their full spectrum therapeutical potential is yet to be unravelled.
Collapse
Affiliation(s)
- Jan Sobieraj
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Strzelecka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
6
|
Bexis P, Husband JT, Sardon H, Coulembier O, Dove AP. Stereocomplexed Functional and Statistical Poly(lactide-carbonate)s via a Simple Organocatalytic System. Macromolecules 2024; 57:2287-2294. [PMID: 38495388 PMCID: PMC10938874 DOI: 10.1021/acs.macromol.3c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
The stereocomplexation of polylactide (PLA) has been widely relied upon to develop degradable, sustainable materials with increased strength and improved material properties in comparison to stereopure PLA. However, forming functionalized copolymers of PLA while retaining high crystallinity remains elusive. Herein, the controlled ring-opening copolymerization (ROCOP) of lactide (LA) and functionalized cyclic carbonate monomers is undertaken. The produced polymers are shown to remain crystalline up to 25 mol % carbonate content and are efficiently stereocomplexed with homopolymer PLA and copolymers of opposite chirality. Polymers with alkene and alkyne pendent handles are shown to undergo efficient derivatization with thiol-ene click chemistry, which would allow both the covalent conjugation of therapeutic moieties and tuning of material properties.
Collapse
Affiliation(s)
- Panagiotis Bexis
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Jonathan T. Husband
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Haritz Sardon
- POLYMAT, University of the Basque Country
UPV/EHU, Joxe Mari
Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Olivier Coulembier
- Center
of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory
of Polymeric and Composite Materials, University
of Mons, Mons B-7000, Belgium
| | - Andrew P. Dove
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
7
|
Zhang W, Cai X, Zhang X, Zou S, Zhu D, Zhang Q, Chen J. AgNPs-Modified Polylactic Acid Microneedles: Preparation and In Vivo/In Vitro Antimicrobial Studies. Pharm Res 2024; 41:93-104. [PMID: 37985572 DOI: 10.1007/s11095-023-03634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To prepare polylactic acid microneedles (PLAMNs) with sustained antibacterial effect to avoid skin infection caused by traditional MNs-based biosensors. METHODS Silver nanoparticles (AgNPs) were synthesized using an in-situ reduction process with polydopamine (PDA). PLAMNs were fabricated using the hot-melt method. A series of pressure tests and puncture experiments were conducted to confirm the physicochemical properties of PLAMNs. Then AgNPs were modified on the surface of PLAMNs through in-situ reduction of PDA, resulting in the formation of PLAMNs@PDA-AgNPs. The in vitro antibacterial efficacy of PLAMNs@PDA-AgNPs was evaluated using agar diffusion assays and bacterial liquid co-culture approach. Wound healing and simulated long-term application were performed to assess the in vivo antibacterial effectiveness of PLAMNs@PDA-AgNPs. RESULTS The MNs array comprised 169 tiny needle tips in pyramidal rows. Strength and puncture tests confirmed a 100% puncture success rate for PLAMNs on isolated rat skin and tin foil. SEM analysis revealed the integrity of PLAMNs@PDA-AgNPs with the formation of new surface substances. EDS analysis indicated the presence of silver elements on the surface of PLAMNs@PDA-AgNPs, with a content of 14.44%. Transepidermal water loss (TEWL) testing demonstrated the rapid healing of micro-pores created by PLAMNs@PDA-AgNPs, indicating their safety. Both in vitro and in vivo tests confirmed antibacterial efficacy of PLAMNs@PDA-AgNPs. CONCLUSIONS In conclusion, the sustained antibacterial activity exhibited by PLAMNs@PDA-AgNPs offers a promising solution for addressing skin infections associated with MN applications, especially when compared to traditional MN-based biosensors. This advancement offers significant potential for the field of MN technology.
Collapse
Affiliation(s)
- Wenqin Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Xiaozhen Cai
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Xinyi Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Shiqi Zou
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Danhong Zhu
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Qiulong Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, 351100, China
| | - Jianmin Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
- School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China.
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, 351100, China.
| |
Collapse
|
8
|
Marx B, Bostan L, Herrmann AS, Boskamp L, Koschek K. Properties of Stereocomplex PLA for Melt Spinning. Polymers (Basel) 2023; 15:4510. [PMID: 38231930 PMCID: PMC10708371 DOI: 10.3390/polym15234510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Fibers made from biopolymers are one solution for conserving both resources and the environment. However, these fibers currently have limited strengths, which limit their use for textile applications. In this paper, a biopolymer stereocomplex poly(-lactide) (scPLA) formation on a technical scale of high-molecular-weight poly(D-lactide) (PDLA) and poly(L-lactide) (PLLA) is presented. This scPLA material is the basis for further research to develop scPLA yarns in melt spinning with technical strengths for technical application. scPLA is compared with standard and commercially available semi-crystalline PLA for the production of fibers in melt spinning (msPLA) with textile strengths. Differential scanning calorimetry (DSC) gives a degree of crystallization of 59.7% for scPLA and 47.0% for msPLA. X-ray diffraction (XRD) confirms the pure stereocomplex crystal structure for scPLA and semi-crystallinity for msPLA. scPLA and msPLA are also compared regarding their processing properties (rheology) in melt spinning. While complex viscosity of scPLA is much lower compared to msPLA, both materials show similar viscoelastic behavior. Thermal gravimetric analysis (TGA) shows the influence of the molecular weight on the thermal stability, whereas essentially the crystallinity influences the biodegradability of the PLA materials.
Collapse
Affiliation(s)
- Boris Marx
- Faserinstitut Bremen, Am Biologischen Garten 2—Geb. IW3, D-28359 Bremen, Germany; (L.B.); (A.S.H.)
| | - Lars Bostan
- Faserinstitut Bremen, Am Biologischen Garten 2—Geb. IW3, D-28359 Bremen, Germany; (L.B.); (A.S.H.)
| | - Axel S. Herrmann
- Faserinstitut Bremen, Am Biologischen Garten 2—Geb. IW3, D-28359 Bremen, Germany; (L.B.); (A.S.H.)
- Materials Engineering/Fibers and Fiber Composites Research Group, Faculty of Production Engineering, University of Bremen, Am Biologischen Garten 2—Geb. IW3, D-28359 Bremen, Germany
| | - Laura Boskamp
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, D-28359 Bremen, Germany; (L.B.); (K.K.)
| | - Katharina Koschek
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, D-28359 Bremen, Germany; (L.B.); (K.K.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| |
Collapse
|
9
|
Mahmoud NM, Takagi H, Shimizu N, Igarashi N, Sakurai S. Significantly High Melting Temperature of Homopolymer Crystals Obtained in a Poly(l-Lactic Acid)/Poly(d-Lactic Acid) (50/50) Blend. ACS OMEGA 2023; 8:40482-40493. [PMID: 37929159 PMCID: PMC10620892 DOI: 10.1021/acsomega.3c05165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
The isothermal crystallization of a poly(l-lactic acid) (PLLA)/poly(d-lactic acid) (PDLA) (50/50) blend, neat PLLA, and neat PDLA, was studied at different crystallization temperatures (110 °C, 150 °C, 170 and 180 °C) for different durations (1-300 min) by means of differential scanning calorimetry (DSC), polarized optical microscope (POM) observations, and time-resolved wide-angle X-ray diffraction (WAXD). The effects of both the isothermal crystallization temperature and the duration of the isothermal crystallization were investigated for the blend specimens fully crystallized at these crystallization temperatures. The formation of homopolymer crystallites (HC) was confirmed at the isothermal crystallization temperature of 170 °C, which was previously considered too high for its formation, after 70 min had elapsed from the temperature stabilization. Moreover, the melting temperature of the formed HC was found to be significantly high (Tm = 187.5 °C) compared to the one obtained during the nonisothermal DSC measurement of the same specimen of the PLLA/PDLA (50/50) blend, as well as the neat PLLA and PDLA specimens. To the best of our knowledge, this extremely high Tm (=187.5 °C) for HC has never been reported before.
Collapse
Affiliation(s)
| | - Hideaki Takagi
- High
Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- High
Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Noriyuki Igarashi
- High
Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Shinichi Sakurai
- Department
of Biobased Materials Science, Kyoto Institute
of Technology, Kyoto 606-8585, Japan
- Indian
Institute of Technology Guwahati, Guwahati, Assam 781015, India
| |
Collapse
|
10
|
Samsuri M, Purnama P. Development of Stereocomplex Polylactide Nanocomposites as an Advanced Class of Biomaterials-A Review. Polymers (Basel) 2023; 15:2730. [PMID: 37376376 PMCID: PMC10305411 DOI: 10.3390/polym15122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This review paper analyzes the development of advanced class polylactide (PLA) materials through a combination of stereocomplexation and nanocomposites approaches. The similarities in these approaches provide the opportunity to generate an advanced stereocomplex PLA nanocomposite (stereo-nano PLA) material with various beneficial properties. As a potential "green" polymer with tunable characteristics (e.g., modifiable molecular structure and organic-inorganic miscibility), stereo-nano PLA could be used for various advanced applications. The molecular structure modification of PLA homopolymers and nanoparticles in stereo-nano PLA materials enables us to encounter stereocomplexation and nanocomposites constraints. The hydrogen bonding of D- and L-lactide fragments aids in the formation of stereococomplex crystallites, while the hetero-nucleation capabilities of nanofillers result in a synergism that improves the physical, thermal, and mechanical properties of materials, including stereocomplex memory (melt stability) and nanoparticle dispersion. The special properties of selected nanoparticles also allow the production of stereo-nano PLA materials with distinctive characteristics, such as electrical conductivity, anti-inflammatory, and anti-bacterial properties. The D- and L-lactide chains in PLA copolymers provide self-assembly capabilities to form stable nanocarrier micelles for encapsulating nanoparticles. This development of advanced stereo-nano PLA with biodegradability, biocompatibility, and tunability properties shows potential for use in wider and advanced applications as a high-performance material, in engineering field, electronic, medical device, biomedical, diagnosis, and therapeutic applications.
Collapse
Affiliation(s)
- Muhammad Samsuri
- Chemical Engineering Department, Universitas Bhayangkara Jakarta Raya, Bekasi 17121, West Java, Indonesia;
| | - Purba Purnama
- School of Applied STEM, Universitas Prasetiya Mulya, Tangerang 15339, Banten, Indonesia
- Vanadia Utama Science and Technology, PT Vanadia Utama, Jakarta 14470, Indonesia
| |
Collapse
|
11
|
He N, Chen M, Qiu Z, Fang C, Lidén G, Liu X, Zhang B, Bao J. Simultaneous and rate-coordinated conversion of lignocellulose derived glucose, xylose, arabinose, mannose, and galactose into D-lactic acid production facilitates D-lactide synthesis. BIORESOURCE TECHNOLOGY 2023; 377:128950. [PMID: 36963700 DOI: 10.1016/j.biortech.2023.128950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
D-lactide is the precursor of poly(D-lactide) (PDLA) or stereo-complex with poly(L-lactide) (PLLA). Lignocellulosic biomass provides the essential feedstock option to synthesize D-lactic acid and D-lactide. The residual sugars in D-lactic acid fermentation broth significantly blocks the D-lactide synthesis. This study showed a simultaneous and rate-coordinated conversion of lignocellulose derived glucose, xylose, arabinose, mannose, and galactose into D-lactic acid by adaptively evolved Pediococcus acidilactici ZY271 by simultaneous saccharification and co-fermentation (SSCF) of wheat straw. The produced D-lactic acid achieved minimum residual sugars (∼1.7 g/L), high chirality (∼99.1%) and high titer (∼128 g/L). A dry acid pretreatment eliminated the wastewater stream generation and the biodetoxification by fungus Amorphotheca resinae ZN1 removed the inhibitors from the pretreatment. The removal of the sugar residues and inhibitor impurities in D-lactic acid production from lignocellulose strongly facilitated the D-lactide synthesis. This study filled the gap in cellulosic D-lactide production from lignocellulose-derived D-lactic acid.
Collapse
Affiliation(s)
- Niling He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingxing Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhongyang Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, 111 West Changjiang Road, Huaian, Jiangsu 223300, China
| | - Chun Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
12
|
Alhaj M, Narayan R. Scalable Continuous Manufacturing Process of Stereocomplex PLA by Twin-Screw Extrusion. Polymers (Basel) 2023; 15:922. [PMID: 36850205 PMCID: PMC9965968 DOI: 10.3390/polym15040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
A scalable continuous manufacturing method to produce stereocomplex PLA was developed and optimized by melt-blending a 1:1 blend of high molecular weight poly(L-lactide) (PLLA) and high molecular weight poly(D-lactide) (PDLA) in a co-rotating twin-screw extruder. Thermal characteristics of stereocomplex formation were characterized via DSC to identify the optimal temperature profile and time for processing stereocomplex PLA. At the proper temperature window, high stereocomplex formation is achieved as the twin-screw extruder allows for alignment of the chains; this is due to stretching of the polymer chains in the extruder. The extruder processing conditions were optimized and used to produce >95% of stereocomplex PLA conversion (melting peak temperature Tpm = 240 °C). ATR-FTIR depicts the formation of stereocomplex crystallites based on the absorption band at 908 cm-1 (β helix). The only peaks observed for stereocomplex PLA's WAXD profile were at 2θ values of 12, 21, and 24°, verifying >99% of stereocomplex formation. The total crystallinity of stereocomplex PLA ranges from 56 to 64%. A significant improvement in the tensile behavior was observed in comparison to the homopolymers, resulting in a polymer of high strength and toughness. These results lead us to propose stereocomplex PLA as a potential additive/fiber that can reinforce the material properties of neat PLA.
Collapse
Affiliation(s)
- Mohammed Alhaj
- Department of Chemical Engineering & Material Science, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
13
|
Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report. Int J Mol Sci 2023; 24:ijms24021053. [PMID: 36674567 PMCID: PMC9866533 DOI: 10.3390/ijms24021053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Camptothecin (CPT) has demonstrated antitumor activity in lung, ovarian, breast, pancreas, and stomach cancers. However, this drug, like many other potent anticancer agents, is extremely water-insoluble. Furthermore, pharmacology studies have revealed that prolonged schedules must be administered continuously. For these reasons, several of its water-soluble analogues, prodrugs, and macromolecular conjugates have been synthesized, and various formulation approaches have been investigated. Biodegradable polyesters have gained popularity in cancer treatment in recent years. A number of biodegradable polymeric drug delivery systems (DDSs), designed for localized and systemic administration of therapeutic agents, as well as tumor-targeting macromolecules, have entered clinical trials, demonstrating the importance of biodegradable polyesters in cancer therapy. Biodegradable polyester-based DDSs have the potential to deliver the payload to the target while also increasing drug availability at intended site. The systemic toxicity and serious side-effects associated with conventional cancer therapies can be significantly reduced with targeted polymeric systems. This review elaborates on the use of biodegradable polyesters in the delivery of CPT and its analogues. The design of various DDSs based on biodegradable polyesters has been described, with the drug either adsorbed on the polymer's surface or encapsulated within its macrostructure, as well as those in which a hydrolyzed chemical bond is formed between the active substance and the polymer chain. The data related to the type of DDSs, the kind of linkage, and the details of in vitro and in vivo studies are included.
Collapse
Affiliation(s)
- Katarzyna Strzelecka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| | - Ewa Oledzka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-07-55
| |
Collapse
|
14
|
Kara Y, Molnár K. Decomposition Behavior of Stereocomplex PLA Melt-Blown Fine Fiber Mats in Water and in Compost. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:1398-1414. [PMID: 36465497 PMCID: PMC9703430 DOI: 10.1007/s10924-022-02694-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED This study introduces systematic and comparative investigations of various PLA fine fiber mats prepared by melt blowing. A series of PLLA and PDLA melt-blown fibers from various L and D enantiomers blends were produced. Their morphological, mechanical, and thermal properties were studied, and their decomposition in water and compost was investigated. It was found that the 1:1 ratio blend with stereocomplex crystals had an 80% lower average fiber diameter, 60% higher specific strength and better thermal stability than the PLLA and PDLA fiber mats. In the case of composting, the crystalline peak melting temperature, crystallinity, and thermogravimetric decomposition temperatures marginally decreased after 14 days. The high surface of the fine fiber mats played a crucial role in fast decomposition, as they entirely disintegrated in less than only 40 days. In the case of water, the homocrystalline domains were more susceptible to hydrolysis than the stereocomplex ones. All the PLA fiber mats underwent decomposition and extensive disintegration for 70 days in water. Hydrolysis reduced the amorphous and crystalline fraction of the fibers via surface and bulk erosion, while the decomposition of stereocomplex-crystalline-rich domains mainly exhibited surface erosion. Findings revealed that high porosity and the high surface area of PLA melt-blown fine fiber mats undergo fast decomposition in compost and in water. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10924-022-02694-w.
Collapse
Affiliation(s)
- Yahya Kara
- Faculty of Mechanical Engineering, Department of Polymer Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, H-1111 Hungary
| | - Kolos Molnár
- Faculty of Mechanical Engineering, Department of Polymer Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, H-1111 Hungary
- MTA–BME Research Group for Composite Science and Technology, Műegyetem rkp. 3, Budapest, H- 1111 Hungary
| |
Collapse
|
15
|
Enhancement in Crystallizability of Poly(L-Lactide) Using Stereocomplex-Polylactide Powder as a Nucleating Agent. Polymers (Basel) 2022; 14:polym14194092. [PMID: 36236039 PMCID: PMC9571414 DOI: 10.3390/polym14194092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
High-molecular-weight poly(L-lactide) (HMW-PLLA) is a promising candidate for use as a bioplastic because of its biodegradability and compostability. However, the applications of HMW-PLLA have been limited due to its poor crystallizability. In this work, stereocomplex polylactide (scPLA) powder was prepared by precipitation of a low-molecular-weight poly(L-lactide)/poly(D-lactide) (LMW-PLLA/LMW-PDLA) blend solution and investigated for use as a fully-biodegradable nucleating agent for HMW-PLLA compared to LMW-PLLA powder. The obtained LMW-PLLA and scPLA powders with a nearly spherical shape showed complete homo- and stereocomplex crystallites, respectively. HMW-PLLA/LMW-PLLA powder and HMW-PLLA/scPLA powder blends were prepared by melt blending. The LMW-PLLA powder was homogeneously melted in the HMW-PLLA matrices, whereas the scPLA powder had good phase compatibility and was well-dispersed in the HMW-PLLA matrices, as detected by scanning electron microscopy (SEM). It was shown that the enthalpies of crystallization (ΔHc) upon cooling scans for HMW-PLLA largely increased and the half crystallization time (t1/2) dramatically decreased as the scPLA powder content increased; however, the LMW-PLLA powder did not exhibit the same behavior, as determined by differential scanning calorimetry (DSC). The crystallinity content of the HMW-PLLA/scPLA powder blends significantly increased as the scPLA powder content increased, as determined by DSC and X-ray diffractometry (XRD). In conclusion, the fully biodegradable scPLA powder showed good potential for use as an effective nucleating agent to improve the crystallization properties of the HMW-PLLA bioplastic.
Collapse
|
16
|
Enhanced Mechanical Properties and Anti-Inflammation of Poly(L-Lactic Acid) by Stereocomplexes of PLLA/PDLA and Surface-Modified Magnesium Hydroxide Nanoparticles. Polymers (Basel) 2022; 14:polym14183790. [PMID: 36145934 PMCID: PMC9504497 DOI: 10.3390/polym14183790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 12/29/2022] Open
Abstract
Poly(L-lactic acid) (PLLA), as a biodegradable polymer, has attracted attention for use as a biomaterial. In order to apply PLLA as a cardiovascular stent, stronger mechanical properties and anti-inflammatory effects against acidic by-products are required. In this study, PLLA/PDLA stereocomplex microparticles (SC) were developed and surface-modified magnesium hydroxide (MH) nanoparticles with oligolactide were combined with these PLLA composites. The SC improved the mechanical properties of the PLLA composites through the formation of stereocomplex structures. The surface-modified MH nanoparticles showed enhanced mechanical properties due to the stereocomplex structures formed by PLLA chains and inhibited inflammatory responses by pH neutralization as a result of MH. Additionally, the MH nanoparticles containing PLLA composites had antibacterial effects and increased the viability of human vascular endothelial cells. This technology is expected to have great potential in the development of PLLA composite materials for the production of various medical devices, such as cardiovascular stents.
Collapse
|
17
|
Zhang G, Zhao J, Jin X, Qian Y, Zhou M, Jia X, Sun F, Jiang J, Xu W, Sun B. Combined dehydrogenation of glycerol with catalytic transfer hydrogenation of H2 acceptors to chemicals: Opportunities and challenges. Front Chem 2022; 10:962579. [PMID: 36072704 PMCID: PMC9442352 DOI: 10.3389/fchem.2022.962579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Catalytic transformation of low-cost glycerol to value-added lactic acid (LA) is considered as one of the most promising technologies for the upgradation of glycerol into renewable products. Currently, research studies reveal that anaerobic transformation of glycerol to LA could also obtain green H2 with the same yield of LA. However, the combined value-added utilization of released H2 with high selectivity of LA during glycerol conversion under mild conditions still remains a grand challenge. In this perspective, for the first time, we conducted a comprehensive and critical discussion on current strategies for combined one-pot/tandem dehydrogenation of glycerol to LA with catalytic transfer hydrogenation of H2 acceptors (such as CO2) to other chemicals. The aim of this overview was to provide a general guidance on the atomic economic reaction pathway for upgrading low-cost glycerol and CO2 to LA as well as other chemicals.
Collapse
Affiliation(s)
- Guangyu Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
- *Correspondence: Guangyu Zhang,
| | - Jian Zhao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, China
| | - Yanan Qian
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Mingchuan Zhou
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xuewu Jia
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Feng Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Jie Jiang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Wei Xu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| |
Collapse
|
18
|
Zhu Q, Zhou ZP, Hao TF, Nie YJ. Significantly Improved Stereocomplexation Ability in Cyclic Block Copolymers. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Hazarika D, Kalita NK, Kumar A, Katiyar V. Crystalline titanium-dioxide nanofinish impregnated on electrospun stereocomplex poly (lactic acid) as non-woven nanotextile with superhydrophilic, anti-shrinkage, dark dyeing and waste dye removal ability for sustainable application. Int J Biol Macromol 2022; 219:384-394. [PMID: 35850271 DOI: 10.1016/j.ijbiomac.2022.07.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
An environmentally friendly non-woven nanotextile has been prepared using enantiomeric pairs of poly (lactic acid) PLA by electrospinning technique. Solution blending of synthesized high molecular weight (⁓105 Da) poly (L-lactic acid) PLLA and poly (D-lactic acid), PDLA for prolonged time stirring produce solely stereocrystallites (sc). The high crosslinking effect of sc-PLA has played an important role, with multifunctional behaviour on the addition of anatase-TiO2 (a-TiO2) in three different ways (Case-I-III). The high crystallinity of a-TiO2 (~7.14 nm), has been confirmed from XRD and TEM studies as 98 %. The nanofinish as studied in (Case -III) by dipping and drying has decreased the water contact angle for the electrospun sc-PLA nanotextile from highly hydrophobic (132°) to superhydrophilicity after 8 min. An easy demonstration of high temperature treated nanofabric (at 100 °C) has proven to obtain an anti-shrinkage sc-PLA nanofabric. Even, the presence of a-TiO2 has improved the colour strength ability of sc-PLA as a dark dyed nanofabric. The loading of as-synthesized a-TiO2 nanoparticle has enhanced adsorbent dosages for 5TdipscPLA up to 1.44 mg/g of MB dosage, at contact time (8 h), and 68 % methylene blue (MB) removal efficiency under UV irradiation. Thereby, this a-TiO2 impregnated sc-PLA nanofabric tends to dye removal.
Collapse
Affiliation(s)
- Doli Hazarika
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Naba Kumar Kalita
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
20
|
Zhang X, Lu X, Huang D, Ding Y, Li J, Dai Z, Sun L, Li J, Wei X, Wei J, Li Y, Zhang K. Ultra-Tough Polylactide/Bromobutyl Rubber-Based Ionomer Blends via Reactive Blending Strategy. Front Chem 2022; 10:923174. [PMID: 35783218 PMCID: PMC9244537 DOI: 10.3389/fchem.2022.923174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
A series of ultra-toughened sustainable blends were prepared from poly(lactic acid) (PLA) and bromobutyl rubber-based ionomers (i-BIIRs) via reactive blending, in which dicumyl peroxide (DCP) and Joncryl®ADR-4440 (ADR) were used as reactive blending additives. The miscibility, phase morphology and mechanical property of the PLA/i-BIIRs blends were thoroughly investigated through DMA, SEM, tensile and impact tests. The influence of different ionic groups and the effects of DCP and ADR on the compatibility between the phases, phase structure and mechanical properties were analyzed. The introduction of the imidazolium-based ionic groups and the reactive agents enable the i-BIIRs play multiple roles as effective compatibilizers and toughening agents, leading to improved interfacial compatibility and high toughness of the blends. The mechanical properties test showed that the PLA/i-BIIRs blends exhibit excellent toughness: impact strength and the elongation at break of AR-OH(30)+AD reached 95 kJ/m2 and 286%, respectively. The impact fracture surface showed the large-scale plastic deformation of the PLA matrix in the blends, resulting in greatly absorbing the impact energy. The results proved that simultaneously applying reactive blend and multiple intermolecular interactions methods is an effective toughening strategy for toughening modification of the PLA blends.
Collapse
Affiliation(s)
- Xingfang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xu Lu
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Dong Huang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Yingli Ding
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Jinshan Li
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Zhenyu Dai
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Liming Sun
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Jin Li
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Xiaohui Wei
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Jie Wei
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
| | - Yang Li
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
- *Correspondence: Kunyu Zhang, , ; Yang Li,
| | - Kunyu Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, China
- *Correspondence: Kunyu Zhang, , ; Yang Li,
| |
Collapse
|
21
|
Lu M, Huang X, Cai X, Sun J, Liu X, Weng L, Zhu L, Luo Q, Chen Z. Hypoxia-Responsive Stereocomplex Polymeric Micelles with Improved Drug Loading Inhibit Breast Cancer Metastasis in an Orthotopic Murine Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20551-20565. [PMID: 35476401 DOI: 10.1021/acsami.1c23737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor metastasis is a leading cause of breast cancer-related death. Taxane-loaded polymeric formulations, such as Genexol PM and Nanoxel M using poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) micelles as drug carriers, have been approved for the treatment of metastatic breast cancer. Unfortunately, the physical instability of PEG-PLA micelles, leading to poor drug loading, premature drug leakage, and consequently limited drug delivery to tumors, largely hinders their therapeutic outcome. Inspired by the enantiomeric nature of PLA, this work developed stereocomplex PEG-PLA micelles through stereoselective interactions of enantiomeric PLA, which are further incorporated with a hypoxia-responsive moiety used as a hypoxia-cleavable linker of PEG and PLA, to maximize therapeutic outcomes. The results showed that the obtained micelles had high structural stability, showing improved drug loading for effective drug delivery to tumors as well as other tissues. Especially, they were capable of sensitively responding to the hypoxic tumor environment for drug release, reversing hypoxia-induced drug resistance and hypoxia-promoted cell migration for enhanced bioavailability under hypoxia. In vivo results further showed that the micelles, especially at a high dose, inhibited the growth of the primary tumor and improved tumor pathological conditions, consequently remarkably inhibiting its metastasis to the lungs and liver, while not causing any systemic toxicity. Hypoxia-responsive stereocomplex micelles thus emerge as a reliable drug delivery system to treat breast cancer metastasis.
Collapse
Affiliation(s)
- Min Lu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xu Huang
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xiaohui Cai
- Department of Hematology, Nanjing Medical University, Affiliated Changzhou No. 2 People's Hospital, Changzhou 213000, People's Republic of China
| | - Jiajia Sun
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xuemeng Liu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Lingyan Weng
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Li Zhu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Qianqian Luo
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Zhongping Chen
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
22
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|
23
|
3D printing of toughened enantiomeric PLA/PBAT/PMMA quaternary system with complete stereo-complexation: Compatibilizer architecture effects. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
More N, Avhad M, Utekar S, More A. Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04135-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
On the Mechanism of Electron Beam Radiation-Induced Modification of Poly(lactic acid) for Applications in Biodegradable Food Packaging. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(lactic acid) (PLA) is a biodegradable polymer used for food packaging. The effects of electron beam radiation on the chemical and physical properties of amorphous PLA were studied. In this study, amorphous, racemic PLA was irradiated at doses of 5, 10, 15, and 20 kGy in the absence of oxygen. Utilizing electron paramagnetic resonance spectrometry, it was found that alkoxyl radicals are initially formed as a result of C-O-C bond scissions on the backbone of the PLA. The dominant radiation mechanism was determined to be H-abstraction by alkoxyl radicals to form C-centered radicals. The C-centered radicals undergo a subsequent peroxidation reaction with oxygen. The gel permeation chromatography (GPC) results indicate reduction in polymer molecular mass. The differential scanning calorimetry and X-ray diffraction results showed a subtle increase in crystallinity of the irradiated PLA. Water vapor transmission rates were unaffected by irradiation. In conclusion, these results support that irradiated PLA is a suitable material for applications in irradiation of food packaging, including food sterilization and biodegradation.
Collapse
|
26
|
Forouharshad M, Ajalloueian F. Tunable self‐assembled
stereocomplexed‐
polylactic acid nanoparticles as a drug carrier. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mahdi Forouharshad
- Nano‐Bioscience Research Group DTU‐Food, Technical University of Denmark Lyngby Denmark
| | - Fatemeh Ajalloueian
- Department of Health Technology Technical University of Denmark Lyngby Denmark
| |
Collapse
|
27
|
Effect of In-Mold Annealing on the Properties of Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends Incorporated with Nanohydroxyapatite. Polymers (Basel) 2021; 13:polym13162835. [PMID: 34451374 PMCID: PMC8398253 DOI: 10.3390/polym13162835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
The proper choice of a material system for bioresorbable synthetic bone graft substitutes imposes strict requirements for mechanical properties, bioactivity, biocompatibility, and osteoconductivity. This study aims to characterize the effect of in-mold annealing on the properties of nanocomposite systems based on asymmetric poly(l-lactide) (PLLA)/Poly(d-lactide) (PDLA) blends at 5 wt.% PDLA loading, which was incorporated with nano-hydroxyapatite (HA) at various concentrations (1, 5, 10, 15 wt.%). Samples were melt-blended and injection molded into “cold” mold (50 °C) and hot mold (100 °C). The results showed that the tensile modulus, crystallinity, and thermal-resistance were enhanced with increasing content of HA and blending with 5 wt.% of PDLA. In-mold annealing further improved the properties mentioned above by achieving a higher degree of crystallinity. In-mold annealed PLLA/5PDLA/15HA samples showed an increase of crystallinity by ~59%, tensile modulus by ~28%, and VST by ~44% when compared to neat hot molded PLLA. On the other hand, the % elongation values at break as well as tensile strength of the PLLA and asymmetric nanocomposites were lowered with increasing HA content and in-mold annealing. Moreover, in-mold annealing of asymmetric blends and related nanocomposites caused the embrittlement of material systems. Impact toughness, when compared to neat cold molded PLLA, was improved by ~44% with in-mold annealing of PLLA/1HA. Furthermore, fracture morphology revealed fine dispersion and distribution of HA at 1 wt.% concentration. On the other hand, HA at a high concentration of 15 wt.% show agglomerates that worked as stress concentrators during impact loading.
Collapse
|
28
|
Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulos A, Koumentakou I, Bikiaris DN. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties-From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers (Basel) 2021; 13:1822. [PMID: 34072917 PMCID: PMC8198026 DOI: 10.3390/polym13111822] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Environmental problems, such as global warming and plastic pollution have forced researchers to investigate alternatives for conventional plastics. Poly(lactic acid) (PLA), one of the well-known eco-friendly biodegradables and biobased polyesters, has been studied extensively and is considered to be a promising substitute to petroleum-based polymers. This review gives an inclusive overview of the current research of lactic acid and lactide dimer techniques along with the production of PLA from its monomers. Melt polycondensation as well as ring opening polymerization techniques are discussed, and the effect of various catalysts and polymerization conditions is thoroughly presented. Reaction mechanisms are also reviewed. However, due to the competitive decomposition reactions, in the most cases low or medium molecular weight (MW) of PLA, not exceeding 20,000-50,000 g/mol, are prepared. For this reason, additional procedures such as solid state polycondensation (SSP) and chain extension (CE) reaching MW ranging from 80,000 up to 250,000 g/mol are extensively investigated here. Lastly, numerous practical applications of PLA in various fields of industry, technical challenges and limitations of PLA use as well as its future perspectives are also reported in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.B.); (V.D.); (G.K.); (T.K.); (M.S.); (N.D.B.); (A.V.); (I.K.)
| |
Collapse
|
29
|
Purnama P, Samsuri M, Iswaldi I. Properties Enhancement of High Molecular Weight Polylactide Using Stereocomplex Polylactide as a Nucleating Agent. Polymers (Basel) 2021; 13:1725. [PMID: 34070263 PMCID: PMC8197296 DOI: 10.3390/polym13111725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
As one of the most attractive biopolymers nowadays in terms of their sustainability, degradability, and material tune-ability, the improvement of polylactide (PLA) homopolymer properties by studying the utilization of stereocomplex polylactide (s-PLA) effectively and efficiently is needed. In this sense, we have studied the utilization of s-PLA compared to poly D-lactide (PDLA) homopolymers as a nucleating agent for PLA homopolymers. The mechanical and thermal properties and crystallization behavior of PLA homopolymers in the presence of nucleating agents have been evaluated using a universal testing machine, differential scanning calorimeter, and X-ray diffractometer instruments, respectively. PDLA and s-PLA materials can be used to increase the thermal and mechanical properties of poly L-lactide (PLLA) homopolymers. The s-PLA materials increased the mechanical properties by increasing crystallinity of the PLLA homopolymers. PLLA/s-PLA enhanced mechanical properties to a certain level (5% s-PLA content), then decreased them due to higher s-PLA materials affecting the brittleness of the blends. PDLA homopolymers increased mechanical properties by forming stereocomplex PLA with PLLA homopolymers. Non-isothermal and isothermal evaluation showed that s-PLA materials were more effective at enhancing PLLA homopolymer properties through nucleating agent mechanism.
Collapse
Affiliation(s)
- Purba Purnama
- School of Applied STEM, Universitas Prasetiya Mulya, Tangerang, Banten 15339, Indonesia;
| | - Muhammad Samsuri
- Chemical Engineering Department, Universitas Bhayangkara Jakarta Raya, Bekasi 17121, Indonesia;
| | - Ihsan Iswaldi
- School of Applied STEM, Universitas Prasetiya Mulya, Tangerang, Banten 15339, Indonesia;
| |
Collapse
|
30
|
Im SH, Im DH, Park SJ, Chung JJ, Jung Y, Kim SH. Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules 2021; 26:2846. [PMID: 34064789 PMCID: PMC8150862 DOI: 10.3390/molecules26102846] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Polylactide (PLA) is among the most common biodegradable polymers, with applications in various fields, such as renewable and biomedical industries. PLA features poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) enantiomers, which form stereocomplex crystals through racemic blending. PLA emerged as a promising material owing to its sustainable, eco-friendly, and fully biodegradable properties. Nevertheless, PLA still has a low applicability for drug delivery as a carrier and scaffold. Stereocomplex PLA (sc-PLA) exhibits substantially improved mechanical and physical strength compared to the homopolymer, overcoming these limitations. Recently, numerous studies have reported the use of sc-PLA as a drug carrier through encapsulation of various drugs, proteins, and secondary molecules by various processes including micelle formation, self-assembly, emulsion, and inkjet printing. However, concerns such as low loading capacity, weak stability of hydrophilic contents, and non-sustainable release behavior remain. This review focuses on various strategies to overcome the current challenges of sc-PLA in drug delivery systems and biomedical applications in three critical fields, namely anti-cancer therapy, tissue engineering, and anti-microbial activity. Furthermore, the excellent potential of sc-PLA as a next-generation polymeric material is discussed.
Collapse
Affiliation(s)
- Seung Hyuk Im
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- enoughU Inc., 114 Goryeodae-ro, Seongbuk-gu, Seoul 02856, Korea
| | - Dam Hyeok Im
- Department of Mechanical Engineering, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Su Jeong Park
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Justin Jihong Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- School of Electrical and Electronic Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Korea
| | - Soo Hyun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.H.I.); (S.J.P.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.J.C.); (Y.J.)
- Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrueken, Germany
| |
Collapse
|
31
|
Sánchez-Rodríguez C, Avilés MD, Pamies R, Carrión-Vilches FJ, Sanes J, Bermúdez MD. Extruded PLA Nanocomposites Modified by Graphene Oxide and Ionic Liquid. Polymers (Basel) 2021; 13:polym13040655. [PMID: 33671778 PMCID: PMC7926343 DOI: 10.3390/polym13040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023] Open
Abstract
Polylactic acid (PLA)-based nanocomposites were prepared by twin-screw extrusion. Graphene oxide (GO) and an ionic liquid (IL) were used as additives separately and simultaneously. The characterization of the samples was carried out by means of Fourier transform infrared (FT-IR) and Raman spectroscopies, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The viscoelastic behavior was determined using dynamic mechanical analysis (DMA) and rheological measurements. IL acted as internal lubricant increasing the mobility of PLA chains in the solid and rubbery states; however, the effect was less dominant when the composites were melted. When GO and IL were included, the viscosity of the nanocomposites at high temperatures presented a quasi-Newtonian behavior and, therefore, the processability of PLA was highly improved.
Collapse
|
32
|
Niu H, Li J, Cai Q, Wang X, Luo F, Gong J, Qiang Z, Ren J. Molecular Stereocomplexation for Enhancing the Stability of Nanoparticles Encapsulated in Polymeric Micelles for Magnetic Resonance Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13881-13889. [PMID: 33170710 DOI: 10.1021/acs.langmuir.0c02281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A generalizable approach for improving the stability of polylactide-based (PLA-based) micelles for encapsulating nanoparticles (NPs) is demonstrated, using stereocomplexation between a pair of poly (ethylene glycol)-b-poly(d-lactide)/poly(ethylene glycol)-b-poly(l-lactide) block copolymer blends. Three different superparamagnetic ferrite-based NPs with distinct nanostructures are first prepared by the high-temperature pyrolysis method, including spherical MnFe2O4, cubic MnFe2O4, and core-shell MnFe2O4@Fe3O4. The diameters of these NPs are approximately 7-10 nm as revealed by transmission electron microscopy. These hydrophobic NPs can be encapsulated within self-assembled, stereocomplexed PLA (sc-PLA) micelles. All sc-PLA micelle systems loaded with three different NPs exhibit enhanced stability at elevated temperatures (20-60 °C) and with extended storage time (∼96 h) compared with analogous samples without stereocomplex formation, confirmed by dynamic light scattering measurements. The magnetic NP-loaded micelles with mean diameters of approximately 150 nm show both biocompatibility and superparamagnetic property. Under a 1.5 T magnetic field, cubic MnFe2O4 (c-MnFe2O4)-loaded micelles exhibit an excellent negative contrast enhancement of MR signals (373 mM-1·s-1), while core-shell MnFe2O4@Fe3O4-loaded micelles show a slightly lower signal for MR imaging (275 mM-1·s-1). These results suggest the potential of using sc-PLA-based polymer micelles as universal carriers for magnetic resonance imaging contrast agents with improved stability for different applications such as cancer diagnosis.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Quan Cai
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Xuefang Wang
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Fuhong Luo
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jiaying Gong
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|