1
|
Cyniak J, Kasprzak A. Mechanochemical Synthesis of Molecular Chemoreceptors. ACS OMEGA 2024; 9:48870-48883. [PMID: 39713627 PMCID: PMC11656220 DOI: 10.1021/acsomega.4c06566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The design of environmentally friendly methods for synthesizing molecular receptors is an expanding area within applied organic chemistry. This work systematically summarizes advances in the mechanochemical synthesis of molecular chemoreceptors. It discusses key achievements related to the synthesis of chemoreceptors containing azine, Schiff base, thiosemicarbazone, hydrazone, rhodamine 6G, imide, or amide moieties. Additionally, it highlights the application potential of mechanochemically synthesized molecular chemoreceptors in the recognition of ions and small molecules, along with a discussion of the mechanisms of detection processes.
Collapse
Affiliation(s)
- Jakub
S. Cyniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| |
Collapse
|
2
|
Chibac-Scutaru AL, Roman G. Fluorescence sensing of metal ions in solution using a morpholine-containing phenolic Mannich base of 1'-hydroxy-2'-acetonaphthone. RSC Adv 2024; 14:38590-38604. [PMID: 39650841 PMCID: PMC11622784 DOI: 10.1039/d4ra07200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
A phenolic Mannich base derived from 1'-hydroxy-2'-acetonaphthone (HAN) as a substrate and morpholine as an amine reagent was synthesized and structurally characterized. The sensing ability toward various metal ions of the s-, p- and d-block of this molecule that has the binding site for metal ions in the starting ortho-hydroxyphenone preserved was examined. Interaction between this phenolic Mannich base and Al3+, Cr3+, Cu2+ and Co2+ leads to modifications of the sensing molecule's absorption spectrum. Fluorescence spectroscopy showed that Al3+ acts as a fluorescence enhancer, whereas Cu2+ functions as a fluorescence quencher for the aminomethylated derivative. The phenolic Mannich base may be employed either as a sensitive "turn-on" chemosensor for Al3+ or as a sensitive "turn-off" chemosensor for Cu2+. However, in the presence of these ions at identical concentrations, the Mannich base becomes a selective chemosensor for Al3+. The sensing ability of this phenolic Mannich base toward rare earth ions showed that Eu3+, Dy3+ and Gd3+ induce changes in the absorption spectrum of the Mannich base. Fluorescence spectroscopy showed that the response of the sensing molecule toward Eu3+ and Dy3+ is weak, and this phenolic Mannich base may be used as a "turn-off" chemosensor for these two lanthanide ions only in a narrow concentration range (1-16 × 10-5 M).
Collapse
Affiliation(s)
- Andreea Laura Chibac-Scutaru
- Petru Poni Institute of Macromolecular Chemistry, Department of Polyaddition and Photochemistry Iaşi 700487 Romania
| | - Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic Polymers Iaşi 700487 Romania
| |
Collapse
|
3
|
Sendh J, Baruah JB. Sequential effects of two cations on the fluorescence emission of a coordination polymer with Zn 4O core in node. RSC Adv 2024; 14:31598-31606. [PMID: 39376515 PMCID: PMC11457270 DOI: 10.1039/d4ra06309k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Distinct changes in the fluorescence emissions of free ligand 5-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)isophthalic acid (H2NAPHISO) than a 2D-zinc-coordination polymer of it, caused by sequential interactions with different sets of binary cations were observed. The coordination polymer having unsymmetrical Zn4O core of tetranuclear zinc-node could be dispersed in dimethylformamide without its degradation. The coordination polymer had an emission peak at 435 nm (quantum yield = 0.082) which was selectively quenched by adding Fe2+ ions. Based on this quenching, the Fe2+ ions in aqueous solution could be detected with a detection limit 42.57 nM. The metal ions such as Li+, Na+, Cd2+, Hg2+, Al3+ did not interfere in the detection; but each of these ions together with Fe2+ ions showed characteristic shift of the emission spectra. The H2NAPHISO in dimethyl formamide was non-fluorescent, but showed emission at 452 nm upon addition of Cd2+ or Zn2+ ions. This new emission of H2NAPHISO caused by zinc or cadmium ions was not quenched by Fe2+ ions. Various cations had affected the emission of the H2NAPHISO with Zn2+ which was much different from the corresponding changes caused by the same ion on the emission of the coordination polymer. For example, the Mn2+ and Zn2+ ions together in a solution of the ligand showed a broad emission spectrum spreading over 380-450 nm, but ions Sn2+ and Zn2+ together had showed emission at a shorter wavelength (380 nm). These allowed to modulate the emission of the ligand by binary combination of metal ions.
Collapse
Affiliation(s)
- Jagajiban Sendh
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| | - Jubaraj B Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| |
Collapse
|
4
|
Yan L, Xu X, Bao K. A review of organic small-molecule fluorescent probes for the gallium(III) ion. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6119-6133. [PMID: 39219454 DOI: 10.1039/d4ay01347f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Gallium metal and gallium compounds play significant roles in industry and medicine; however, their pollution and residue can pose potential risks to plants, animals and human health. Moreover, accurately detecting Ga3+ during tumor treatment holds great clinical significance. Therefore, it is crucial to reliably determine the content of Ga3+ in environmental and biological samples. Organic small-molecule fluorescent probe technology offers high selectivity and sensitivity, rapid detection speed, and non-destructive in situ bioimaging capabilities, making it an ideal approach for Ga3+ detection. The numerous reported probes for detecting Ga3+ highlight the immense application potential of fluorescent probes in this field. However, due to limited development of Ga3+-specific fluorescent probes thus far, several challenges associated with their design and development remain. This paper presents a comprehensive overview of the performance achieved by Ga3+ fluorescent probes, while addressing existing issues and proposing corresponding solutions. Additionally, future directions for developing highly efficient Ga3+ fluorescent probes are outlined as valuable guidance.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, P.R. China.
| | - Xianjun Xu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, P.R. China.
| | - Kaiyue Bao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, P.R. China.
| |
Collapse
|
5
|
Hui P, Shi Y, Xu Z, Xu J, Zhu B, Xu L, Liu B, Zhang E. Innovative indenone-derivative colorimetric fluorescent probe: A approach for copper ion detection in water. LUMINESCENCE 2024; 39:e4857. [PMID: 39129422 DOI: 10.1002/bio.4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Copper (Cu2+) is a metal chemical element closely related to human life and is widely used in many fields. However, with the discharge of copper wastewater, the water quality will be seriously affected, leading to excessive intake of Cu2+ and a variety of diseases. Hence, there is a pressing need for an effective detection method for Cu2+ in aqueous environments. Leveraging the remarkable attributes of GFP chromophores and indenone derivatives, we have created a novel colorimetric fluorescent probe P-Cu2+, tailored for efficient copper ion detection. The addition of Cu2+ causes the solution to visibly change from colorless to a pronounced yellow, enabling naked-eye detection and offering promise for real sample analysis.
Collapse
Affiliation(s)
- Peichen Hui
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Yanfeng Shi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Jing Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Lirong Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Bowen Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Erchi Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| |
Collapse
|
6
|
Xie F, Yang H, Lu D, Wu X, Yan L. A Dicyanoisoflurone-based Near-infrared Fluorescence Probe for Highly Sensitive Detection of Hg 2. J Fluoresc 2024; 34:1821-1828. [PMID: 37642777 DOI: 10.1007/s10895-023-03386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Due to its high toxicity, long durability, easy absorption by aquatic organisms, and significant bioaccumulation, Hg2+ has caused substantial environmental damage and posed serious threats to human health. Therefore, effective detection of Hg2+ is of utmost importance. In this study, a turn-on fluorescent probe based on dicyanoisoflurone was developed for the detection of Hg2+. The probe exhibited near-infrared fluorescence signal at 660 nm upon excitation by 440 nm UV light in a mixture of CH3CN and HEPES buffer (4:1, v/v, 10 mM, pH = 7.5), with selective binding to Hg2+ in a molar ratio of 1:1. This binding event was accompanied by a visible color change from light yellow to orange. By utilizing the enhanced fluorescence signal change, this probe enables highly sensitive analysis and detection of Hg2+ with excellent selectivity (association constant = 1.63 × 104 M- 1), large Stokes shift (220 nm), high sensitivity (detection limit as low as 5.6 nM), short reaction time (30 s), and a physiological pH range of 7.5-9.5. The probe was successfully employed for detecting of Hg2+ in real water and living cells.
Collapse
Affiliation(s)
- Fenlan Xie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Hong Yang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Dongqing Lu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China.
| |
Collapse
|
7
|
Ragavi SP, Thirumalai D, Asharani IV. A Review on Small Organic Colorimetric and Fluorescent Hosts for the Detection of Cobalt and Nickel Ion. J Fluoresc 2024:10.1007/s10895-024-03807-5. [PMID: 38884827 DOI: 10.1007/s10895-024-03807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
In recent years, there has been a notable increase in efforts to advance efficient hosts for detecting cobalt and nickel ions, driven by their extensive industrial applications and environmental significance. This review meticulously examines the progress made in small organic colorimetric and fluorescent hosts tailored specifically for the sensitive and selective detection of cobalt and nickel ions. It delves into a diverse range of molecular architectures, including organic ligands, elucidating their unique attributes such as sensitivity, selectivity, and response time. Moreover, the review precisely explores the underlying principles governing the colorimetric and fluorescent mechanisms employed by these hosts, shedding light on the intricate interactions between the sensing moieties and the target metal ions. Furthermore, it critically evaluates the practical applicability of these hosts, considering crucial factors such as detection limits, recyclability, and compatibility with complex sample matrices. Additionally, exploration extends to potential challenges and prospects in the field, emphasizing the imperative for ongoing innovation to address emerging environmental and analytical demands. Eventually, through this comprehensive examination, the review seeks to contribute to the ongoing endeavor to develop robust and efficient tools for monitoring and detecting cobalt and nickel metal ions in diverse analytical scenarios.
Collapse
Affiliation(s)
- S P Ragavi
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumalai
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - I V Asharani
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
8
|
Yan L, Tang L, Wu X, Li L. Recent Advances in Organic Small-Molecule Fluorescent Probes Based on Dicyanoisophorone Derivatives. Crit Rev Anal Chem 2024:1-28. [PMID: 38836446 DOI: 10.1080/10408347.2024.2354328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fluorescent probe technology holds great promise in the fields of environmental monitoring and clinical diagnosis due to its inherent advantages, including easy operation, reliable detection signals, fast analysis speed, and in situ imaging capabilities. In recent years, a wide range of fluorescent probes based on diverse fluorophores have been developed for the analysis and detection of various analytes, yielding significant achievement. Among these fluorophores, the dicyanoisophorone-based fluorophores have garnered significant attention. Dicyanoisoporone exhibits minimal fluorescence, yet possesses a robust electron-withdrawing capability, rendering it suitable for constructing of D-π-A structured fluorophores. Leveraging the intramolecular charge transfer (ICT) effect, such fluorophores exhibit near-infrared (NIR) fluorescence emission with a large Stokes shift, thereby offering remarkable advantages in the design and development of NIR fluorescence probes. This review article primarily focus on small-molecule dicyanoisoporone-based probes from the past two years, elucidating their design strategies, detection performances, and applications. Additionally, we summarize current challenges while predicting future directions to provide valuable references for developing novel and advanced fluorescence probes based on dicyanoisoporone derivatives.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Liting Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| |
Collapse
|
9
|
Lin R, Zhang H, Huang Y. A new two-dimensional, spiropyran-based polymer fluorescent nanoprobe with quantitative-fluorescent and photochromic properties for multi-substance detection. NANOTECHNOLOGY 2024; 35:335702. [PMID: 38776878 DOI: 10.1088/1361-6528/ad4ee6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
One challenge of the structural design of a fluorescent probe is how to improve the detection performance on trace target analytes in complex samples. Herein a new polymer fluorescent nanoprobe (2DSP-C28) has been synthesized, by adopting a two-dimensional (2D), spiropyran (SP)-based nanosheet structure with hydrophobic long-chain alkanes (C28). Unlike a traditional SP-based small molecule probe, the 2DSP-C28probe can exhibit quantitative-fluorescent and photochromic properties. Under the detection of metal-ions, the nanoprobe in dimethyl sulfoxide aqueous solution is selectively fluorescent-quenched-responsive for Fe-ions (∼100μM), with a characteristic stoichiometric ratio of <10, a high sensitivity (limit of detection: ∼0.2μM). When the nanoprobe is incorporated into electrospun polyethylene oxide, it can be used for gas detection, and display a color-change with acid-base gas and identify the HF gas. It is expected that this new polymer fluorescent nanoprobe can be promisingly applied for rapidly environmental monitoring on the ion or gas pollution.
Collapse
Affiliation(s)
- Riyan Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, People's Republic of China
| | - Hefeng Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, People's Republic of China
| | - Yifu Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, People's Republic of China
| |
Collapse
|
10
|
Gao Y, Guo L, Liu X, Chen N, Yang X, Zhang Q. Advances in the synthesis and applications of macrocyclic polyamines. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231979. [PMID: 39092147 PMCID: PMC11293801 DOI: 10.1098/rsos.231979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/04/2024]
Abstract
Macrocyclic polyamines constitute a significant class of macrocyclic compounds that play a pivotal role in the realm of supramolecular chemistry. They find extensive applications across diverse domains including industrial and agricultural production, clinical diagnostics, environmental protection and other multidisciplinary fields. Macrocyclic polyamines possess a distinctive cavity structure with varying sizes, depths, electron-richness degrees and flexibilities. This unique feature enables them to form specific supramolecular structures through complexation with diverse objects, thereby attracting considerable attention from chemists, biologists and materials scientists alike. However, there is currently a lack of comprehensive summaries on the synthesis methods for macrocyclic polyamines. In this review article, we provide an in-depth introduction to the synthesis of macrocyclic polyamines while analysing their respective advantages and disadvantages. Furthermore, we also present an overview of the recent 5-year advancements in using macrocyclic polyamines as non-viral gene vectors, fluorescent probes, diagnostic and therapeutic reagents as well as catalysts. Looking ahead to future research directions on the synthesis and application of macrocyclic polyamines across various fields will hopefully inspire new ideas for their synthesis and use.
Collapse
Affiliation(s)
- Yongguang Gao
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Lina Guo
- Tangshan First Vocational Secondary Specialized School, Tangshan 063000, People’s Republic of China
| | - Xinhua Liu
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Na Chen
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Xiaochun Yang
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Qing Zhang
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| |
Collapse
|
11
|
Shang X, Liu B, Liu L, Wang J, Wang Y. Difunctional Fluorescent Probes for Iron and Hydrogen Sulfide Detection Based on Diphenyl Derivative. J Fluoresc 2024; 34:1269-1278. [PMID: 37526873 DOI: 10.1007/s10895-023-03374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
In order to better monitor the content of Fe3+ and H2S in the biological environment, two new fluorescent probes were designed and synthesized. With the addition of Fe3+, the strong fluorescence emission of two probes was significantly quenched due to the paramagnetic effect of Fe3+. With the further addition of S2-, the fluorescence intensity was quickly restored. Two probes showed high selectivity and strong sensitivity for the detection of Fe3+ and S2-, and the fluorescence intensity "ON-OFF-ON" was accompanied with the interaction process. At the same time, two probes displayed good anti-interference ability which was not interfered by the existence of other ions. In addition, two probes illustrated fast response time to Fe3+, S2- and small cytotoxicity to cells. Therefore, two probes can provide a potential ideal tool for detecting Fe3+ and H2S in organisms and the environment.
Collapse
Affiliation(s)
- Xuefang Shang
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Bingqing Liu
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lixia Liu
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jia Wang
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yingling Wang
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| |
Collapse
|
12
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
13
|
Milićević D, Hlaváč J. Novel Peptide-Based Fluorescent Probe for Simultaneous Sensing of Chymotrypsin and Hydrogen Peroxide. ACS OMEGA 2024; 9:17481-17490. [PMID: 38645371 PMCID: PMC11024966 DOI: 10.1021/acsomega.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
The developed multifunctional fluorescent probe enables the simultaneous detection of chymotrypsin as a model protease and hydrogen peroxide as a representative of reactive oxygen species (ROS) in biologically relevant concentration ranges. The chymotrypsin sensing is based on the cleavage of its selectively recognizable peptide sequence and the consequent disruption of FRET between coumarin (DEAC) and fluorescein (FL). Analogously, the presence of hydrogen peroxide causes the gradual degradation of the H2O2-labile benzopyrylium-coumarin (BC) dye. Considering the fluorescence emission responses of individual chymotrypsin-peroxide probe-attached fluorophores after their excitation at 425 nm, the sole presence of either chymotrypsin (50-1000 ng/mL) or hydrogen peroxide (10-200 μM) in a sample could be unambiguously confirmed or refuted. In addition, reliable simultaneous detection and approximate quantification of both studied species in the concentration ranges of 100-1000 ng/mL and 20-200 μM for chymotrypsin and H2O2, respectively, could be performed as well. The obtained results are summarized and visualized in the graphical models.
Collapse
Affiliation(s)
- David Milićević
- Department of Organic Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
14
|
Zhao Y, Wang Y, Zhang Y, Bai X, Hou W, Huang Y. A novel isophorone-based fluorescent probe for recognizing Al 3+ and its bioimaging in plants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2120-2126. [PMID: 38516903 DOI: 10.1039/d4ay00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Aluminium ions (Al3+) are widely present in industries and daily life and are closely related to human health and environmental protection. Therefore, it is crucial to detect their concentration. In this paper, a convenient and reliable small molecule fluorescent probe based on a dicyanoisophorone Schiff base and 2-pyridinecarbohydrazide has been developed. The probe is capable of selectively detecting Al3+ with the advantages of near-infrared emission (maximum emission wavelength of 625 nm), good selectivity, high sensitivity (detection limit of 2.18 × 10-7 M) and fast response time (15 s). It has good potential for rapid detection and visual tracking of Al3+ in aqueous solutions and plant bodies.
Collapse
Affiliation(s)
- Yanna Zhao
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Yuqi Wang
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Yingying Zhang
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Xiaowei Bai
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Wentong Hou
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Yuqing Huang
- Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
15
|
Singh A, Dhau J, Kumar R, Badru R, Kaushik A. Exploring the fluorescence properties of tellurium-containing molecules and their advanced applications. Phys Chem Chem Phys 2024; 26:9816-9847. [PMID: 38497121 DOI: 10.1039/d3cp05740b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This review article explores the fascinating realm of fluorescence using organochalcogen molecules, with a particular emphasis on tellurium (Te). The discussion encompasses the underlying mechanisms, structural motifs influencing fluorescence, and the applications of these intriguing phenomena. This review not only elucidates the current state of knowledge but also identifies avenues for future research, thereby serving as a valuable resource for researchers and enthusiasts in the field of fluorescence chemistry with a focus on Te-based molecules. By highlighting challenges and prospects, this review sparks a conversation on the transformative potential of Te-containing compounds across different fields, ranging from environmental solutions to healthcare and materials science applications. This review aims to provide a comprehensive understanding of the distinct fluorescence behaviors exhibited by Te-containing compounds, contributing valuable insights to the evolving landscape of chalcogen-based fluorescence research.
Collapse
Affiliation(s)
- Avtar Singh
- Research and Development, Molekule Group Inc., 3802 Spectrum Blvd., Tampa, Florida 33612, USA.
- Department of Chemistry, Sri Guru Teg Bahadur Khalsa College, Anandpur Sahib, Punjab 140118, India
| | - Jaspreet Dhau
- Research and Development, Molekule Group Inc., 3802 Spectrum Blvd., Tampa, Florida 33612, USA.
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Rahul Badru
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140406, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| |
Collapse
|
16
|
Xie Y, Lv X, Li Z, Li Y, Li H. A Enhanced Fluorescent Probe for Simultaneous Detection and Discrimination of Hydrogen Bisulfite Anions and Glutathione. J Fluoresc 2024:10.1007/s10895-024-03654-4. [PMID: 38457075 DOI: 10.1007/s10895-024-03654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Bisulfite (HSO3-) and biological thiols molecules, such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), play important roles in organisms. Developing a fluorescent probe that can simultaneously detect and distinguish HSO3- and biological thiols is of great significance. In this study, ethyl(2E,4Z)-5-chloro-2-cyano-5-(7-(diethylamino)-2-oxo-2 H-chromen-3-yl)penta-2,4-dienoate (CCO) as a novel enhanced fluorescence probe was synthesized by integrating coumarin derivatives and ethyl cyanoacetate, which can simultaneous detection and discrimination of hydrogen bisulfite anions and glutathione. The sensing mechanism was elucidated through spectral analysis and some control experiments. In weakly alkaline environments, the probe not only has good selectivity for HSO3- and GSH, but also has a lower detection limits of 0.0179 µM and 0.2034 µM. The probe exhibited fuorescent turn-on for distinguishing with 296 and 28 fold the fluorescent intensity increase at 486 and 505 nm, respectively, through diferent excitation wavelengths. This provides a new method for simultaneous detection and discrimination of HSO3- and biological thiol cell levels and further applications.
Collapse
Affiliation(s)
- Yu Xie
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China
| | - Xiaoci Lv
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China
| | - Zhiwei Li
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China
| | - Yanbo Li
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China
| | - Heping Li
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China.
| |
Collapse
|
17
|
Guo Y, Sun J, Liu M, Wu J, Zhao Z, Ma T, Fang Y. A Ratiometric Biosensor Containing Manganese Dioxide Nanosheets and Nitrogen-Doped Quantum Dots for 2,4-Dichlorophenoxyacetic Acid Monitoring. BIOSENSORS 2024; 14:63. [PMID: 38391983 PMCID: PMC10887317 DOI: 10.3390/bios14020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Nanomaterials are desirable for sensing applications. Therefore, MnO2 nanosheets and nitrogen-doped carbon dots (NCDs) were used to construct a ratiometric biosensor for quantification of 2,4-dichlorophenoxyacetic acid. The MnO2 nanosheets drove the oxidation of colorless o-phenylenediamine to OPDox, which exhibits fluorescence emission peaks at 556 nm. The fluorescence of OPDox was efficiently quenched and the NCDs were recovered as the ascorbic acid produced by the hydrolyzed alkaline phosphatase (ALP) substrate increased. Owing to the selective inhibition of ALP activity by 2,4-D and the inner filter effect, the fluorescence intensity of the NCDs at 430 nm was suppressed, whereas that at 556 nm was maintained. The fluorescence intensity ratio was used for quantitative detection. The linear equation was F = 0.138 + 3.863·C 2,4-D (correlation coefficient R2 = 0.9904), whereas the limits of detection (LOD) and quantification (LOQ) were 0.013 and 0.040 μg/mL. The method was successfully employed for the determination of 2,4-D in different vegetables with recoveries of 79%~105%. The fluorescent color change in the 2,4-D sensing system can also be captured by a smartphone to achieve colorimetric detection by homemade portable test kit.
Collapse
Affiliation(s)
- Yang Guo
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China; (Y.G.); (J.S.); (M.L.); (J.W.); (Z.Z.); (T.M.)
- Ningxia Hui Autonomous Region Food Testing Research Institute, Yinchuan 750000, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingran Sun
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China; (Y.G.); (J.S.); (M.L.); (J.W.); (Z.Z.); (T.M.)
| | - Mingzhu Liu
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China; (Y.G.); (J.S.); (M.L.); (J.W.); (Z.Z.); (T.M.)
| | - Jin Wu
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China; (Y.G.); (J.S.); (M.L.); (J.W.); (Z.Z.); (T.M.)
| | - Zunquan Zhao
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China; (Y.G.); (J.S.); (M.L.); (J.W.); (Z.Z.); (T.M.)
| | - Ting Ma
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China; (Y.G.); (J.S.); (M.L.); (J.W.); (Z.Z.); (T.M.)
| | - Yanjun Fang
- The Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China; (Y.G.); (J.S.); (M.L.); (J.W.); (Z.Z.); (T.M.)
| |
Collapse
|
18
|
Kaur H, Riya, Singh A, Singh H, Ranjan Lal U, Kumar A, Chaitanya MVNL. Molecular recognition of carbonate ion using a novel turn-on fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123270. [PMID: 37611524 DOI: 10.1016/j.saa.2023.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
A novel turn-on fluorescent probe 3 was synthesized by condensing salicylaldehyde and nicotinic hydrazide for the selective detection of CO32- in aqueous medium. Probe 3 exhibited a turn-on fluorescence response toward CO32- with excellent selectivity, sensitivity (DL = 2.76 μM), and good reversibility. The binding constant (K) of probe 3 with CO32- was calculated to be 5 × 103 M-1 (log K 3.69). The 1:1 stoichiometry of the complex between probe 3 and CO32- ions was confirmed by Job's plot and ESI-MS spectra. Deprotonation and hydrogen-bonding interactions are involved in the recognition of CO32- ion, which was also suggested by 1H NMR, ESI-MS spectra, and Density Functional Theory (DFT) calculations. Moreover, an INHIBIT type molecular logic gate was constructed by using 3:CO32- and CH3COOH as inputs and current signal as output. Owing to the practical applications, probe 3 demonstrated its efficiency in quantifying CO32- ion in real water samples through standard addition method, thus showcasing its potential in real environment. Further, the MTT assay indicated very low cytotoxicity (IC50 = 1 mM) of probe 3 and also the cell imaging experiments demonstrated the effective sensing of CO32- ions with probe 3 in the biological systems.
Collapse
Affiliation(s)
- Hardeep Kaur
- Post Graduate Department of Chemistry, Khalsa College Amritsar, Punjab 143102, India.
| | - Riya
- Post Graduate Department of Chemistry, Khalsa College Amritsar, Punjab 143102, India
| | - Amandeep Singh
- Department of Pharmacognosy and Phytochemistry, Khalsa College of Pharmacy, Amritsar, Punjab 143102, India.
| | - Harpreet Singh
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Uma Ranjan Lal
- Department of Natural Product, National Institute of Pharmaceutical and Education Research, Mohali, Punjab 160062, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Education Research, Mohali, Punjab 160062, India
| | - M V N L Chaitanya
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
19
|
Fang Y, Ding S, Li W, Zhang J, Sun H, Lin X. Dual-Channel Fluorescent/Colorimetric-Based OPD-Pd/Pt NFs Sensor for High-Sensitivity Detection of Silver Ions. Foods 2023; 12:4260. [PMID: 38231754 DOI: 10.3390/foods12234260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Silver ions (Ag+) exist widely in various areas of human life, and the food contamination caused by them poses a serious threat to human health. Among the numerous methods used for the detection of Ag+, fluorescence and colorimetric analysis have attracted much attention due to their inherent advantages, such as high sensitivity, simple operation, short time, low cost and visualized detection. In this work, Pd/Pt nanoflowers (NFs) specifically responsive to Ag+ were synthesized in a simple way to oxidize o-phenylenediamine (OPD) into 2,3-diaminophenazine (DAP). The interaction of Ag+ with the surface of Pd/Pt NFs inhibits the catalytic activity of Pd/Pt NFs towards the substrate OPD. A novel dual-channel nanosensor was constructed for the detection of Ag+, using the fluorescence intensity and UV-vis absorption intensity of DAP as output signals. This dual-mode analysis combines their respective advantages to significantly improve the sensitivity and accuracy of Ag+ detection. The results showed that the limit of detection was 5.8 nM for the fluorescence channel and 46.9 nM for the colorimetric channel, respectively. Moreover, the developed platform has been successfully used for the detection of Ag+ in real samples with satisfactory recoveries, which is promising for the application in the point-of-care testing of Ag+ in the field of food safety.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shusen Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weiran Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingjing Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hui Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China
| |
Collapse
|
20
|
Song J, Liu Y, Wang C, Xu B, Zhao L. A Dipeptide-derived Dansyl Fluorescent Probe for the Detection of Cu 2+ in Aqueous Solutions. J Fluoresc 2023; 33:2515-2521. [PMID: 37204534 DOI: 10.1007/s10895-023-03274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
A novel dansyl-based fluorescent probe (DG) was designed via the introduction of a dipeptide, glycyl-L-glutamine. DG showed good selectivity and sensitivity towards Cu2+ in aqueous solutions in the pH span of ~ 6-12. The coordination of Cu2+ with the dipeptide moiety led to the fluorescent quenching of the dansyl fluorophore. The association constant value for Cu2+ was 0.78 × 104 M- 1 in a 1 to 1 stoichiometric ratio. The detection limit in HEPES buffer solution (10 mM, pH 7.4) was 1.52 µM. DG also showed strong anti-interference capability in the presence of other metal ions. It was worth noting that DG maintained the detection ability towards Cu2+ in real water samples and cell imaging, implying the potential application opportunities in complicated environments.
Collapse
Affiliation(s)
- Jian Song
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yu Liu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ce Wang
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
21
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
22
|
Li D, Xu Q, Zhao F, Guo C, Li J, Pu X, Xia J, Lü Y, Zhang Y. Highly sensitive and selective detection of nitrite using a fiber optofluidic laser. OPTICS EXPRESS 2023; 31:31982-31992. [PMID: 37859011 DOI: 10.1364/oe.502301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Nitrite ion (NO2-) is a common contaminant that can significantly threaten human health and the environment. In this study, we demonstrate a chemical sensing platform to monitor the nitrite concentration using a fiber optofluidic laser (FOFL). An optical fiber, integrated into a microchannel, is used both as an optical micro-cavity and the sensing element. Rhodamine 6 G (Rh6G) in an aqueous micellar solution is used as the laser gain medium. The light intensity change of the lasing spectra is employed as an indicator for the NO2- ion concentration sensing. The lasing properties under different NO2- ion concentrations are experimentally and theoretically investigated to examine the sensing performance of the FOFL. The results show that the limit detection of the FOFL sensor is 0.54 µM, which is 2-order-of-magnitude lower than fluorescence measurement. The sensing mechanism of Rh6G for NO2- detection is studied by using density functional theory (DFT). The calculation results indicate that nitrite influences the electronic distribution of Rh6G based on the heavy atom effect, which leads to the fluorescence quenching of Rh6G in the excited state. In addition, the detection system exhibits favorable selectivity for NO2- ions.
Collapse
|
23
|
Zeußel L, Singh S. Meldrum's Acid Furfural Conjugate MAFC: A New Entry as Chromogenic Sensor for Specific Amine Identification. Molecules 2023; 28:6627. [PMID: 37764403 PMCID: PMC10535807 DOI: 10.3390/molecules28186627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bioactive amines are highly relevant for clinical and industrial application to ensure the metabolic status of a biological process. Apart from this, generally, amine identification is a key step in various bioorganic processes ranging from protein chemistry to biomaterial fabrication. However, many amines have a negative impact on the environment and the excess intake of amines can have tremendous adverse health effects. Thus, easy, fast, sensitive, and reliable sensing methods for amine identification are strongly searched for. In the past few years, Meldrum's acid furfural conjugate (MAFC) has been extensively explored as a starting material for the synthesis of photoswitchable donor-acceptor Stenhouse adducts (DASA). DASA formation hereby results from the rapid reaction of MAFC with primary and secondary amines, which has so far been demonstrated through numerous publications for different applications. The linear form of the MAFC-based DASA exhibits intense pink coloration due to its linear conjugated triene-2-ol conformation, which has inspired researchers to use this easy synthesizable molecule as an optical sensor for primary, secondary, and biogenic amines. Due to its new entry into amine identification, a collection of the literature exclusively on MAFC is demanded. In this mini review, we intend to present the state-of-the-art of MAFC as an optical molecular sensor in hopes to motivate researchers to find even more applications of MAFC-based sensors and methods that pave the way to their usage in medicinal applications.
Collapse
Affiliation(s)
- Lisa Zeußel
- Department of Nanobiosystem Technology, Institute of Chemistry and Biotechnology, Technical University Ilmenau, Prof-Schmidt-Straße 26, 98693 Ilmenau, Germany;
- Research Group Bioorganic Chemistry of Bioactive Surfaces, Institute of Chemistry and Biotechnology, Prof-Schmidt-Straße 26, 98693 Ilmenau, Germany
| | - Sukhdeep Singh
- Research Group Bioorganic Chemistry of Bioactive Surfaces, Institute of Chemistry and Biotechnology, Prof-Schmidt-Straße 26, 98693 Ilmenau, Germany
| |
Collapse
|
24
|
Chen Y, Zheng S, Kim MH, Chen X, Yoon J. Recent progress of TP/NIR fluorescent probes for metal ions. Curr Opin Chem Biol 2023; 75:102321. [PMID: 37196449 DOI: 10.1016/j.cbpa.2023.102321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Metal ions are of significance in various pathological and physiological processes. As such, it is crucial to monitor their levels in organisms. Two-photon (TP) and near-infrared (NIR) fluorescence imaging has been utilized to monitor metal ions because of minimal background interference, deeper tissue depth penetration, lower tissue self-absorption, and reduced photodamage. In this review, we briefly summarize recent progress from 2020 to 2022 of TP/NIR organic fluorescent probes and inorganic sensors in the detection of metal ions. Additionally, we present an outlook for the development of TP/NIR probes for bio-imaging, diagnosis of diseases, imaging-guided therapy, and activatable phototherapy.
Collapse
Affiliation(s)
- Yahui Chen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Myung Hwa Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
25
|
Aarya, Thomas T, Sarangi BR, Sen Mojumdar S. Rapid Detection of Ag(I) via Size-Induced Photoluminescence Quenching of Biocompatible Green-Emitting, l-Tryptophan-Scaffolded Copper Nanoclusters. ACS OMEGA 2023; 8:14630-14640. [PMID: 37125097 PMCID: PMC10134478 DOI: 10.1021/acsomega.3c00462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/03/2023] [Indexed: 11/17/2024]
Abstract
Atomically precise metal nanoclusters capped with small molecules like amino acids are highly favored due to their specific interactions and easy incorporation into biological systems. However, they are rarely explored due to the challenge of surface functionalization of nanoclusters with small molecules. Herein, we report the synthesis of a green-emitting (λex = 380 nm, λem = 500 nm), single-amino-acid (l-tryptophan)-scaffolded copper nanocluster (Trp-Cu NC) via a one-pot route under mild reaction conditions. The synthesized nanocluster can be used for the rapid detection of a heavy metal, silver (Ag(I)), in the nanomolar concentration range in real environmental and biological samples. The strong green photoluminescence intensity of the nanocluster quenched significantly upon the addition of Ag(I) due to the formation of bigger nanoparticles, thereby losing its energy quantization. A notable color change from light yellow to reddish-brown can also be observed in the presence of Ag(I), allowing its visual colorimetric detection. Portable paper strips fabricated with the Trp-Cu NC can be reliably used for on-site visual detection of Ag(I) in the micromolar concentration range. The Trp-Cu NC possesses excellent biocompatibility, making it a suitable nanoprobe for cell imaging; thus, it can act as an in vivo biomarker. The nanocluster showed a significant spectral overlap with anticancer drug doxorubicin and thus can be used as an effective fluorescence resonance energy transfer (FRET) pair. FRET results can reveal important information regarding the attachment of the drug to the nanocluster and hence its role as a potential drug carrier for targeted drug delivery within the human body.
Collapse
Affiliation(s)
- Aarya
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad 678 557, Kerala, India
| | - Telna Thomas
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad 678 557, Kerala, India
| | - Bibhu Ranjan Sarangi
- Department
of Physics, Indian Institute of Technology
Palakkad, Palakkad 678 557, Kerala, India
- Department
of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Supratik Sen Mojumdar
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad 678 557, Kerala, India
| |
Collapse
|
26
|
Zagranyarski Y, Cheshmedzhieva DV, Mutovska M, Ahmedova A, Stoyanov S. Dioxepine-Peri-Annulated PMIs-Synthesis and Spectral and Sensing Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:2902. [PMID: 36991615 PMCID: PMC10058915 DOI: 10.3390/s23062902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
New perylene monoimide (PMI) derivatives bearing a seven-membered heterocycle and 1,8-diaminosarcophagine (DiAmSar) or N,N-dimethylaminoethyl chelator fragments were synthesized, and their spectroscopic properties in the absence and presence of metal cations were determined to evaluate their potential applications as PET optical sensors for such analytes. DFT and TDDFT calculations were employed to rationalize the observed effects.
Collapse
|
27
|
Chettri B, Jha S, Dey N. Tuning anion binding properties of Bis(indolyl)methane Receptors: Effect of substitutions on optical responses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:121979. [PMID: 36327812 DOI: 10.1016/j.saa.2022.121979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Chromogenic probes based onoxidizedbis(indolyl)methanes have been synthesized with varying substituents (R = -Me [1], -OMe [2], -OH, [3]) on the central aryl ring. In addition to electronic influence, the involvement of substituents in ion-dipole and charge-assisted hydrogen bonding interactions significantly alters the solvatochromic response and pH-sensitive behavior. In polar aprotic solvents, like CH3CN, a concentration-dependent stepwise color change was observed with F- ions. In the case of2, a reversible hydrogen bonding interaction between the deprotonated probe and HF2- dimer might be responsible for that, while step-wise deprotonation caused by F- ions could be the probable reason with3. Since the formation of HF2- is energetically unfavorable in a polar protic solvent, the response of 2 with F- ions appears to be very different in EtOH medium. Interestingly, no such alteration in anion sensing behavior was noticed with3going from an aprotic to a protic solvent.
Collapse
Affiliation(s)
- Bimal Chettri
- Department of Chemistry, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Gangtok, Sikkim, India
| | - Satadru Jha
- Department of Chemistry, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Gangtok, Sikkim, India.
| | - Nilanjan Dey
- Department of Chemistry Birla Institute of Technology and Sciences-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078, Telangana, India.
| |
Collapse
|
28
|
Tamrakar A, Nigam KK, Maddeshiya T, Pandey MD. Pyrene Functionalized Luminescent Phenylalanine for Selective Detection of Copper (II) Ions in Aqueous Media. J Fluoresc 2023; 33:1175-1182. [PMID: 36622492 DOI: 10.1007/s10895-022-03137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
A novel pyrene-based fluorescent chemosensor 1 (pyren-1-ylmethyl)-L-phenylalanine was designed and synthesized by combining 1-pyrenecarboxyaldehyde and L-phenylalanine. 1 was characterized by several analytical methods and used as a fluorescent chemosensor for the selective and sensitive detection of Cu2+ ions through "turn-off" mechanism with a detection limit of 2 × 10-8 M. 1 can also be used to detect Cu2+ ions in a natural water sample and exhibits gelation properties with high thermal stability.
Collapse
Affiliation(s)
- Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Kamlesh Kumar Nigam
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
29
|
Xiang Z, Jiang Y, Cui C, Luo Y, Peng Z. Sensitive, Selective and Reliable Detection of Fe 3+ in Lake Water via Carbon Dots-Based Fluorescence Assay. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196749. [PMID: 36235283 PMCID: PMC9573028 DOI: 10.3390/molecules27196749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
In this study, C-dots were facilely synthesized via microwave irradiation using citric acid and ethylenediamine as carbon precursors. The fluorescence emissions of the C-dots could be selectively quenched by Fe3+, and the degree of quenching was linearly related to the concentrations of Fe3+ presented. This phenomenon was utilized to develop a sensitive fluorescence assay for Fe3+ detection with broad linear range (0–250, 250–1200 μmol/L) and low detection limit (1.68 μmol/L). Most importantly, the assay demonstrated high reliability towards samples in deionized water, tap water and lake water, which should find potential applications for Fe3+ monitoring in complicated environments.
Collapse
Affiliation(s)
- Zhuang Xiang
- School of Materials and Energy, Yunnan University, Kunming 650091, China
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming 650091, China
| | - Yuxiang Jiang
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Chen Cui
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yuanping Luo
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, China
- Correspondence: ; Tel.: +86-871-65037399
| |
Collapse
|
30
|
Pavankumar BB, Ranjan P, Jha PC, Sivaramakrishna A. New Oxoquinoline‐Imidazole Based Fluorescence Signaling Switches for the Determination of Zn
2+
/F
−
(OFF‐ON), and Fe
3+
/Picric Acid (ON‐OFF): Applications in Anticancer Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202201875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- B. B. Pavankumar
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014, Tamil Nadu India
| | - Prabodh Ranjan
- School of Applied Material Sciences Central University of Gujarat, Sector-30, Gandhinagar Gujarat India
- Department of Chemical Engineering Indian Institute of Technology Madras Chennai India
| | - Prakash C. Jha
- School of Applied Material Sciences Central University of Gujarat, Sector-30, Gandhinagar Gujarat India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014, Tamil Nadu India
| |
Collapse
|
31
|
Fernandes RS, Dey N. Modulation of Analytical Performance of a Bifunctional Optical Probe at Micelle‐water interface: Selective Sensing of Histidine in Biological Fluid. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Nilanjan Dey
- Birla Institute of Technology & Science Pilani - Hyderabad Campus Chemistry department Shameerpet 500078 Hyderabad INDIA
| |
Collapse
|