1
|
Hadi N, Nazarian S, Rouhi S, Hosseini SE, Fathi J. Production of egg yolk antibody (IgY) against a chimeric protein containing IpaD, StxB, and TolC antigens from Shigella: An investigation of its prophylactic effects against Shiga toxin (Stx) and Shigella dysenteriae in vitro and in vivo. Heliyon 2024; 10:e26361. [PMID: 38404796 PMCID: PMC10884852 DOI: 10.1016/j.heliyon.2024.e26361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Shigella is a major problem in developing countries. Immunoglobulin Y (IgY) can be used for prophylaxis and neutralize bacteria. The aim of this study was to produce IgY against the chimeric protein containing IpaD, StxB, and TolC antigens from Shigella, investigate its prophylactic and neutralizing effects against Stx and Shigella dysenteriae. The nucleotide sequence corresponding to the chimeric protein was cloned into pET28a plasmid and expressed in E. coli BL21 (DE3). Protein expression was confirmed by SDS-PAGE and the recombinant protein was purified by Ni-NTA affinity chromatography. The 150 μg of chimeric protein was mixed with Freund's adjutant and injected into laying hens (Leghorn). IgY was purified using PEG6000 precipitation. Antibody titer in the serum and egg yolk was evaluated by ELISA. IgY challenge against 1,10 and 50 LD50 of Stx and S. dysenteriae was investigated. A 60.6 kDa recombinant protein was confirmed by SDS-PAGE. ELISA showed that the antibody titer was significantly increased. MTT assay [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] showed that at 16 μmol/L, IgY protected HeLa cells against Stx. Treatment of mice with 1000 and 1500 μg IgY leads to complete survival of the mice against 1LD50 toxin and 4000 μg of IgY led to complete survival against 1LD50, also 70% and 30% survival against 10 and 50 LD50S. dysenteriae. This study showed that IgY produced against Stx and Shigella virulence factors could cause high protective effects against bacteria and toxins.
Collapse
Affiliation(s)
- Nahal Hadi
- Department of Bacteriology and Virology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Seyed Edris Hosseini
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Castro VS, Ngo S, Stanford K. Influence of temperature and pH on induction of Shiga toxin Stx1a in Escherichia coli. Front Microbiol 2023; 14:1181027. [PMID: 37485504 PMCID: PMC10359099 DOI: 10.3389/fmicb.2023.1181027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Shiga toxin-producing strains represent pathogenic group that is of concern in food production. The present study evaluated forty-eight E. coli isolates (11 with intact stx gene, while remaining isolates presented only stx-fragments) for Shiga toxin production. The four most expressive stx-producers (O26, O103, O145, and O157) were selected to evaluate effects of pH (3.5, 4.5, and 7) and temperature (35, 40, and 50°C). After determining acid stress effects in media on Stx-induction, we mimicked "in natura" conditions using milk, apple, and orange juices. Only isolates that showed the presence of intact stx gene (11/48) produced Shiga toxin. In addition, acid pH had a role in down-regulating the production of Shiga toxin, in both lactic acid and juices. In contrast, non-lethal heating (40°C), when in neutral pH and milk was a favorable environment to induce Shiga toxin. Lastly, two isolates (O26 and O103) showed a higher capacity to produce Shiga toxin and were included in a genomic cluster with other E. coli involved in worldwide foodborne outbreaks. The induction of this toxin when subjected to 40°C may represent a potential risk to the consumer, since the pathogenic effect of oral ingestion of Shiga toxin has already been proved in an animal model.
Collapse
|
3
|
Isothermal Amplification and Lateral Flow Nucleic Acid Test for the Detection of Shiga Toxin-Producing Bacteria for Food Monitoring. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Foodborne bacteria have persisted as a significant threat to public health and to the food and agriculture industry. Due to the widespread impact of these pathogens, there has been a push for the development of strategies that can rapidly detect foodborne bacteria on-site. Shiga toxin-producing E. coli strains (such as E. coli O157:H7, E. coli O121, and E. coli O26) from contaminated food have been a major concern. They carry genes stx1 and/or stx2 that produce two toxins, Shiga toxin 1 and Shiga toxin 2, which are virulent proteins. In this work, we demonstrate the development of a rapid test based on an isothermal recombinase polymerase amplification reaction for two Shiga toxin genes in a single reaction. Results of the amplification reaction are visualized simultaneously for both Shiga toxins on a single lateral flow paper strip. This strategy targets the DNA encoding Shiga toxin 1 and 2, allowing for broad detection of any Shiga toxin-producing bacterial species. From sample to answer, this method can achieve results in approximately 35 min with a detection limit of 10 CFU/mL. This strategy is sensitive and selective, detecting only Shiga toxin-producing bacteria. There was no interference observed from non-pathogenic or pathogenic non-Shiga toxin-producing bacteria. A detection limit of 10 CFU/mL for Shiga toxin-producing E. coli was also obtained in a food matrix. This strategy is advantageous as it allows for timely identification of Shiga toxin-related contamination for quick initial food contamination assessments.
Collapse
|
4
|
Eppinger M, Almería S, Allué-Guardia A, Bagi LK, Kalalah AA, Gurtler JB, Fratamico PM. Genome Sequence Analysis and Characterization of Shiga Toxin 2 Production by Escherichia coli O157:H7 Strains Associated With a Laboratory Infection. Front Cell Infect Microbiol 2022; 12:888568. [PMID: 35770066 PMCID: PMC9234449 DOI: 10.3389/fcimb.2022.888568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sonia Almería
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States
| | - Lori K Bagi
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anwar A Kalalah
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Joshua B Gurtler
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Pina M Fratamico
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| |
Collapse
|
5
|
Karthikeyan M, Indhuprakash ST, Gopal G, Ambi SV, Krishnan UM, Diraviyam T. Passive immunotherapy using chicken egg yolk antibody (IgY) against diarrheagenic E. coli: A systematic review and meta-analysis. Int Immunopharmacol 2021; 102:108381. [PMID: 34810126 DOI: 10.1016/j.intimp.2021.108381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Animal diarrhea due to diarrheagenic Escherichia coli (E. coli) has been a major concern in the field of livestock farming leading to a severe loss of domesticated animals. This systematic review aims to analyze medical shreds of evidence available in the literature and to discover the effect of IgY in treatment and protection against E. coli diarrhea. METHODS AND RESULTS Research reports that aimed to evaluate the effect of IgY against E. coli diarrhea were searched and collected from several databases (Science Direct, Springer link, Wiley, T&F). The collected studies were screened based on the inclusion criteria. 19 studies were identified and included in the meta-analysis. The pooled relative risk ratios were calculated for the studies and found to be statistically significant to support the therapeutic effect of IgY against E. coli diarrhea but the 95% confidence interval of a majority of studies includes a relative risk of 1. This variability between the effect of IgY in the overall estimate and individual studies accounts due to the presence of methodological heterogeneity. In addition, subgroup analysis revealed the grounds for heterogeneity. CONCLUSIONS This systematic review and meta-analysis provide concrete evidence for the favorable effect of IgY as a prophylactic and therapeutic modality against E. coli diarrhea. Yet, more research pieces of evidence with standardized animal studies aimed to utilize IgY against E. coli are vital. Further studies and trials on human subjects could open new perspectives in the application IgY as a therapeutic agent.
Collapse
Affiliation(s)
- Mukunthan Karthikeyan
- Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Srichandrasekar Thuthikkadu Indhuprakash
- Centre for Research in Infectious Diseases (CRID), Department of Bioengineering, School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Gayathri Gopal
- Centre for Research in Infectious Diseases (CRID), Department of Bioengineering, School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Senthil Visaga Ambi
- Centre for Research in Infectious Diseases (CRID), Department of Bioengineering, School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology and School of Arts, Science & Humanities, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Thirumalai Diraviyam
- Centre for Research in Infectious Diseases (CRID), Department of Bioengineering, School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
6
|
Lian F, Wang D, Yao S, Ge L, Wang Y, Zhao Y, Zhao J, Song X, Zhao C, Li J, Liu Y, Jin M, Xu K. A detection method of Escherichia coli O157:H7 based on immunomagnetic separation and aptamers-gold nanoparticle probe quenching Rhodamine B's fluorescence: Escherichia coli O157:H7 detection method based on IMS and Apt-AuNPs probe quenching Rho B' s fluorescence. Food Sci Biotechnol 2021; 30:1129-1138. [PMID: 34471566 PMCID: PMC8364604 DOI: 10.1007/s10068-021-00947-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
This research aimed to detect Escherichia coli O157:H7 in milk based on immunomagnetic probe separation technology and quenching effect of gold nanoparticles to Rhodamine B. Streptavidin-modified magnetic beads (MBs) were combined with biotin-modified antibodies to capture E. coli O157:H7 specifically. Gold nanoparticle (AuNPs) was incubated with sulfhydryl-modified aptamers (SH-Aptamers) to obtain the Aptamers-AuNPs probe. After magnetic beads captured target bacteria and formed a sandwich structure with the gold nanoprobe, Rhodamine B was added into complex to obtain fluorescent signal changes. Our results demonstrated that the established method could detect E. coli O157:H7 in the range of 101-107 CFU/mL, and the limit of detection (LOD) was 0.35 CFU/mL in TBST buffer (pH = 7.4). In milk simulation samples, the LOD of this method was 1.03 CFU/mL. Our research provides a promising approach on the detection of E. coli O157:H7.
Collapse
Affiliation(s)
- Fengnan Lian
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Dan Wang
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Shuo Yao
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Lirui Ge
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Yue Wang
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Yuyi Zhao
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Jinbin Zhao
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Xiuling Song
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Chao Zhao
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Jinhua Li
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Yajuan Liu
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Minghua Jin
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Kun Xu
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| |
Collapse
|
7
|
Lee L, Samardzic K, Wallach M, Frumkin LR, Mochly-Rosen D. Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Front Immunol 2021; 12:696003. [PMID: 34177963 PMCID: PMC8220206 DOI: 10.3389/fimmu.2021.696003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
Antiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases. IgY is fast-acting, easy to produce, and low cost. IgY antibodies can readily be generated in large quantities with minimal environmental harm or infrastructure investment by using egg-laying hens. We summarize a variety of IgY uses, focusing on their potential for the detection, prevention, and treatment of human and animal infections.
Collapse
Affiliation(s)
- Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kate Samardzic
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Wallach
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Leiva CL, Geoghegan P, Lammer M, Cangelosi A, Mariconda V, Celi AB, Brero ML, Chacana P. In vivo neutralization of bee venom lethality by IgY antibodies. Mol Immunol 2021; 135:183-190. [PMID: 33930713 DOI: 10.1016/j.molimm.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Bee venom is a complex mixture of molecules, among which melittin and phospholipase A2 (PLA2) are the toxic components involved in envenoming accidents with multiple honeybee stings. Traditionally, the treatment of envenomings has been based on the administration of specific antibodies to neutralize the deleterious effects of toxins. An alternative to mammalian polyclonal antibodies is the use of egg yolk immunoglobulins (IgY) due to their advantages regarding animal welfare and lower costs of production as compared to the conventional production methods. In this work, a novel composition containing specific IgY antibodies was developed. After four immunizations, IgY extracted from the egg yolks was able to recognize several components of the bee venom, including melittin and PLA2. The performance of IgY to neutralize the lethal activity was evaluated in a mouse model by using one median lethal dose (LD50) of the bee venom. The effective dose of the IgY extract was determined as 30.66 μg/mg. These results demonstrate the feasibility to produce IgY-based antivenoms to treat envenomings by multiple bee stings.
Collapse
Affiliation(s)
- Carlos Leónidas Leiva
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - Patricia Geoghegan
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Mónica Lammer
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Virginia Mariconda
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Ana Beatriz Celi
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - María Luisa Brero
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Pablo Chacana
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Pinatih KJP, Suardana IW, Widiasih DA, Suharsono H. Shiga-Like Toxin Produced by Local Isolates of Escherichia coli O157:H7 Induces Apoptosis of the T47 Breast Cancer Cell Line. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2021; 15:11782234211010120. [PMID: 35173438 PMCID: PMC8842367 DOI: 10.1177/11782234211010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: It has been suggested that Shiga-like toxins produced by Escherichia coli O157:H7 could be used as novel therapeutic agents against malignant tumors. In addition, the antitumor potency of local isolates from Indonesia, which are known to be less toxic than the control isolate ATCC 43894, has not yet been tested. The study aimed to analyze local strains of E. coli O157:H7 as a proapoptosis agent on the T47 breast cancer cell line. Methods: As many as 30 culture cells of T47D breast cancer cell line were subjected to purified extracts of Shiga-like toxin originating from 5 local isolates of E. coli O157:H7: KL-48(2), SM-25(1), SM-7(1), DS-21(4), and 1 isolate ATCC 43894 which was used as a control. Toxin production of each isolate was detected using a sandwich enzyme-linked immunosorbent assay, and the treatment of cell lines was observed for 24 hours, with 2 replications; 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide tests and acridine orange/ethidium bromide double staining assays were used for detection and analyses of apoptosis. Results: The study showed 2 local strains of E. coli O157:H7 (codes KL-48(2) and SM-25(1)) had toxins positive at titer 5 and 10 μg/100 μL. These titers were lower than the control isolate ATCC 43894, but they had a necrosis effect higher (P < .05), ie, 80.3%, than control isolate, ie, 63.3%. Other local strain SM-25(1) also had a good necrosis effect. It has a nondifferent necrosis effect (P > .05) with the control isolate ATCC 43894, ie, 13.0% from 13.3%. Conclusion: This study concludes that the Shiga toxin produced by E. coli O157:H7 local isolate (Indonesia) has potential as a proapoptotic and/or necrotic agent for treating T47 breast cancer cell lines, as effectively as ATCC 43894 control isolates.
Collapse
Affiliation(s)
| | - I Wayan Suardana
- Laboratory of Veterinary Public Health, Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Udayana University, Denpasar, Indonesia
| | - Dyah Ayu Widiasih
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Hamong Suharsono
- Laboratory of Veterinary Biochemistry, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Udayana University, Denpasar, Indonesia
| |
Collapse
|
10
|
Wang D, Lian F, Yao S, Liu Y, Wang J, Song X, Ge L, Wang Y, Zhao Y, Zhang J, Zhao C, Xu K. Simultaneous Detection of Three Foodborne Pathogens Based on Immunomagnetic Nanoparticles and Fluorescent Quantum Dots. ACS OMEGA 2020; 5:23070-23080. [PMID: 32954157 PMCID: PMC7495797 DOI: 10.1021/acsomega.0c02833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
This paper presents a peptide-mediated immunomagnetic separation technique and an immunofluorescence quantum dot technique for simultaneous and rapid detection of Escherichia coli O157:H7, Staphylococcus aureus, and Vibrio parahaemolyticus. First, three peptides that can specifically recognize the three foodborne pathogens were combined with magnetic nanoparticles to form an immunomagnetic nanoparticle probe for capturing three kinds of target bacteria and then added three quantum dot probes (quantum dots-aptamer), which formed a sandwich composite structure. When the three quantum dot probes specifically combined with the three pathogenic bacteria, the remaining fluorescent signal in the supernatant will be reduced by magnetic separation. Therefore, the remaining fluorescent signal in the supernatant can be measured with a fluorescence spectrophotometer to indirectly determine the three pathogens in the sample. The linear range of the method was 10-107 cfu/mL, and in the buffer, the detection limits of E. coli O157:H7, S. aureus, and V. parahaemolyticus were 2.460, 5.407, and 3.770 cfu/mL, respectively. In the tap water simulation, the detection limits of E. coli O157:H7, S. aureus, and V. parahaemolyticus were 2.730, 1.990 × 101, and 4.480 cfu/mL, respectively. In the milk simulation sample, the detection limits of E. coli O157:H7, S. aureus, and V. parahaemolyticus were 6.660, 1.070 × 101, and 2.236 × 101 cfu/mL, respectively. The method we presented can detect three kinds of foodborne pathogens at the same time, and the entire experimental process did not exceed 4 h. It has high sensitivity and low detection limit and may be used in the sample detection of other pathogens.
Collapse
Affiliation(s)
- Dan Wang
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Fengnan Lian
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Shuo Yao
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Yi Liu
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Jinpeng Wang
- Department
of Cardiology, The Second Hospital of Jilin
University, Changchun 130041, China
| | - Xiuling Song
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Lirui Ge
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Yue Wang
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Yuyi Zhao
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Jiamei Zhang
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Chao Zhao
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| | - Kun Xu
- School
of Public Health, Jilin University, Changchun 130021, China
- Public
Health Detection Engineering Research Center of Jilin Province, Changchun 130021, China
| |
Collapse
|
11
|
Leiva CL, Cangelosi A, Mariconda V, Farace M, Geoghegan P, Brero L, Fernández-Miyakawa M, Chacana P. IgY-based antivenom against Bothrops alternatus: Production and neutralization efficacy. Toxicon 2019; 163:84-92. [DOI: 10.1016/j.toxicon.2019.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
|
12
|
Uddin J, Hossain K, Hossain S, Saha K, Jubyda FT, Haque R, Billah B, Talukder AA, Parvez AK, Dey SK. Bacteriological assessments of foodborne pathogens in poultry meat at different super shops in Dhaka, Bangladesh. Ital J Food Saf 2019; 8:6720. [PMID: 31008079 PMCID: PMC6452097 DOI: 10.4081/ijfs.2019.6720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 01/17/2018] [Indexed: 11/22/2022] Open
Abstract
Poultry is now considered as a major fast-growing source of meat in the world. The consumers demand safe and hygienic products without contamination with pathogenic microorganisms when the production and consumption of poultry meat is gradually increasing. The present study was conducted to assess the bacterial contamination of dressed chicken collected from different supershops in Dhaka, Bangladesh. The chicken samples from S1, S2, M1, M2 and A supershops were analyzed to determine the enteropathogenic bacteria in poultry meat. Three genera of bacteria were isolated from all of the chicken meat samples. These enteropathogens from various organs of dressing chickens were also enumerated. The isolates were presumptively identified as E. coli, Salmonella spp., and Shigella spp. by conventional culture method. The three enteropathogens were subjected to PCR assay for their confirmation as virulent enteropathogens. Only E. coli isolates were confirmed as pathogenic E. coli (Enterotoxigenic), other isolates were not confirmed as virulent Salmonella spp., Shigella spp.. Results of this study demonstrated that more cautions are recommended for personnel hygiene in processing and handling of poultry and poultry products to prevent occurrence of enterotoxigenic E. coli in dressed poultry meat sold by the supershops in Bangladesh.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baki Billah
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
13
|
Selective turn-on fluorescence detection of Vibrio parahaemolyticus in food based on charge-transfer between CdSe/ZnS quantum dots and gold nanoparticles. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Burlage RS, Tillmann J. Biosensors of bacterial cells. J Microbiol Methods 2016; 138:2-11. [PMID: 28040457 DOI: 10.1016/j.mimet.2016.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/24/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
Abstract
Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described.
Collapse
Affiliation(s)
- Robert S Burlage
- Department of Pharmaceutical and Administrative Science, Concordia University School of Pharmacy, 12800 N. Lake Shore Dr., Mequon, WI 53097, United States.
| | - Joshua Tillmann
- Department of Pharmaceutical and Administrative Science, Concordia University School of Pharmacy, 12800 N. Lake Shore Dr., Mequon, WI 53097, United States
| |
Collapse
|
15
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are commonly found in the intestine of ruminant species of wild and domestic animals. Excretion of STEC with animal feces results in a broad contamination of food and the environment. Humans get infected with STEC through ingestion of contaminated food, by contact with the environment, and from STEC-excreting animals and humans. STEC strains can behave as human pathogens, and some of them, called enterohemorrhagic E. coli (EHEC), may cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Because of the diversity of STEC types, detection strategies for STEC and EHEC are based on the identification of Shiga toxins or the underlying genes. Cultural enrichment of STEC from test samples is needed for identification, and different protocols were developed for this purpose. Multiplex real-time PCR protocols (ISO/CEN TS13136 and USDA/FSIS MLG5B.01) have been developed to specifically identify EHEC by targeting the LEE (locus of enterocyte effacement)-encoded eae gene and genes for EHEC-associated O groups. The employment of more genetic markers (nle and CRISPR) is a future challenge for better identification of EHEC from any kinds of samples. The isolation of STEC or EHEC from a sample is required for confirmation, and different cultivation protocols and media for this purpose have been developed. Most STEC strains present in food, animals, and the environment are eae negative, but some of these strains can cause HC and HUS in humans as well. Phenotypic assays and molecular tools for typing EHEC and STEC strains are used to detect and characterize human pathogenic strains among members of the STEC group.
Collapse
|
16
|
Arimitsu H, Sasaki K, Kohda T, Shimizu T, Tsuji T. Evaluation of Shiga toxin 2e-specific chicken egg yolk immunoglobulin: production and neutralization activity. Microbiol Immunol 2015; 58:643-8. [PMID: 25175999 DOI: 10.1111/1348-0421.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022]
Abstract
Chicken egg yolk immunoglobulin (IgY) against Shiga toxin 2e (Stx2e), a major cause of swine edema disease, was prepared to evaluate its possible clinical applications. The titer of Stx2e-specific IgY in egg yolk derived from three chickens that had been immunized with an Stx2e toxoid increased 2 weeks after primary immunization and remained high until 90 days after this immunization. Anti-Stx2e IgY was found to neutralize the toxicity of Stx2e by reacting with its A and B subunits, indicating that IgY is a cost-effective agent to develop for prophylactic foods or diagnosis kits for edema disease.
Collapse
Affiliation(s)
- Hideyuki Arimitsu
- Department of Microbiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192
| | | | | | | | | |
Collapse
|
17
|
Terao Y, Takeshita K, Nishiyama Y, Morishita N, Matsumoto T, Morimatsu F. Promising Nucleic Acid Lateral Flow Assay Plus PCR for Shiga Toxin-Producing Escherichia coli. J Food Prot 2015; 78:1560-8. [PMID: 26219371 DOI: 10.4315/0362-028x.jfp-14-495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) is a frequent cause of foodborne infections, and methods for rapid and reliable detection of STEC are needed. A nucleic acid lateral flow assay (NALFA) plus PCR was evaluated for detecting STEC after enrichment. When cell suspensions of 45 STEC strains, 14 non-STEC strains, and 13 non-E. coli strains were tested with the NALFA plus PCR, all of the STEC strains yielded positive results, and all of the non-STEC and non-E. coli strains yielded negative results. The lower detection limit for the STEC strains ranged from 0.1 to 1 pg of genomic DNA (about 20 to 200 CFU) per test, and the NALFA plus PCR was able to detect Stx1- and Stx2-producing E. coli strains with similar sensitivities. The ability of the NALFA plus PCR to detect STEC in enrichment cultures of radish sprouts, tomato, raw ground beef, and beef liver inoculated with 10-fold serially diluted STEC cultures was comparable to that of a real-time PCR assay (at a level of 100 to 100,000 CFU/ml in enrichment culture). The bacterial inoculation test in raw ground beef revealed that the lower detection limit of the NALFA plus PCR was also comparable to that obtained with a real-time PCR assay that followed the U.S. Department of Agriculture guidelines. Although further evaluation is required, these results suggest that the NALFA plus PCR is a specific and sensitive method for detecting STEC in a food manufacturing plant.
Collapse
Affiliation(s)
- Yoshitaka Terao
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan.
| | - Kana Takeshita
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| | - Yasutaka Nishiyama
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| | - Naoki Morishita
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| | - Takashi Matsumoto
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| | - Fumiki Morimatsu
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan
| |
Collapse
|
18
|
Rasooly R, Balsam J, Hernlem BJ, Rasooly A. Sensitive detection of active Shiga toxin using low cost CCD based optical detector. Biosens Bioelectron 2015; 68:705-711. [PMID: 25677808 DOI: 10.1016/j.bios.2015.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 01/22/2023]
Abstract
To reduce the sources and incidence of food-borne illness there is a need to develop affordable, sensitive devices for detection of active toxins, such as Shiga toxin type 2 (Stx2). Currently the widely used methods for measuring Shiga toxin are immunoassay that cannot distinguish between the active form of the toxin, which poses a threat to life, to the inactive form which can bind to antibodies but show no toxicity. In this work, we determine toxin activity based on Shiga toxin inhibition of green fluorescent protein (GFP) combined with low cost charge-coupled device (CCD) fluorescence detection, which is more clinically relevant than immunoassay. For assay detection, a simple low cost fluorescence detection system was constructed using a CCD camera and light emitting diode (LED) excitation source, to measure GFP expression. The system was evaluated and compared to a commercial fluorometer using photomultiplier detection for detecting active Stx2 in the range 100 ng/mL-0.01 pg/mL. The result shows that there is a negative linear relationship between Stx2 concentrations and luminous intensity of GFP, imaged by the CCD camera (R(2)=0.85) or fluorometer (R(2)=0.86). The low cost (∼$300) CCD camera is capable of detecting Shiga toxin activity at comparable levels as a more expensive (∼$30,000) fluorometer. These results demonstrate the utility and the potential of low cost detectors for toxin activity; this approach may increase the availability of foodborne bacterial toxin diagnostics in regions where there are limited resources and could be readily adapted to the detection of other food-borne toxins.
Collapse
Affiliation(s)
- Reuven Rasooly
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States.
| | - Josh Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, United States; University of Maryland, College Park, MD 20742, United States
| | - Bradley J Hernlem
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - Avraham Rasooly
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, United States; Office of Cancer Complementary and Alternative Medicine, National Cancer Institute, Rockville, MD 20850, United States
| |
Collapse
|
19
|
Kalantar E, Soltan Dallal MM, Kafami Khorasani L, Kabir K, Zenolabedini Zamani M. Detection of Egg Yolk Immunoglobulin Y; a Potential Source of Anti-Escherichia coli. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2015. [DOI: 10.17795/ijep27243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Detection of Egg Yolk Immunoglobulin Y; a Potential Source of Anti-Escherichia coli. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2015. [DOI: 10.5812/ijep.27243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Padola NL, Etcheverría AI. Shiga toxin-producing Escherichia coli in human, cattle, and foods. Strategies for detection and control. Front Cell Infect Microbiol 2014; 4:89. [PMID: 25072032 PMCID: PMC4078642 DOI: 10.3389/fcimb.2014.00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nora L Padola
- Animal Health and Preventive Medicine, Inmunochemistry and Biotechnology, CIVETAN-CONICET-CICPBA-Faculty of Veterinary Sciences- Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Buenos Aires, Argentina
| | - Analía I Etcheverría
- Animal Health and Preventive Medicine, Inmunochemistry and Biotechnology, CIVETAN-CONICET-CICPBA-Faculty of Veterinary Sciences- Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Buenos Aires, Argentina
| |
Collapse
|
22
|
Promoter sequence of Shiga toxin 2 (Stx2) is recognized in vivo, leading to production of biologically active Stx2. mBio 2013; 4:e00501-13. [PMID: 24085779 PMCID: PMC3791892 DOI: 10.1128/mbio.00501-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Shiga toxins (Stx) are the main agent responsible for the development of hemolytic-uremic syndrome (HUS), the most severe and life-threatening systemic complication of infection with enterohemorrhagic Escherichia coli (EHEC) strains. We previously described Stx2 expression by eukaryotic cells after they were transfected in vitro with the stx2 gene cloned into a prokaryotic plasmid (pStx2). The aim of this study was to evaluate whether mammalian cells were also able to express Stx2 in vivo after pStx2 injection. Mice were inoculated by hydrodynamics-based transfection (HBT) with pStx2. We studied the survival, percentage of polymorphonuclear leukocytes in plasma, plasma urea levels, and histology of the kidneys and the brains of mice. Mice displayed a lethal dose-related response to pStx2. Stx2 mRNA was recovered from the liver, and Stx2 cytotoxic activity was observed in plasma of mice injected with pStx2. Stx2 was detected by immunofluorescence in the brains of mice inoculated with pStx2, and markers of central nervous system (CNS) damage were observed, including increased expression of glial fibrillary acidic protein (GFAP) and fragmentation of NeuN in neurons. Moreover, anti-Stx2B-immunized mice were protected against pStx2 inoculation. Our results show that Stx2 is expressed in vivo from the wild stx2 gene, reproducing pathogenic damage induced by purified Stx2 or secondary to EHEC infection. Enterohemorrhagic Shiga toxin (Stx)-producing Escherichia coli (EHEC) infections are a serious public health problem, and Stx is the main pathogenic agent associated with typical hemolytic-uremic syndrome (HUS). In contrast to the detailed information describing the molecular basis for EHEC adherence to epithelial cells, very little is known about how Stx is released from bacteria in the gut, reaching its target tissues, mainly the kidney and central nervous system (CNS). In order to develop an efficient treatment for EHEC infections, it is necessary to understand the mechanisms involved in Stx expression. In this regard, the present study demonstrates that mammals can synthesize biologically active Stx using the natural promoter associated with the Stx-converting bacteriophage genome. These results could impact the comprehension of EHEC HUS, since local eukaryotic cells transduced and/or infected by bacteriophage encoding Stx2 could be an alternative source of Stx production.
Collapse
|
23
|
Jin W, Yamada K, Ikami M, Kaji N, Tokeshi M, Atsumi Y, Mizutani M, Murai A, Okamoto A, Namikawa T, Baba Y, Ohta M. Application of IgY to sandwich enzyme-linked immunosorbent assays, lateral flow devices, and immunopillar chips for detecting staphylococcal enterotoxins in milk and dairy products. J Microbiol Methods 2013; 92:323-31. [DOI: 10.1016/j.mimet.2013.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/17/2022]
|
24
|
Development and characterization of monoclonal antibodies against Shiga toxin 2 and their application for toxin detection in milk. J Immunol Methods 2012; 389:18-28. [PMID: 23279946 DOI: 10.1016/j.jim.2012.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/18/2012] [Indexed: 11/24/2022]
Abstract
Human infection by Shiga toxin producing Escherichia coli (STEC) is one of the most prevalent foodborne diseases. Shiga toxin type 2 (Stx2) is the major contributor to hemolytic-uremic syndrome (HUS) and other systemic complications caused by STEC. Although outbreaks of HUS due to the consumption of dairy products occur frequently, very few reports are available on assays for the detection of Stx2 in milk. In this study, we describe the development of five high-affinity monoclonal antibodies (dissociation constants below nM range) against Stx2 using a recombinant toxoid as an immunogen. These antibodies, designated Stx2-1, Stx2-2, Stx2-3, Stx2-4, and Stx2-5 are IgG1 or IgG2a heavy-chain subclass with kappa light-chains, did not cross-react with Stx1 and showed different preferences to variants of Stx2. Western blot analyses demonstrate that mAbs Stx2-2 and Stx2-5 bind both the A- and B-subunits, whereas the other 3 mAbs bind the A-subunit of Stx2a only. All antibodies bound stronger to the native than to the denatured Stx2a except the mAb Stx2-3, which bound equally well to both forms of the toxin. Of the five mAbs, Stx2-5 was capable of neutralizing Stx2a mediated cytotoxicity in Vero cells. Highly sensitive ELISA and immuno-PCR assays, capable of detecting 1 and 0.01 pg/mL of Stx2a in milk, were developed using mAb pair Stx2-1 and Stx2-2. Such assays are useful for routine diagnosis of Stx2 contamination in milk production process, thus reducing the risk of STEC outbreaks.
Collapse
|