1
|
Arsaute S, Reinoso EB, Cecchini ME, Moliva MV, Montironi ID, Cariddi LN. Minthostachys verticillata essential oil modulates cytokine synthesis and Staphylococcus aureus internalization in MAC-T cells at least through TLR4/MyD88/NFkB pathway. Vet Res Commun 2024; 48:3727-3742. [PMID: 39249174 DOI: 10.1007/s11259-024-10526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
The aim of this study was to evaluate the activation pathway(s) triggered by Minthostachys verticillata essential oil (EO) in bovine mammary epithelial cells (MAC-T) challenged with a strain of bovine Staphylococcus aureus. MAC-T cells were stimulated with EO, S. aureus or pre-treated with EO and then challenged with S. aureus. Cytokine's release was measured by ELISA. The mRNA for TLR2, TLR4, NOD2, MyD88 and NFκB was quantified by RT-qPCR. S. aureus adherence and internalization was also evaluated. MAC-T cells stimulated with S. aureus synthesized high levels of IL-1ß and IL-6 were kept up to 48 h, while IL-4 levels were not altered. Cells pre-treated with EO for 2 and 6 h and then challenged with S. aureus showed a significant increase of IL-1β and IL-6. However, in these cells, a decrease in IL-1ß and IL-6 levels and an increase of IL-4 values was observed from 24 h. No significant increase in the expression levels of TLR2 or NOD2 was detected in all stimulated cells. However, the expression of TLR4, MyD88 and NFκB was increased in cells stimulated with S. aureus at 2 and 6 h as well as in cells pre-treated with EO between 2 and 6 h and then challenged with S. aureus. The NFκB expression levels was similar to control at 24 h in all stimulated cells, although pro-inflammatory cytokine levels and TLR4 and MyD88 expression levels remained high in cells stimulated with S. aureus. This results suggested the activation of other pathways independent of MyD88 by the pathogen that involucrated the activation of others transcription factors. Pre-treatment with EO during 2, 6 and 24 h did not affect S. aureus adherence but decreased its internalization. In conclusion, pre-treatment with EO increased the IL-1β and IL-6 synthesis during the first hours post-challenged with S. aureus up-regulating TLR4/MyD88/NFκB pathway. Furthermore, EO increased the IL-4 levels from 6 to 24 h down-regulating the NFκB and possibly other transcription factors activated by the pathogen, which decreased its internalization into MAC-T cells.
Collapse
Affiliation(s)
- Sofía Arsaute
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - Elina Beatriz Reinoso
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - María Eugenia Cecchini
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - Melina Vanesa Moliva
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - Ivana Dalila Montironi
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - Laura Noelia Cariddi
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.
| |
Collapse
|
2
|
Burke Ó, Zeden MS, O'Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P O'Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
4
|
Arantes AB, Rosa RT, de Oliveira NS, Bianchini LF, Rached RN, Johann ACBR, Weber SH, Murakami FS, Maluf DF, Rosa EAR. Facial disbiosis and UV filters. Arch Dermatol Res 2024; 316:739. [PMID: 39499337 DOI: 10.1007/s00403-024-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Acne is a multifactorial inflammatory disease with a robust microbial component and numerous correlations with dysbiosis states. Furthermore, various factors are recognized as triggers for skin dysbiosis, including the use of certain cosmetics. Based on these arguments, we hypothesized that using photoprotective formulations could trigger dysbiosis and the occurrence of acne manifestations. To verify this assumption, six volunteers between 19 and 23 years of age, meeting all the inclusion criteria, received two applications a day of a non-commercial sunscreen formulation developed with the sun filters ethylhexyl methoxycinnamate, ethylhexyl salicylate, methyl anthranilate, and octocrylene dispersed in a base gel, with an estimated protection factor of 28.8. The pure base gel was used as a control. The samples were applied to an area delimited by a standard template (15 cm2) in an amount corresponding to 30 mg (2 mg cm2) for ten days. At two points in time, pre- and post-sample applications, the facial skin surface was swabbed to collect extracted DNA and processed to verify divergent degrees of 16 S RNA coding sequences. The data obtained allowed us to determine the abundance of different bacterial entities at the genus and species levels. The results showed that critical species of the acne process, such as Cutibacterium acnes and Staphylococcus epidermidis, seem to tolerate the evaluated formulation well and are not significantly affected by the formulation, suggesting no interference of its use concerning dysbiosis induction. These findings refute the idea that photoprotectors may cause skin dysbiosis in men.
Collapse
Affiliation(s)
- Angela Bonjorno Arantes
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Rosimeire Takaki Rosa
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Nicoly Subtil de Oliveira
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Luiz Fernando Bianchini
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Rodrigo Nunes Rached
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Aline Cristina Batista Rodrigues Johann
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Saulo Henrique Weber
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Fábio Seigi Murakami
- Faculty of Pharmacy. Graduate Program on Pharmaceutical Sciences, Federal University of Paraná, 652 Prof. Lothario Meissner Av. Zip 80210-170, Curitiba, Brazil
| | - Daniela Florencio Maluf
- Faculty of Pharmacy. Graduate Program on Pharmaceutical Sciences, Federal University of Paraná, 652 Prof. Lothario Meissner Av. Zip 80210-170, Curitiba, Brazil
| | - Edvaldo Antonio Ribeiro Rosa
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
| |
Collapse
|
5
|
Theodorakis N, Feretzakis G, Hitas C, Kreouzi M, Kalantzi S, Spyridaki A, Kollia Z, Verykios VS, Nikolaou M. Immunosenescence: How Aging Increases Susceptibility to Bacterial Infections and Virulence Factors. Microorganisms 2024; 12:2052. [PMID: 39458361 PMCID: PMC11510421 DOI: 10.3390/microorganisms12102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The process of aging leads to a progressive decline in the immune system function, known as immunosenescence, which compromises both innate and adaptive responses. This includes impairments in phagocytosis and decreased production, activation, and function of T- and B-lymphocytes, among other effects. Bacteria exploit immunosenescence by using various virulence factors to evade the host's defenses, leading to severe and often life-threatening infections. This manuscript explores the complex relationship between immunosenescence and bacterial virulence, focusing on the underlying mechanisms that increase vulnerability to bacterial infections in the elderly. Additionally, it discusses how machine learning methods can provide accurate modeling of interactions between the weakened immune system and bacterial virulence mechanisms, guiding the development of personalized interventions. The development of vaccines, novel antibiotics, and antivirulence therapies for multidrug-resistant bacteria, as well as the investigation of potential immune-boosting therapies, are promising strategies in this field. Future research should focus on how machine learning approaches can be integrated with immunological, microbiological, and clinical data to develop personalized interventions that improve outcomes for bacterial infections in the growing elderly population.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece;
| | - Christos Hitas
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| | - Magdalini Kreouzi
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Sofia Kalantzi
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Aikaterini Spyridaki
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Zoi Kollia
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece;
| | - Maria Nikolaou
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| |
Collapse
|
6
|
Wang C, Zhong L, Xu J, Zhuang Q, Gong F, Chen X, Tao H, Hu C, Huang F, Yang N, Li J, Zhao Q, Sun X, Huo Y, Chen Q, Zhao Y, Peng R, Liu Z. Oncolytic mineralized bacteria as potent locally administered immunotherapeutics. Nat Biomed Eng 2024; 8:561-578. [PMID: 38514774 DOI: 10.1038/s41551-024-01191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/17/2024] [Indexed: 03/23/2024]
Abstract
Oncolytic bacteria can trigger innate immune activity. However, the antitumour efficacy of inactivated bacteria is poor, and attenuated live bacteria pose substantial safety risks. Here we show that intratumourally injected paraformaldehyde-fixed bacteria coated with manganese dioxide potently activate innate immune activity, modulate the immunosuppressive tumour microenvironment and trigger tumour-specific immune responses and abscopal antitumour responses. A single intratumoural administration of mineralized Salmonella typhimurium suppressed the growth of multiple types of subcutaneous and orthotopic tumours in mice, rabbits and tree shrews and protected the cured animals against tumour rechallenge. We also show that mineralized bacteria can be administered via arterial embolization to treat orthotopic liver cancer in rabbits. Our findings support the further translational testing of oncolytic mineralized bacteria as potent and safe antitumour immunotherapeutics.
Collapse
Affiliation(s)
- Chenya Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Liping Zhong
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Jiachen Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Xiaojing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Huiquan Tao
- InnoBM Pharmaceuticals Co. Ltd., Suzhou, China
| | - Cong Hu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Fuquan Huang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Junyan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Qi Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
- InnoBM Pharmaceuticals Co. Ltd., Suzhou, China
| | - Xinjun Sun
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Yu Huo
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Yongxiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China.
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
- InnoBM Pharmaceuticals Co. Ltd., Suzhou, China.
| |
Collapse
|
7
|
Dutta P, Bishayi B. Pyrrolidine dithiocarbamate in combination with L-N-monomethyl arginine alleviates Staphylococcus aureus infection via regulation of CXCL8/CXCR1 axis in peritoneal macrophages in vitro. Microb Pathog 2023; 183:106294. [PMID: 37567327 DOI: 10.1016/j.micpath.2023.106294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The CXCL8/CXCR1 axis in conjoint with the free radicals and anti-oxidants dictates the severity of inflammation caused by the bacteria, Staphylococcus aureus. S.aureus mediated inflammatory processes is regulated by NF-κB and its product, iNOS. The objective of this study was to examine the effects of inhibition of NF-κB and iNOS on CXCL8/CXCR1, alteration in M1/M2 polarization of macrophages and associated inflammatory responses during S.aureus infection in vitro. For this, the murine peritoneal macrophages were pretreated with NF-κB inhibitor, Pyrrolidine dithiocarbamate (PDTC) and iNOS inhibitor, L-N-monomethyl arginine (LNMMA), either alone or in combination, followed by time-dependent S.aureus infection. The chemotactic migrations of macrophages were determined by the agarose spot assay. The iNOS, NF-κB and CXCR1 protein expressions were evaluated. The ROS level (superoxide, H2O2, NO) and antioxidant activities (SOD, CAT, GSH, arginase) were measured. The intra-macrophage phagoctyic activity had been analyzed by confocal microscopy. S.aureus activated macrophages showed increased iNOS expression that symbolizes M1 characterization of macrophages. The results suggest that the combination treatment of LNMMA + PDTC was effective in diminution of CXCL8 production and CXCR1 expression through downregulation of NF-κB and iNOS signaling pathway. Consequently, there was decrement in macrophage migration, reduced ROS generation, elevated antioxidant enzyme activity as well as bacterial phagocytosis at 90 min post bacterial infection. The increased arginase activity further proves the switch from pro-inflammatory M1 to anti-inflammatory M2 polarization of macrophages. Concludingly, the combination of PDTC + LNMMA could resolve S.aureus mediated inflammation through mitigation of CXCL8/CXCR1 pathway switching from M1 to M2 polarization.
Collapse
Affiliation(s)
- Puja Dutta
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India.
| |
Collapse
|
8
|
Ghosh S, Ghosh R, Sawoo R, Dutta P, Bishayi B. Impact of dual neutralization of TNF-α and IL-1β along with Gentamicin treatment on the functions of blood and splenic neutrophils and its role on improvement of S. aureus induced septic arthritis. Int Immunopharmacol 2023; 123:110766. [PMID: 37572502 DOI: 10.1016/j.intimp.2023.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Researches of recent past years have emphasized potential of antibiotics to improve septic arthritis but as multi-drug resistant strains like MRSA are emerging fast, new alternative therapeutic advances are high in demand. This study aims to figure out the role of neutrophils in regulating inflammatory responses of S. aureus induced septic arthritis while using TNF-α Ab or IL-1β Ab along with antibiotic gentamicin or both in combination. In this study, role of anti-oxidant enzymes were investigated and correlated with generated ROS level. While expression of TLR2, TNFR2, MMP2, RANKL, SAPK/JNK in the spleen were evaluated through western blot. Serum activity of IL-8, IL-10, IL-12, OPG, OPN, CRP was assessed using ELISA. Flow cytometry study evaluated inflamed neutrophil population. Results have shown TNF-α neutralization along with gentamicin was able to reduce arthritic swelling prominently. While combination therapy effectively reduced blood neutrophil ROS activity, arginase activity, MPO activity along with spleen bacterial burden. Serum OPG, CRP, IL-10 level got reduced while serum OPN, IL-8 and IL-12 level enhanced in treatment groups, showing mitigation of inflammatory damage. Overall, it is a novel work that observed how antibiotic and antibody therapy enhanced neutrophil function positively to combat sepsis. This study may not be fully applicable in clinical trials as it is performed with animal model. Clinical trials include crystalline and inflammatory arthritides, trauma, neoplasm. Interdisciplinary collaboration between radiology, orthopaedic surgery and knowledge of animal system responses may give better idea to find proper therapeutic approach in future research works.
Collapse
Affiliation(s)
- Sharmistha Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Puja Dutta
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
9
|
Zhu S, Yu Y, Qu M, Qiu Z, Zhang H, Miao C, Guo K. Neutrophil extracellular traps contribute to immunothrombosis formation via the STING pathway in sepsis-associated lung injury. Cell Death Discov 2023; 9:315. [PMID: 37626060 PMCID: PMC10457383 DOI: 10.1038/s41420-023-01614-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are involved in the activation and dysfunction of multiple overlapping and interacting pathways, including the immune response to injury, inflammation, and coagulation, which contribute to the pathogenesis of sepsis-induced acute lung injury (SI-ALI). However, how NETs mediate the relationship between inflammation and coagulation has not been fully clarified. Here, we found that NETs, through stimulator of interferon genes (STING) activation, induced endothelial cell damage with abundant production of tissue factor (TF), which magnified the dysregulation between inflammatory and coagulant responses and resulted in poor prognosis of SI-ALI model mice. Disruption of NETs and inhibition of STING improved the outcomes of septic mice and reduced the inflammatory response and coagulation. Furthermore, Toll-like receptor 2 (TLR2) on the surface of endothelial cells was involved in the interaction between NETs and the STING pathway. Collectively, these findings demonstrate that NETs activate the coagulant cascade in endothelial cells in a STING-dependent manner in the development of SI-ALI.
Collapse
Affiliation(s)
- Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiyun Qiu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
10
|
Toller-Kawahisa JE, Hiroki CH, Silva CMDS, Nascimento DC, Públio GA, Martins TV, Damasceno LEA, Veras FP, Viacava PR, Sukesada FY, Day EA, Zotta A, Ryan TAJ, Moreira da Silva R, Cunha TM, Lopes NP, Cunha FDQ, O'Neill LAJ, Alves-Filho JC. The metabolic function of pyruvate kinase M2 regulates reactive oxygen species production and microbial killing by neutrophils. Nat Commun 2023; 14:4280. [PMID: 37460614 DOI: 10.1038/s41467-023-40021-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Neutrophils rely predominantly on glycolytic metabolism for their biological functions, including reactive oxygen species (ROS) production. Although pyruvate kinase M2 (PKM2) is a glycolytic enzyme known to be involved in metabolic reprogramming and gene transcription in many immune cell types, its role in neutrophils remains poorly understood. Here, we report that PKM2 regulates ROS production and microbial killing by neutrophils. Zymosan-activated neutrophils showed increased cytoplasmic expression of PKM2. Pharmacological inhibition or genetic deficiency of PKM2 in neutrophils reduced ROS production and Staphylococcus aureus killing in vitro. In addition, this also resulted in phosphoenolpyruvate (PEP) accumulation and decreased dihydroxyacetone phosphate (DHAP) production, which is required for de novo synthesis of diacylglycerol (DAG) from glycolysis. In vivo, PKM2 deficiency in myeloid cells impaired the control of infection with Staphylococcus aureus. Our results fill the gap in the current knowledge of the importance of lower glycolysis for ROS production in neutrophils, highlighting the role of PKM2 in regulating the DHAP and DAG synthesis to promote ROS production in neutrophils.
Collapse
Affiliation(s)
- Juliana Escher Toller-Kawahisa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Carlos Hiroji Hiroki
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Camila Meirelles de Souza Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Daniele Carvalho Nascimento
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gabriel Azevedo Públio
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Timna Varela Martins
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luis Eduardo Alves Damasceno
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Flávio Protásio Veras
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Paula Ramos Viacava
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fábio Yuji Sukesada
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Emily Anne Day
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Alessia Zotta
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rodrigo Moreira da Silva
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando de Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luke Anthony John O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
11
|
Chatterjee R, Mahapatra SR, Dey J, Raj Takur K, Raina V, Misra N, Suar M. An immunoinformatics and structural vaccinology study to design a multi-epitope vaccine against Staphylococcus aureus infection. J Mol Recognit 2023; 36:e3007. [PMID: 36700877 DOI: 10.1002/jmr.3007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Staphylococcus aureus has been widely reported to be majorly responsible for causing nosocomial infections worldwide. Due to an increase in antibiotic-resistant strains, the development of an effective vaccine against the bacteria is the most viable alternative. Therefore, in the current work, an effort has been undertaken to develop a novel peptide-based vaccine construct against S aureus that can potentially evoke the B and T cell immune responses. The fibronectin-binding proteins are an attractive target as they play a prominent role in bacterial adherence and host cell invasion and are also well conserved among rapidly mutating pathogens. Therefore, highly immunogenic linear B lymphocytes (LBL), cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) epitopes were identified from the antigenic fibronectin-binding proteins A and B (FnBPA and FnBPB) of S aureus using immunoinformatics approaches. The selected peptides were confirmed to be non-allergenic, non-toxic, and with a high binding affinity to the majority of human leukocyte antigens (HLA) alleles. Consequently, the multi-peptide vaccine construct was developed by fusing the screened epitopes (three LBL, five CTL, and two HTL) together with the suitable adjuvant and linkers. In addition, the tertiary conformation of the peptide construct was modeled and later docked to the Toll-like receptor 2. Subsequently, a molecular dynamics simulation of 100 ns was employed to corroborate the stability of the designed vaccine-receptor complex. Besides exhibiting high immunogenicity and conformational stability, the developed vaccine was observed to possess wide population coverage of 99.51% worldwide. Additional in vivo and in vitro validation studies would certainly corroborate the designed vaccine construct to have improved prophylactic efficacy against S aureus.
Collapse
Affiliation(s)
- Rahul Chatterjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Kiran Raj Takur
- Department of Biotechnology & Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
12
|
LL-37 Triggers Antimicrobial Activity in Human Platelets. Int J Mol Sci 2023; 24:ijms24032816. [PMID: 36769137 PMCID: PMC9917488 DOI: 10.3390/ijms24032816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Platelets play a crucial role in hemostasis and the immune response, mainly by recognizing signals associated with vascular damage. However, it has recently been discovered that the antimicrobial peptide LL-37 activates platelets in functions related to thrombus formation and inflammation. Therefore, this work aims to evaluate the effect of LL-37 on the activation of antimicrobial functions of human platelets. Our results show that platelets treated with LL-37 increase the surface expression of receptors (Toll-like receptors (TLRs) 2 and -4, CD32, CD206, Dectin-1, CD35, LOX-1, CD41, CD62P, and αIIbβ3 integrins) for the recognition of microorganisms, and molecules related to antigen presentation to T lymphocytes (CD80, CD86, and HLA-ABC) secrete the antimicrobial molecules: bactericidal/permeability-increasing protein (BPI), azurocidin, human neutrophil peptide (HNP) -1, and myeloperoxidase. They also translate azurocidin, and have enhanced binding to Escherichia coli, Staphylococcus aureus, and Candida albicans. Furthermore, the supernatant of LL-37-treated platelets can inhibit E. coli growth, or platelets can employ their LL-37 to inhibit microbial growth. In conclusion, these findings demonstrate that LL-37 participates in the antimicrobial function of human platelets.
Collapse
|
13
|
Salim F, Gunawan H, Suwarsa O, Sutedja E. Increased Expression of Toll-Like Receptor (TLR) 2 and TLR6 on Peripheral Blood Monocytes by Induction of Staphylococcal Enterotoxin B During Exacerbation of Atopic Dermatitis Patients. Clin Cosmet Investig Dermatol 2023; 16:301-307. [PMID: 36748066 PMCID: PMC9899008 DOI: 10.2147/ccid.s401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Background Atopic dermatitis (AD) is a chronic and recurrent inflammatory skin disease that can be triggered by various precipitating factors, including colonization by Staphylococcus aureus (S. aureus). The toll-like receptor (TLR), which belongs to the family of pattern recognition receptors (PRR), can recognize components of S. aureus, such as staphylococcal enterotoxin B (SEB). This receptor is known to be expressed on monocytes. However, the understanding of the role of SEB in the pathogenesis of AD through the TLR pathway, especially TLR2 and TLR6, is not widely known. Purpose To investigate the expression of TLR2 and TLR6 on peripheral blood monocytes induced by SEB during AD exacerbations. Patients and Methods Twenty AD patients and 20 healthy subjects as a control group were selected. A 5 mL blood sample from each subject was taken for monocyte culture, which was induced by SEB for three days, and the outcomes were assessed by flow cytometry to evaluate TLR2 and TLR6 expression. Results The expression of TLR2 on peripheral blood monocytes in AD patients was increased compared to healthy controls (p = 0.000), but not for the expression of TLR6 (p = 0.304). In the AD group, TLR2 and TLR6 expression on peripheral blood monocytes after being induced by SEB was significantly increased compared to before induction (p = 0.025 and p = 0.023, respectively), but not in the control group (p = 0.737 and p = 0.100, respectively). Conclusion There is significantly increased expression of TLR2 and TLR6 on peripheral blood monocytes induced by SEB during exacerbation in AD patients.
Collapse
Affiliation(s)
- Fitria Salim
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Hendra Gunawan
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran–Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Oki Suwarsa
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran–Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Endang Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran–Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
14
|
Petronglo JR, Putnam NE, Ford CA, Cruz-Victorio V, Curry JM, Butrico CE, Fulbright LE, Johnson JR, Peck SH, Fatah SR, Cassat JE. Context-Dependent Roles for Toll-Like Receptors 2 and 9 in the Pathogenesis of Staphylococcus aureus Osteomyelitis. Infect Immun 2022; 90:e0041722. [PMID: 36226943 PMCID: PMC9670883 DOI: 10.1128/iai.00417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9-/-) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9-/- mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.
Collapse
Affiliation(s)
- Jenna R. Petronglo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Nicole E. Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Virginia Cruz-Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sana R. Fatah
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Li J, Wen Q, Gu F, An L, Yu T. Non-antibiotic strategies for prevention and treatment of internalized Staphylococcus aureus. Front Microbiol 2022; 13:974984. [PMID: 36118198 PMCID: PMC9471010 DOI: 10.3389/fmicb.2022.974984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are often difficult to cure completely. One of the main reasons for this difficulty is that S. aureus can be internalized into cells after infecting tissue. Because conventional antibiotics and immune cells have difficulty entering cells, the bacteria can survive long enough to cause recurrent infections, which poses a serious burden in healthcare settings because repeated infections drastically increase treatment costs. Therefore, preventing and treating S. aureus internalization is becoming a research hotspot. S. aureus internalization can essentially be divided into three phases: (1) S. aureus binds to the extracellular matrix (ECM), (2) fibronectin (Fn) receptors mediate S. aureus internalization into cells, and (3) intracellular S. aureus and persistence into cells. Different phases require different treatments. Many studies have reported on different treatments at different phases of bacterial infection. In the first and second phases, the latest research results show that the cell wall-anchored protein vaccine and some microbial agents can inhibit the adhesion of S. aureus to host cells. In the third phase, nanoparticles, photochemical internalization (PCI), cell-penetrating peptides (CPPs), antimicrobial peptides (AMPs), and bacteriophage therapy can effectively eliminate bacteria from cells. In this paper, the recent progress in the infection process and the prevention and treatment of S. aureus internalization is summarized by reviewing a large number of studies.
Collapse
Affiliation(s)
- Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Qiangqiang Wen
- Department of Orthopedics, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Lijuan An
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Tiecheng Yu,
| |
Collapse
|
16
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Ascorbic acid along with ciprofloxacin regulates S. aureus induced microglial inflammatory responses and oxidative stress through TLR-2 and glucocorticoid receptor modulation. Inflammopharmacology 2022; 30:1303-1322. [PMID: 35704229 DOI: 10.1007/s10787-022-01012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/13/2022] [Indexed: 11/05/2022]
Abstract
Microglial inflammatory responses play a central role in the pathogenesis of S. aureus induced brain infections. Upon activation, microglia produces free radicals (ROS/RNS) and disrupts the cellular antioxidant defense to combat invading microorganisms. Despite conventional antibiotic or steroid therapy, microglial over-activation could not be controlled. So, an attempt had been taken by using a natural antioxidant ascorbic acid along with ciprofloxacin to regulate microglial over-activation by involving TLR-2 and glucocorticoid receptor (GR) in an in-vitro cell culture-based study. Combinatorial treatment during TLR-2 neutralization effectively reduced the bacterial burden at 60 min compared to the GR blocking condition (p < 0.05). Moreover, the infection-induced H2O2, O2.-, and NO release in microglial cell culture was diminished possibly by enhancing SOD and catalase activities in the same condition (p < 0.05). The arginase activity was markedly increased after TLR-2 blocking in the combinatorial group compared to single treatments (p < 0.05). Experimental results indicated that combinatorial treatment may act through up-regulating GR expression by augmenting endogenous corticosterone levels. However, better bacterial clearance could further suppress the TLR-2 mediated pro-inflammatory NF-κB signaling. From Western blot analysis, it was concluded that ciprofloxacin-ascorbic acid combination in presence of anti-TLR-2 antibody exhibited 81.25% inhibition of TLR-2 expression while the inhibition for GR was 3.57% with respect to the infected group. Therefore, during TLR-2 blockade ascorbic acid combination might be responsible for the restoration of redox balance in microglia via modulating TLR-2/GR interaction. The combination treatment could play a major role in the neuroendocrine-immune regulation of S. aureus induced microglial activation.
Collapse
|
18
|
Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens 2022; 11:pathogens11060642. [PMID: 35745496 PMCID: PMC9228373 DOI: 10.3390/pathogens11060642] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent skin inflammation with a particular impact on children. Current therapies for AD are challenged by the limited armamentarium and the high heterogeneity of the disease. A novel promising therapeutic target for AD is the microbiota. Numerous studies have highlighted the involvement of the skin and gut microbiota in the pathogenesis of AD. The resident microbiota at these two epithelial tissues can modulate skin barrier functions and host immune responses, thus regulating AD progression. For example, the pathogenic roles of Staphylococcus aureus in the skin are well-established, making this bacterium an attractive target for AD treatment. Targeting the gut microbiota is another therapeutic strategy for AD. Multiple oral supplements with prebiotics, probiotics, postbiotics, and synbiotics have demonstrated promising efficacy in both AD prevention and treatment. In this review, we summarize the association of microbiota dysbiosis in both the skin and gut with AD, and the current knowledge of the functions of commensal microbiota in AD pathogenesis. Furthermore, we discuss the existing therapies in manipulating both the skin and gut commensal microbiota to prevent or treat AD. We also propose potential novel therapies based on the cutting-edge progress in this area.
Collapse
|
19
|
Di Zazzo A, De Piano M, Coassin M, Mori T, Balzamino BO, Micera A. Ocular surface toll like receptors in ageing. BMC Ophthalmol 2022; 22:185. [PMID: 35459112 PMCID: PMC9027701 DOI: 10.1186/s12886-022-02398-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
Background To evaluate changes in Toll Like Receptors (TLRs) expression at the ocular surface of healthy volunteers within different age groups. Methods Fifty-one healthy volunteers were enrolled in a pilot observational study. Clinical function tests (OSDI questionnaire, Schirmer test type I and Break Up time) were assessed in all subjects. Temporal Conjunctival imprints were performed for molecular and immunohistochemical analysis to measure TLRs expression (TLR2, 4, 3, 5, 7, 8, 9 and MyD88). Results Immunofluorescence data showed an increased TLR2 and decreased TLR7 and TLR8 immunoreactivity in old conjunctival imprints. Up-regulation of TLR2 and down-regulation of TLR7, TLR8 and MyD88 transcripts expression corroborated the data. A direct correlation was showed between increasing ICAM-1 and increasing TLR2 changes with age. Within the age OSDI score increases, T-BUT values decrease, and goblet cells showed a decreasing trend. Conclusion Changes in TLRs expression are associated with ageing, suggesting physiological role of TLRs in modulating ocular surface immunity. TLRs age related changes may participate to the changes of ocular surface homeostatic mechanisms which lead to inflammAging.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Maria De Piano
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Rome, Italy
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Tommaso Mori
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Rome, Italy.
| |
Collapse
|
20
|
Phuengmaung P, Panpetch W, Singkham-In U, Chatsuwan T, Chirathaworn C, Leelahavanichkul A. Presence of Candida tropicalis on Staphylococcus epidermidis Biofilms Facilitated Biofilm Production and Candida Dissemination: An Impact of Fungi on Bacterial Biofilms. Front Cell Infect Microbiol 2021; 11:763239. [PMID: 34746032 PMCID: PMC8569676 DOI: 10.3389/fcimb.2021.763239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
While Staphylococcus epidermidis (SE) is a common cause of infections in implanted prostheses and other indwelling devices, partly due to the biofilm formation, Candida tropicalis (CT) is an emerging Candida spp. with a potent biofilm-producing property. Due to the possible coexistence between SE and CT infection in the same patient, characteristics of the polymicrobial biofilms from both organisms might be different from those of the biofilms of each organism. Then, the exploration on biofilms, from SE with or without CT, and an evaluation on l-cysteine (an antibiofilm against both bacteria and fungi) were performed. As such, Candida incubation in preformed SE biofilms (SE > CT) produced higher biofilms than the single- (SE or CT) or mixed-organism (SE + CT) biofilms as determined by crystal violet staining and fluorescent confocal images with z-stack thickness analysis. In parallel, SE > CT biofilms demonstrated higher expression of icaB and icaC than other groups at 20 and 24 h of incubation, suggesting an enhanced matrix polymerization and transportation, respectively. Although organism burdens (culture method) from single-microbial biofilms (SE or CT) were higher than multi-organism biofilms (SE + CT and SE > CT), macrophage cytokine responses (TNF-α and IL-6) against SE > CT biofilms were higher than those in other groups in parallel to the profound biofilms in SE > CT. Additionally, sepsis severity in mice with subcutaneously implanted SE > CT catheters was more severe than in other groups as indicated by mortality rate, fungemia, serum cytokines (TNF-α and IL-6), and kidney and liver injury. Although CT grows upon preformed SE-biofilm production, the biofilm structures interfered during CT morphogenesis leading to the frailty of biofilm structure and resulting in the prominent candidemia. However, l-cysteine incubation together with the organisms in catheters reduced biofilms, microbial burdens, macrophage responses, and sepsis severity. In conclusion, SE > CT biofilms prominently induced biofilm matrix, fungemia, macrophage responses, and sepsis severity, whereas the microbial burdens were lower than in the single-organism biofilms. All biofilms were attenuated by l-cysteine.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Lee GR, Gallo D, Alves de Souza RW, Tiwari-Heckler S, Csizmadia E, Harbison JD, Shankar S, Banner-Goodspeed V, Yaffe MB, Longhi MS, Hauser CJ, Otterbein LE. Trauma-induced heme release increases susceptibility to bacterial infection. JCI Insight 2021; 6:e150813. [PMID: 34520397 PMCID: PMC8564912 DOI: 10.1172/jci.insight.150813] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022] Open
Abstract
Infection is a common complication of major trauma that causes significantly increased morbidity and mortality. The mechanisms, however, linking tissue injury to increased susceptibility to infection remain poorly understood. To study this relationship, we present a potentially novel murine model in which a major liver crush injury is followed by bacterial inoculation into the lung. We find that such tissue trauma both impaired bacterial clearance and was associated with significant elevations in plasma heme levels. While neutrophil (PMN) recruitment to the lung in response to Staphylococcus aureus was unchanged after trauma, PMN cleared bacteria poorly. Moreover, PMN show > 50% less expression of TLR2, which is responsible, in part, for bacterial recognition. Administration of heme effectively substituted for trauma. Finally, day 1 trauma patients (n = 9) showed similar elevations in free heme compared with that seen after murine liver injury, and circulating PMN showed similar TLR2 reduction compared with volunteers (n = 6). These findings correlate to high infection rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valerie Banner-Goodspeed
- Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael B Yaffe
- Department of Surgery and.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maria Serena Longhi
- Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
22
|
Dhanagovind PT, Kujur PK, Swain RK, Banerjee S. IL-6 Signaling Protects Zebrafish Larvae during Staphylococcus epidermidis Infection in a Bath Immersion Model. THE JOURNAL OF IMMUNOLOGY 2021; 207:2129-2142. [PMID: 34544800 DOI: 10.4049/jimmunol.2000714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/10/2021] [Indexed: 01/21/2023]
Abstract
The host immune responses to Staphylococcus epidermidis, a frequent cause of nosocomial infections, are not well understood. We have established a bath immersion model of this infection in zebrafish (Danio rerio) larvae. Macrophages play a primary role in the host immune response and are involved in clearance of infection in the larvae. S. epidermidis infection results in upregulation of tlr-2 There is marked inflammation characterized by heightened NF-κB signaling and elevation of several proinflammatory cytokines. There is rapid upregulation of il-1b and tnf-a transcripts, whereas an increase in il-6 levels is relatively more delayed. The IL-6 signaling pathway is further amplified by elevation of IL-6 signal transducer (il-6st) levels, which negatively correlates with miRNA dre-miR-142a-5p. Enhanced IL-6 signaling is protective to the host in this model as inhibition of the signaling pathway resulted in increased mortality upon S. epidermidis infection. Our study describes the host immune responses to S. epidermidis infection, establishes the importance of IL-6 signaling, and identifies a potential role of miR-142-5p-il-6st interaction in this infection model.
Collapse
Affiliation(s)
- P Thamarasseri Dhanagovind
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; and
| | - Prabeer K Kujur
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; and
| | | | - Sanjita Banerjee
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; and
| |
Collapse
|
23
|
Dey J, Mahapatra SR, Singh P, Patro S, Kushwaha GS, Misra N, Suar M. B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microb Pathog 2021; 160:105171. [PMID: 34481860 DOI: 10.1016/j.micpath.2021.105171] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus infection is emerging as a global threat because of the highly debilitating nature of the associated disease's unprecedented magnitude of its spread and growing global resistance to antimicrobial medicines. Recently WHO has categorized these bacteria under the high global priority pathogen list and is one of the six nosocomial pathogens termed as ESKAPE pathogens which have emerged as a serious threat to public health worldwide. The development of a specific vaccine can stimulate an optimal antibody response, thus providing immunity against it. Therefore, in the present study efforts have been made to identify potential vaccine candidates from the Clumping factor surface proteins (ClfA and ClfB) of S. aureus. Employing the immunoinformatics approach, fourteen antigenic peptides including T-cell, B-cell epitopes were identified which were non-toxic, non-allergenic, high antigenicity, strong binding efficiency with commonly occurring MHC alleles. Consequently, a multi-epitope vaccine chimera was designed by connecting these epitopes with suitable linkers an adjuvant to enhance immunogenicity. Further, homology modeling and molecular docking were performed to construct the three-dimensional structure of the vaccine and study the interaction between the modeled structure and immune receptor (TLR-2) present on lymphocyte cells. Consequently, molecular dynamics simulation for 100 ns period confirmed the stability of the interaction and reliability of the structure for further analysis. Finally, codon optimization and in silico cloning were employed to ensure the successful expression of the vaccine candidate. As the targeted protein is highly antigenic and conserved, hence the designed novel vaccine construct holds potential against emerging multi-drug-resistant organisms.
Collapse
Affiliation(s)
- Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Pratima Singh
- Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Swadheena Patro
- Kalinga Institute of Dental Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
24
|
Hook JS, Patel PA, O'Malley A, Xie L, Kavanaugh JS, Horswill AR, Moreland JG. Lipoproteins from Staphylococcus aureus Drive Neutrophil Extracellular Trap Formation in a TLR2/1- and PAD-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 207:966-973. [PMID: 34290104 DOI: 10.4049/jimmunol.2100283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
Neutrophils, polymorphonuclear leukocytes (PMN), play a critical role in the innate immune response to Staphylococcus aureus, a pathogen that continues to be associated with significant morbidity and mortality. Neutrophil extracellular trap (NET) formation is involved in ensnaring and killing of S. aureus, but this host-pathogen interaction also leads to host tissue damage. Importantly, NET components including neutrophil proteases are under consideration as therapeutic targets in a variety of disease processes. Although S. aureus lipoproteins are recognized to activate cells via TLRs, specific mechanisms of interaction with neutrophils are poorly delineated. We hypothesized that a lipoprotein-containing cell membrane preparation from methicillin-resistant S. aureus (MRSA-CMP) would elicit PMN activation, including NET formation. We investigated MRSA-CMP-elicited NET formation, regulated elastase release, and IL-8 production in human neutrophils. We studied PMN from healthy donors with or without a common single-nucleotide polymorphism in TLR1, previously demonstrated to impact TLR2/1 signaling, and used cell membrane preparation from both wild-type methicillin-resistant S. aureus and a mutant lacking palmitoylated lipoproteins (lgt). MRSA-CMP elicited NET formation, elastase release, and IL-8 production in a lipoprotein-dependent manner. TLR2/1 signaling was involved in NET formation and IL-8 production, but not elastase release, suggesting that MRSA-CMP-elicited elastase release is not mediated by triacylated lipoproteins. MRSA-CMP also primed neutrophils for enhanced NET formation in response to a subsequent stimulus. MRSA-CMP-elicited NET formation did not require Nox2-derived reactive oxygen species and was partially dependent on the activity of peptidyl arginine deiminase (PAD). In conclusion, lipoproteins from S. aureus mediate NET formation via TLR2/1 with clear implications for patients with sepsis.
Collapse
Affiliation(s)
- Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Parth A Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aidan O'Malley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lihua Xie
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO.,Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, CO; and
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
25
|
Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021; 11:693939. [PMID: 34277473 PMCID: PMC8283567 DOI: 10.3389/fcimb.2021.693939] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Implants are widely used in orthopedic surgery and are gaining attention of late. However, their use is restricted by implant-associated infections (IAI), which represent one of the most serious and dangerous complications of implant surgeries. Various strategies have been developed to prevent and treat IAI, among which the closest to clinical translation is designing metal materials with antibacterial functions by alloying methods based on existing materials, including titanium, cobalt, tantalum, and biodegradable metals. This review first discusses the complex interaction between bacteria, host cells, and materials in IAI and the mechanisms underlying the antibacterial effects of biomedical metals and alloys. Then, their applications for the prevention and treatment of IAI are highlighted. Finally, new insights into their clinical translation are provided. This review also provides suggestions for further development of antibacterial metals and alloys.
Collapse
Affiliation(s)
- Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Cattin A, Wacleche VS, Fonseca Do Rosario N, Marchand LR, Dias J, Gosselin A, Cohen EA, Estaquier J, Chomont N, Routy JP, Ancuta P. RALDH Activity Induced by Bacterial/Fungal Pathogens in CD16 + Monocyte-Derived Dendritic Cells Boosts HIV Infection and Outgrowth in CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:2638-2651. [PMID: 34031148 DOI: 10.4049/jimmunol.2001436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
HIV reservoirs persist in gut-homing CD4+ T cells of people living with HIV and receiving antiretroviral therapy, but the antigenic specificity of such reservoirs remains poorly documented. The imprinting for gut homing is mediated by retinoic acid (RA), a vitamin A-derived metabolite produced by dendritic cells (DCs) exhibiting RA-synthesizing (RALDH) activity. RALDH activity in DCs can be induced by TLR2 ligands, such as bacterial peptidoglycans and fungal zymosan. Thus, we hypothesized that bacterial/fungal pathogens triggering RALDH activity in DCs fuel HIV reservoir establishment/outgrowth in pathogen-reactive CD4+ T cells. Our results demonstrate that DCs derived from intermediate/nonclassical CD16+ compared with classical CD16- monocytes exhibited superior RALDH activity and higher capacity to transmit HIV infection to autologous Staphylococcus aureus-reactive T cells. Exposure of total monocyte-derived DCs (MDDCs) to S. aureus lysates as well as TLR2 (zymosan and heat-killed preparation of Listeria monocytogenes) and TLR4 (LPS) agonists but not CMV lysates resulted in a robust upregulation of RALDH activity. MDDCs loaded with S. aureus or zymosan induced the proliferation of T cells with a CCR5+integrin β7+CCR6+ phenotype and efficiently transmitted HIV infection to these T cells via RALDH/RA-dependent mechanisms. Finally, S. aureus- and zymosan-reactive CD4+ T cells of antiretroviral therapy-treated people living with HIV carried replication-competent integrated HIV-DNA, as demonstrated by an MDDC-based viral outgrowth assay. Together, these results support a model in which bacterial/fungal pathogens in the gut promote RALDH activity in MDDCs, especially in CD16+ MDDCs, and subsequently imprint CD4+ T cells with gut-homing potential and HIV permissiveness. Thus, nonviral pathogens play key roles in fueling HIV reservoir establishment/outgrowth via RALDH/RA-dependent mechanisms that may be therapeutically targeted.
Collapse
Affiliation(s)
- Amélie Cattin
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Vanessa Sue Wacleche
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | | | - Jonathan Dias
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Annie Gosselin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Eric A Cohen
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Jérôme Estaquier
- Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université Laval, Quebec City, Quebec, Canada
| | - Nicolas Chomont
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada; and.,Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Petronela Ancuta
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; .,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Soe YM, Bedoui S, Stinear TP, Hachani A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol 2021; 23:e13317. [PMID: 33550697 DOI: 10.1111/cmi.13317] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.
Collapse
Affiliation(s)
- Ye Mon Soe
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Naik P, Joseph J. Difference in Host Immune response to Methicillin-Resistant and Methicillin Sensitive Staphylococcus aureus (MRSA and MSSA) Endophthalmitis. Ocul Immunol Inflamm 2021; 30:1044-1054. [PMID: 33560179 DOI: 10.1080/09273948.2020.1859551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The study aimed to understand the differential immune response of methicillin susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains in in vitro models of endophthalmitis. METHODS Retinal pigment epithelium (RPE) and microglia cells (CHME-3) were exposed to MRSA and MSSA strains and analyzed for expression of inflammatory mediators by real-time quantitative PCR and validated by ELISA or immunofluorescence assay. Heatmap and STRING analysis was used to assess the differential immune expression. RESULTS Both microglia and RPE expressed TLR-2, TLR-1, TLR-6, and TLR -9 after challenge with MRSA and MSSA strains though the expression varied. MRSA-infected cells induced higher expression of IL-1β, IL-8, 1 L-10, IL-6, and GM-CSF, while TNF-α and IFN-ϒ were downregulated in comparison to MSSA-infected cells. We also demonstrate that MRSA infection leads to increased activation of MMP-9 and MMP-2 in RPE cells, while microglia expressed only MMP-9 in MRSA-infected cells. CONCLUSIONS MRSA strain can induce an exacerbated immune response in retinal cells. Giving clues for potential targets in immunomodulatory therapies.
Collapse
Affiliation(s)
- Poonam Naik
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
29
|
Algorri M, Jorth P, Wong-Beringer A. Variable Release of Lipoteichoic Acid From Staphylococcus aureus Bloodstream Isolates Relates to Distinct Clinical Phenotypes, Strain Background, and Antibiotic Exposure. Front Microbiol 2021; 11:609280. [PMID: 33519759 PMCID: PMC7840697 DOI: 10.3389/fmicb.2020.609280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Background Staphylococcus aureus is a leading cause of bacterial bloodstream infections. The heterogeneity in patient outcomes in S. aureus bacteremia (SAB) can be attributed in part to strain characteristics, which may influence host response to infection. We specifically examined the relationship between lipoteichoic acid (LTA) release from S. aureus and disease phenotype, strain background, and antibiotic exposure. Methods Seven strains of S. aureus causing different clinical phenotypes of bacteremia and two reference strains (LAC USA 300 and Mu3) were analyzed for LTA release at baseline and following exposure to antibiotics from different pharmacologic classes (vancomycin, ceftaroline, and tedizolid). LTA release was quantified by LTA-specific ELISA. Whole genome sequencing was performed on the clinical strains and analyzed using open-source bioinformatics tools. Results Lipoteichoic acid release varied by 4-fold amongst the clinical strains and appeared to be related to duration of bacteremia, independent of MLST type. Low LTA releasing strains were isolated from patients who had prolonged duration of bacteremia and died. Antibiotic-mediated differences in LTA release appeared to be associated with MLST type, as ST8 strains released maximal LTA in response to tedizolid while other non-ST8 strains demonstrated high LTA release with vancomycin. Genetic variations related to the LTA biosynthesis pathway were detected in all non-ST8 strains, though ST8 strains showed no variations despite demonstrating differential LTA release. Conclusion Our findings provide the basis for future studies to evaluate the relationship between LTA release-mediated host immune response and clinical outcomes as well as the potential for antibiotic modulation of LTA release as a therapeutic strategy and deserve confirmation with larger number of strains with known clinical phenotypes.
Collapse
Affiliation(s)
- Marquerita Algorri
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Annie Wong-Beringer
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Kim NH, Sung JY, Choi YJ, Choi SJ, Ahn S, Ji E, Kim M, Kim CJ, Song KH, Choe PG, Park WB, Kim ES, Park KU, Kim NJ, Oh MD, Kim HB. Toll-like receptor 2 downregulation and cytokine dysregulation predict mortality in patients with Staphylococcus aureus bacteremia. BMC Infect Dis 2020; 20:901. [PMID: 33256638 PMCID: PMC7706030 DOI: 10.1186/s12879-020-05641-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Staphylococcus aureus bacteremia (SAB) presents heterogeneously, owing to the differences in underlying host conditions and immune responses. Although Toll-like receptor 2 (TLR2) is important in recognizing S. aureus, its function during S. aureus infection remains controversial. We aimed to examine the association of TLR2 expression and associated cytokine responses with clinical SAB outcomes. METHODS Patients from a prospective SAB cohort at two tertiary-care medical centers were enrolled. Blood was sampled at several timepoints (≤5 d, 6-9 d, 10-13 d, 14-19 d, and ≥ 20 d) after SAB onset. TLR2 mRNA levels were determined via real-time PCR and serum tumor necrosis factor [TNF]-α, interleukin [IL]-6, and IL-10 levels were analyzed with multiplex-high-sensitivity electrochemiluminescent ELISA. RESULTS TLR2 levels varied among 59 SAB patients. On days 2-5, TLR2 levels were significantly higher in SAB survivors than in healthy controls (p = 0.040) and slightly but not significantly higher than non-survivors (p = 0.120), and SAB patients dying within 7 d had lower TLR2 levels than survivors (P = 0.077) although statistically insignificant. IL-6 and IL-10 levels were significantly higher in non-survivors than in survivors on days 2-5 post-bacteremia (P = 0.010 and P = 0.021, respectively), and those dying within 7 d of SAB (n = 3) displayed significantly higher IL-10/TNF-α ratios than the survivors did (P = 0.007). CONCLUSION TLR2 downregulation and IL-6 and IL-10 concentrations suggestive of immune dysregulation during early bacteremia may be associated with mortality from SAB. TLR2 expression levels and associated cytokine reactions during early-phase SAB may be potential prognostic factors in SAB, although larger studies are warranted.
Collapse
Affiliation(s)
- Nak-Hyun Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173 Gumi-ro, Bundang-gu, Seongnam, 463-707, Republic of Korea
| | - Ji Yeon Sung
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.,Present Address: Roche Korea, Seoul, Republic of Korea
| | - Yoon Jung Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173 Gumi-ro, Bundang-gu, Seongnam, 463-707, Republic of Korea
| | - Su-Jin Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Ahn
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eunjeong Ji
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Moonsuk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173 Gumi-ro, Bundang-gu, Seongnam, 463-707, Republic of Korea
| | - Chung Jong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173 Gumi-ro, Bundang-gu, Seongnam, 463-707, Republic of Korea.,Present Address: Department of Internal Medicine, Ewha Womans University, Seoul Hospital, Seoul, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173 Gumi-ro, Bundang-gu, Seongnam, 463-707, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173 Gumi-ro, Bundang-gu, Seongnam, 463-707, Republic of Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Nam-Joong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173 Gumi-ro, Bundang-gu, Seongnam, 463-707, Republic of Korea.
| |
Collapse
|
31
|
Algorri M, Wong-Beringer A. Antibiotics Differentially Modulate Lipoteichoic Acid-Mediated Host Immune Response. Antibiotics (Basel) 2020; 9:antibiotics9090573. [PMID: 32899240 PMCID: PMC7558621 DOI: 10.3390/antibiotics9090573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
In Staphylococcus aureus bacteremia, our group has shown that a dysregulated balance of pro- and anti-inflammatory cytokine response biased towards an immunoparalysis phenotype is predictive of persistence and mortality, despite receipt of antibiotics. Certain antibiotics, as well as lipoteichoic acid (LTA) released from S. aureus, can modulate immune response ex vivo. Here, we evaluated the effects of three anti-staphylococcal antibiotics (vancomycin, tedizolid, and daptomycin) on the expression of cytokines and cell surface markers of immune activation (TNFα, HLA-DR) and immunoparalysis (IL-10, PD-L1) in human peripheral blood mononuclear cells (PBMC) exposed to high (10 μg) and low (1 μg) doses of LTA. Results suggested a dose-dependent relationship between LTA and induction of anti- and pro-inflammatory immune responses. Differential antibiotic effects were prominently observed at high but not low LTA condition. Vancomycin significantly induced IL-10 and TNFα expression, whereas daptomycin had no effects on cytokine response or expression of cell surface receptors. Tedizolid increased TNFα and modestly increased HLA-DR expression, suggesting a stimulatory effect. These findings suggest that anti-staphylococcal agents differentially alter LTA-mediated immune cell activation status and cytokine response, providing support for future clinical studies to better elucidate the complexities of host–microbial–antibiotic interaction that can help direct precision therapy for S. aureus bacteremia.
Collapse
|
32
|
Mirzaei R, Ranjbar R, Karampoor S, Goodarzi R, Hasanvand H. The Human Immune System toward Staphylococcus aureus. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The immune system is responsible for protecting the host from pathogens, and it has evolved to deal with these pathogens. On the other hand, the co-evolution of pathogenic bacteria with hosts has led to the rise of an array of virulence genes that enable pathogen bacteria to evade or modulate the immune system. Staphylococcus aureus is a significant pathogen of humans that encodes several virulence factors that can modulate or evade from the innate and adaptive arm of the immune system. Overall, the immune reaction toward S. aureus contributes to stimulate innate and adaptive reactions. A profound understanding of the immune response to S. aureus infections will be critical for the development of vaccines and novel therapies. In this review, we summarized and discussed the novel information about the human immune system against S. aureus.
Collapse
|
33
|
Cathelicidins Mitigate Staphylococcus aureus Mastitis and Reduce Bacterial Invasion in Murine Mammary Epithelium. Infect Immun 2020; 88:IAI.00230-20. [PMID: 32341117 DOI: 10.1128/iai.00230-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus, an important cause of mastitis in mammals, is becoming increasingly problematic due to the development of resistance to conventional antibiotics. The ability of S. aureus to invade host cells is key to its propensity to evade immune defense and antibiotics. This study focuses on the functions of cathelicidins, small cationic peptides secreted by epithelial cells and leukocytes, in the pathogenesis of S. aureus mastitis in mice. We determined that endogenous murine cathelicidin (CRAMP; Camp) was important in controlling S. aureus infection, as cathelicidin knockout mice (Camp-/- ) intramammarily challenged with S. aureus had higher bacterial burdens and more severe mastitis than did wild-type mice. The exogenous administration of both a synthetic human cathelicidin (LL-37) and a synthetic murine cathelicidin (CRAMP) (8 μM) reduced the invasion of S. aureus into the murine mammary epithelium. Additionally, this exogenous LL-37 was internalized into cultured mammary epithelial cells and impaired S. aureus growth in vitro We conclude that cathelicidins may be potential therapeutic agents against mastitis; both endogenous and exogenous cathelicidins conferred protection against S. aureus infection by reducing bacterial internalization and potentially by directly killing this pathogen.
Collapse
|
34
|
Kwiatkowski P, Wojciuk B, Wojciechowska-Koszko I, Łopusiewicz Ł, Grygorcewicz B, Pruss A, Sienkiewicz M, Fijałkowski K, Kowalczyk E, Dołęgowska B. Innate Immune Response against Staphylococcus aureus Preincubated with Subinhibitory Concentration of trans-Anethole. Int J Mol Sci 2020; 21:ijms21114178. [PMID: 32545315 PMCID: PMC7312609 DOI: 10.3390/ijms21114178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
The study aimed to analyze morphological and functional changes of Staphylococcus aureus cells due to trans-anethole (a terpenoid and the major constituent of fennel, anise, or star anise essential oils) exposition, and their consequences for human neutrophils phagocytic activity as well as IL-8 production (recognized as the major chemoattractant). The investigation included the evaluation of changes occurring in S. aureus cultures, i.e., staphyloxanthin production, antioxidant activities, cell size distribution, and cells composition as a result of incubation with trans-anethole. It was found that the presence of trans-anethole in the culture medium reduced the level of staphyloxanthin production, as well as decreased antioxidant activities. Furthermore, trans-anethole-treated cells were characterized by larger size and a tendency to diffuse in comparison to the non-treated cells. Several cell components, such as phospholipids and peptidoglycan, were found remarkably elevated in the cultures treated with trans-anethole. As a result of the aforementioned cellular changes, the bacteria were phagocytized by neutrophils more efficiently (ingestion and parameters associated with killing activity were at a higher level as compared to the control system). Additionally, IL-8 production was at a higher level for trans-anethole modified bacteria. Our results suggest that trans-anethole represents a promising measure in combating severe staphylococcal infections, which has an important translational potential for clinical applications.
Collapse
Affiliation(s)
- Paweł Kwiatkowski
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (B.W.); (I.W.-K.)
- Correspondence: ; Tel.: +48-91-466-1659
| | - Bartosz Wojciuk
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (B.W.); (I.W.-K.)
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (B.W.); (I.W.-K.)
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, 71-270 Szczecin, Poland;
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (B.G.); (A.P.); (B.D.)
| | - Agata Pruss
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (B.G.); (A.P.); (B.D.)
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Łódź, 90-752 Łódź, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, 70-311 Szczecin, Poland;
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Łódź, 90-752 Łódź, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (B.G.); (A.P.); (B.D.)
| |
Collapse
|
35
|
Wang X, Eagen WJ, Lee JC. Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles. Proc Natl Acad Sci U S A 2020; 117:3174-3184. [PMID: 31988111 PMCID: PMC7022218 DOI: 10.1073/pnas.1915829117] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Release of extracellular vesicles (EVs) is a common feature among eukaryotes, archaea, and bacteria. However, the biogenesis and downstream biological effects of EVs released from gram-positive bacteria remain poorly characterized. Here, we report that EVs purified from a community-associated methicillin-resistant Staphylococcus aureus strain were internalized into human macrophages in vitro and that this process was blocked by inhibition of the dynamin-dependent endocytic pathway. Human macrophages responded to S. aureus EVs by TLR2 signaling and activation of NLRP3 inflammasomes through K+ efflux, leading to the recruitment of ASC and activation of caspase-1. Cleavage of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin-D by activated caspase-1 resulted in the cellular release of the mature cytokines IL-1β and IL-18 and induction of pyroptosis. Consistent with this result, a dose-dependent cytokine response was detected in the extracellular fluids of mice challenged intraperitoneally with S. aureus EVs. Pore-forming toxins associated with S. aureus EVs were critical for NLRP3-dependent caspase-1 activation of human macrophages, but not for TLR2 signaling. In contrast, EV-associated lipoproteins not only mediated TLR2 signaling to initiate the priming step of NLRP3 activation but also modulated EV biogenesis and the toxin content of EVs, resulting in alterations in IL-1β, IL-18, and caspase-1 activity. Collectively, our study describes mechanisms by which S. aureus EVs induce inflammasome activation and reveals an unexpected role of staphylococcal lipoproteins in EV biogenesis. EVs may serve as a novel secretory pathway for S. aureus to transport protected cargo in a concentrated form to host cells during infections to modulate cellular functions.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - William J Eagen
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
36
|
Dutta P, Sultana S, Dey R, Bishayi B. Regulation of Staphylococcus aureus-induced CXCR1 expression via inhibition of receptor mobilization and receptor shedding during dual receptor (TNFR1 and IL-1R) neutralization. Immunol Res 2020; 67:241-260. [PMID: 31290001 DOI: 10.1007/s12026-019-09083-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Our earlier studies proposed a radically new idea suggesting interdependency between TNF-α/TNFR1 and IL-1β/IL-1R pathways in modulation of Staphylococcus aureus-induced CXCL8/CXCR1 axis. However, the effects of inhibition of cytokine receptor mobilization at intracellular level and surface TNFR1 and IL-1R shedding on S. aureus-induced CXCR1 expression have not been studied so far in peritoneal macrophages. This study aimed to investigate the role of inhibition of receptor mobilization from the intracellular pool (using brefeldin A) and surface receptor shedding (using TAPI-1) on CXCR1 expression during dual receptor (TNFR1 plus IL-1R) neutralization in peritoneal macrophages isolated from wild-type Swiss Albino mice. Release of superoxide anion, nitric oxide, and hydrogen peroxide was measured and cytokine production was done by ELISA. Expression of surface receptors (TNFR1, IL-1R, and CXCR1) and inflammatory mediators was studied by Western blot. It was observed that S. aureus-infected macrophages showed elevated ROS production, secretion of TNF-α, IL-1β, and CXCL8, along with increased expression of surface receptors (TNFR1, IL-1R, and CXCR1), and inflammatory markers (iNOS and COX-2) compared with control or treated groups (p < 0.05). However, prior treatment of macrophages with BFA or TAPI-1 in the presence of anti-TNFR1 antibody and IRAP during S. aureus infection showed significant reduction of all these parameters (p < 0.05). We can conclude that targeting of TNFR1 and IL-1R (with major focus on surface expression study) either through blockage of intracellular receptor trafficking pathway or via surface receptor shedding diminishes TNFR1/IL-1R interaction and consequently downregulates CXCR1 expression along with inflammatory signalling pathways during bacterial infections.
Collapse
Affiliation(s)
- Puja Dutta
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Sahin Sultana
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India.
| |
Collapse
|
37
|
Synthetic cathelicidin LL-37 reduces Mycobacterium avium subsp. paratuberculosis internalization and pro-inflammatory cytokines in macrophages. Cell Tissue Res 2019; 379:207-217. [PMID: 31478135 PMCID: PMC7224033 DOI: 10.1007/s00441-019-03098-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes chronic diarrheic intestinal infections in domestic and wild ruminants (paratuberculosis or Johne’s disease) for which there is no effective treatment. Critical in the pathogenesis of MAP infection is the invasion and survival into macrophages, immune cells with ability to carry on phagocytosis of microbes. In a search for effective therapeutics, our objective was to determine whether human cathelicidin LL-37, a small peptide secreted by leuckocytes and epithelial cells, enhances the macrophage ability to clear MAP infection. In murine (J774A.1) macrophages, MAP was quickly internalized, as determined by confocal microscopy using green fluorescence protein expressing MAPs. Macrophages infected with MAP had increased transcriptional gene expression of pro-inflammatory TNF-α, IFN-γ, and IL-1β cytokines and the leukocyte chemoattractant IL-8. Pretreatment of macrophages with synthetic LL-37 reduced MAP load and diminished the transcriptional expression of TNF-α and IFN-γ whereas increased IL-8. Synthetic LL-37 also reduced the gene expression of Toll-like receptor (TLR)-2, key for mycobacterial invasion into macrophages. We concluded that cathelicidin LL-37 enhances MAP clearance into macrophages and suppressed production of tissue-damaging inflammatory cytokines. This cathelicidin peptide could represent a foundational molecule to develop therapeutics for controlling MAP infection.
Collapse
|
38
|
Bitschar K, Sauer B, Focken J, Dehmer H, Moos S, Konnerth M, Schilling NA, Grond S, Kalbacher H, Kurschus FC, Götz F, Krismer B, Peschel A, Schittek B. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nat Commun 2019; 10:2730. [PMID: 31227691 PMCID: PMC6588697 DOI: 10.1038/s41467-019-10646-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/21/2019] [Indexed: 01/30/2023] Open
Abstract
Recently our groups discovered lugdunin, a new cyclic peptide antibiotic that inhibits Staphylococcus aureus epithelial colonization in humans and rodents. In this work, we analyzed its immuno-modulatory and antimicrobial potential as a single agent or in combination with other microbiota- or host-derived factors. We show that pretreatment of primary human keratinocytes or mouse skin with lugdunin in combination with microbiota-derived factors results in a significant reduction of S. aureus colonization. Moreover, lugdunin increases expression and release of LL-37 and CXCL8/MIP-2 in human keratinocytes and mouse skin, and results in the recruitment of monocytes and neutrophils in vivo, both by a TLR/MyD88-dependent mechanism. Interestingly, S. aureus elimination by lugdunin is additionally achieved by synergistic antimicrobial activity with LL-37 and dermcidin-derived peptides. In summary, our results indicate that lugdunin provides multi-level protection against S. aureus and may thus become a promising treatment option for S. aureus skin infections in the future. Lugdunin is a peptide antibiotic produced by the skin commensal Staphylococcus lugdunensis. Here, the authors show that lugdunin reduces Staphylococcus aureus colonization in human keratinocytes and mouse skin by inducing the expression of human LL-37 and recruitment of monocytes and neutrophils.
Collapse
Affiliation(s)
- Katharina Bitschar
- Department of Dermatology, University of Tübingen, Liebermeisterstraße 25, 72076, Tübingen, Germany
| | - Birgit Sauer
- Department of Dermatology, University of Tübingen, Liebermeisterstraße 25, 72076, Tübingen, Germany
| | - Jule Focken
- Department of Dermatology, University of Tübingen, Liebermeisterstraße 25, 72076, Tübingen, Germany
| | - Hanna Dehmer
- Department of Dermatology, University of Tübingen, Liebermeisterstraße 25, 72076, Tübingen, Germany
| | - Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Martin Konnerth
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Nadine A Schilling
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Ob dem Himmelreich 7, 72074, Tübingen, Germany
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.,Department of Dermatology, Heidelberg University Hospital, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, University of Tübingen, Liebermeisterstraße 25, 72076, Tübingen, Germany.
| |
Collapse
|
39
|
Lin Y, Cong H, Liu K, Jiao Y, Yuan Y, Tang G, Chen Y, Zheng Y, Xiao J, Li C, Chen Z, Cao P. Microbicidal Phagocytosis of Nucleus Pulposus Cells Against Staphylococcus aureus via the TLR2/MAPKs Signaling Pathway. Front Immunol 2019; 10:1132. [PMID: 31178866 PMCID: PMC6538773 DOI: 10.3389/fimmu.2019.01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc (IVD) is an immune-privileged organ that lacks immunocytes, such as macrophages or neutrophils; therefore, it is unclear how IVD immunological defense against bacterial infection occurs. Here, we demonstrated that nucleus pulposus cells (NPCs), the vital machinery for maintaining the homeostasis of IVD, exerted microbicidal activity against Staphylococcus aureus via induction of phagolysosome formation. Moreover, we found that the Toll-like receptor 2 (TLR2)/mitogen-activated protein kinases (MAPKs) signaling pathway is critical for bacterial phagocytosis and phagolysosome formation of NPCs. These findings demonstrated for the first time that NPCs could function as non-professional phagocytes against S. aureus infection, thereby enhancing antimicrobial defense against bacterial infections in IVDs.
Collapse
Affiliation(s)
- Yazhou Lin
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Cong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kewei Liu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yucheng Jiao
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Yuan
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yong Chen
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yuehuan Zheng
- Department of Orthopedics, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaqi Xiao
- Department of Medical Microbiology and Parasitology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Chen
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Cao
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Interferon Lambda Inhibits Bacterial Uptake during Influenza Superinfection. Infect Immun 2019; 87:IAI.00114-19. [PMID: 30804099 DOI: 10.1128/iai.00114-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Influenza kills 30,000 to 40,000 people each year in the United States and causes 10 times as many hospitalizations. A common complication of influenza is bacterial superinfection, which exacerbates morbidity and mortality from the viral illness. Recently, methicillin-resistant Staphylococcus aureus (MRSA) has emerged as the dominant pathogen found in bacterial superinfection, with Streptococcus pneumoniae a close second. However, clinicians have few tools to treat bacterial superinfection. Current therapy for influenza/bacterial superinfection consists of treating the underlying influenza infection and adding various antibiotics, which are increasingly rendered ineffective by rising bacterial multidrug resistance. Several groups have recently proposed the use of the antiviral cytokine interferon lambda (IFN-λ) as a therapeutic for influenza, as administration of pegylated IFN-λ improves lung function and survival during influenza by reducing the overabundance of neutrophils in the lung. However, our data suggest that therapeutic IFN-λ impairs bacterial clearance during influenza superinfection. Specifically, mice treated with an adenoviral vector to overexpress IFN-λ during influenza infection exhibited increased bacterial burdens upon superinfection with either MRSA or S. pneumoniae Surprisingly, adhesion molecule expression, antimicrobial peptide production, and reactive oxygen species activity were not altered by IFN-λ treatment. However, neutrophil uptake of MRSA and S. pneumoniae was significantly reduced upon IFN-λ treatment during influenza superinfection in vivo Together, these data support the theory that IFN-λ decreases neutrophil motility and function in the influenza-infected lung, which increases the bacterial burden during superinfection. Thus, we believe that caution should be exercised in the possible future use of IFN-λ as therapy for influenza.
Collapse
|
41
|
Chen X, Alonzo F. Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proc Natl Acad Sci U S A 2019; 116:3764-3773. [PMID: 30755523 PMCID: PMC6397559 DOI: 10.1073/pnas.1817248116] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Commensal and pathogenic bacteria hydrolyze host lipid substrates with secreted lipases and phospholipases for nutrient acquisition, colonization, and infection. Bacterial lipase activity on mammalian lipids and phospholipids can promote release of free fatty acids from lipid stores, detoxify antimicrobial lipids, and facilitate membrane dissolution. The gram-positive bacterium Staphylococcus aureus secretes at least two lipases, Sal1 and glycerol ester hydrolase (Geh), with specificities for short- and long-chain fatty acids, respectively, each with roles in the hydrolysis of environmental lipids. In a recent study from our group, we made the unexpected observation that Geh released by S. aureus inhibits activation of innate immune cells. Herein, we investigated the possibility that S. aureus lipases interface with the host immune system to blunt innate immune recognition of the microbe. We found that the Geh lipase, but not other S. aureus lipases, prevents activation of innate cells in culture. Mutation of geh leads to enhancement of proinflammatory cytokine production during infection, increased innate immune activity, and improved clearance of the bacterium in infected tissue. These in vitro and in vivo effects on innate immunity were not due to direct functions of the lipase on mammalian cells, but rather a result of inactivation of S. aureus lipoproteins, a major pathogen-associated molecular pattern (PAMP) of extracellular gram-positive bacteria, via ester hydrolysis. Altogether, these studies provide insight into an adaptive trait that masks microbial recognition by innate immune cells through targeted inactivation of a broadly conserved PAMP.
Collapse
Affiliation(s)
- Xi Chen
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Francis Alonzo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
42
|
Koymans KJ, Feitsma LJ, Bisschop A, Huizinga EG, van Strijp JAG, de Haas CJC, McCarthy AJ. Molecular basis determining species specificity for TLR2 inhibition by staphylococcal superantigen-like protein 3 (SSL3). Vet Res 2018; 49:115. [PMID: 30486901 PMCID: PMC6263051 DOI: 10.1186/s13567-018-0609-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is a versatile opportunistic pathogen, causing disease in human and animal species. Its pathogenicity is linked to the ability of S. aureus to secrete immunomodulatory molecules. These evasion proteins bind to host receptors or their ligands, resulting in inhibitory effects through high affinity protein–protein interactions. Staphylococcal evasion molecules are often species-specific due to differences in host target proteins between species. We recently solved the crystal structure of murine TLR2 in complex with immunomodulatory molecule staphylococcal superantigen-like protein 3 (SSL3), which revealed the essential residues within SSL3 for TLR2 inhibition. In this study we aimed to investigate the molecular basis of the interaction on the TLR2 side. The SSL3 binding region on murine TLR2 was compared to that of other species through sequence alignment and homology modeling, which identified interspecies differences. To examine whether this resulted in altered SSL3 activity on the corresponding TLR2s, bovine, equine, human, and murine TLR2 were stably expressed in HEK293T cells and the ability of SSL3 to inhibit TLR2 was assessed. We found that SSL3 was unable to inhibit bovine TLR2. Subsequent loss and gain of function mutagenesis showed that the lack of inhibition is explained by the absence of two tyrosine residues in bovine TLR2 that play a prominent role in the SSL3–TLR2 interface. We found no evidence for the existence of allelic SSL3 variants that have adapted to the bovine host. Thus, within this paper we reveal the molecular determinants of the TLR2–SSL3 interaction which adds to our understanding of staphylococcal host specificity.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Louris J Feitsma
- Crystal and Structural Chemistry, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric G Huizinga
- Crystal and Structural Chemistry, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alex J McCarthy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
43
|
Darisipudi MN, Nordengrün M, Bröker BM, Péton V. Messing with the Sentinels-The Interaction of Staphylococcus aureus with Dendritic Cells. Microorganisms 2018; 6:microorganisms6030087. [PMID: 30111706 PMCID: PMC6163568 DOI: 10.3390/microorganisms6030087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a dangerous pathogen as well as a frequent colonizer, threatening human health worldwide. Protection against S. aureus infection is challenging, as the bacteria have sophisticated strategies to escape the host immune response. To maintain equilibrium with S. aureus, both innate and adaptive immune effector mechanisms are required. Dendritic cells (DCs) are critical players at the interface between the two arms of the immune system, indispensable for inducing specific T cell responses. In this review, we highlight the importance of DCs in mounting innate as well as adaptive immune responses against S. aureus with emphasis on their role in S. aureus-induced respiratory diseases. We also review what is known about mechanisms that S. aureus has adopted to evade DCs or manipulate these cells to its advantage.
Collapse
Affiliation(s)
- Murthy N Darisipudi
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Maria Nordengrün
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Vincent Péton
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| |
Collapse
|
44
|
Saito S, Quadery AF. Staphylococcus aureus Lipoprotein Induces Skin Inflammation, Accompanied with IFN-γ-Producing T Cell Accumulation through Dermal Dendritic Cells. Pathogens 2018; 7:pathogens7030064. [PMID: 30060633 PMCID: PMC6161079 DOI: 10.3390/pathogens7030064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a commensal bacteria on the human skin, which causes serious skin inflammation. Several immune cells, especially effector T cells (Teff), have been identified as key players in S. aureus-derived skin inflammation. However, the bacterial component that induces dramatic host immune responses on the skin has not been well characterized. Here, we report that S. aureus lipoprotein (SA-LP) was recognized by the host immune system as a strong antigen, so this response induced severe skin inflammation. SA-LP activated dendritic cells (DCs), and this activation led to Teff accumulation on the inflamed skin in the murine intradermal (ID) injection model. The skin-accumulated Teff pool was established by IFN-ɤ-producing CD4+ and CD8+T (Th1 and Tc1). SA-LP activated dermal DC (DDC) in a dominant manner, so that these DCs were presumed to possess the strong responsibility of SA-LP-specific Teff generation in the skin-draining lymph nodes (dLN). SA-LP activated DC transfer into the mice ear, which showed similar inflammation, accompanied with Th1 and Tc1 accumulation on the skin. Thus, we revealed that SA-LP has a strong potential ability to establish skin inflammation through the DC-Teff axis. This finding provides novel insights not only for therapy, but also for the prevention of S. aureus-derived skin inflammation.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata 9518510, Japan.
- Institute of Bio Medical Science, Academia Sinica, Taipei 115, Taiwan.
| | - Ali F Quadery
- Biofluid Biomarker Center, Niigata University, Niigata 9502181, Japan.
| |
Collapse
|
45
|
Orapiriyakul W, Young PS, Damiati L, Tsimbouri PM. Antibacterial surface modification of titanium implants in orthopaedics. J Tissue Eng 2018; 9:2041731418789838. [PMID: 30083308 PMCID: PMC6071164 DOI: 10.1177/2041731418789838] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
The use of biomaterials in orthopaedics for joint replacement, fracture healing and bone regeneration is a rapidly expanding field. Infection of these biomaterials is a major healthcare burden, leading to significant morbidity and mortality. Furthermore, the cost to healthcare systems is increasing dramatically. With advances in implant design and production, research has predominately focussed on osseointegration; however, modification of implant material, surface topography and chemistry can also provide antibacterial activity. With the increasing burden of infection, it is vitally important that we consider the bacterial interaction with the biomaterial and the host when designing and manufacturing future implants. During this review, we will elucidate the interaction between patient, biomaterial surface and bacteria. We aim to review current and developing surface modifications with a view towards antibacterial orthopaedic implants for clinical applications.
Collapse
Affiliation(s)
- Wich Orapiriyakul
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Peter S Young
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Laila Damiati
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
46
|
Skerrett SJ, Braff MH, Liggitt HD, Rubens CE. Toll-like receptor 2 has a prominent but nonessential role in innate immunity to Staphylococcus aureus pneumonia. Physiol Rep 2018; 5:5/21/e13491. [PMID: 29142002 PMCID: PMC5688782 DOI: 10.14814/phy2.13491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus is an important cause of acute bacterial pneumonia. Toll‐like receptor 2 (TLR2) recognizes multiple components of the bacterial cell wall and activates innate immune responses to gram‐positive bacteria. We hypothesized that TLR2 would have an important role in pulmonary host defense against S. aureus. TLR null (TLR2−/−) mice and wild type (WT) C57BL/6 controls were challenged with aerosolized S. aureus at a range of inocula for kinetic studies of cytokine and antimicrobial peptide expression, lung inflammation, bacterial killing by alveolar macrophages, and bacterial clearance. Survival was measured after intranasal infection. Pulmonary induction of most pro‐inflammatory cytokines was significantly blunted in TLR2−/− mice 4 and 24 h after infection in comparison with WT controls. Bronchoalveolar concentrations of cathelicidin‐related antimicrobial peptide also were reduced in TLR2−/− mice. Lung inflammation, measured by enumeration of bronchoalveolar neutrophils and scoring of histological sections, was significantly blunted in TLR2−/− mice. Phagocytosis of S. aureus by alveolar macrophages in vivo after low‐dose infection was unimpaired, but viability of ingested bacteria was significantly greater in TLR2−/− mice. Bacterial clearance from the lungs was slightly impaired in TLR2−/− mice after low‐dose infection only; bacterial elimination from the lungs was slightly accelerated in the TLR2−/− mice after high‐dose infection. Survival after high‐dose intranasal challenge was 50–60% in both groups. TLR2 has a significant role in early innate immune responses to S. aureus in the lungs but is not required for bacterial clearance and survival from S. aureus pneumonia.
Collapse
Affiliation(s)
- Shawn J Skerrett
- Department of Medicine, University of Washington, Seattle, Washington
| | - Marissa H Braff
- Seattle Children's Hospital Research Institute, Seattle, Washington
| | - H Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Craig E Rubens
- Seattle Children's Hospital Research Institute, Seattle, Washington
| |
Collapse
|
47
|
Bishayi B, Adhikary R, Sultana S, Dey R, Nandi A. Altered expression of CXCR1 (IL-8R) in macrophages utilizing cell surface TNFR1 and IL-1 receptor during Staphylococcus aureus infection. Microb Pathog 2017; 113:460-471. [DOI: 10.1016/j.micpath.2017.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/04/2017] [Accepted: 11/18/2017] [Indexed: 01/28/2023]
|
48
|
Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M, O'Mahony L, Richards RG, Moriarty TF. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front Microbiol 2017; 8:1401. [PMID: 28824556 PMCID: PMC5539136 DOI: 10.3389/fmicb.2017.01401] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50% in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus. This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years.
Collapse
Affiliation(s)
- Marina Sabaté Brescó
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland.,Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - Llinos G Harris
- Microbiology and Infectious Diseases, Institute of Life Science, Swansea University Medical SchoolSwansea, United Kingdom
| | - Keith Thompson
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Barbara Stanic
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Mario Morgenstern
- Department of Orthopedic and Trauma Surgery, University Hospital BaselBasel, Switzerland
| | - Liam O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - R Geoff Richards
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - T Fintan Moriarty
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| |
Collapse
|
49
|
IFN- τ Displays Anti-Inflammatory Effects on Staphylococcus aureus Endometritis via Inhibiting the Activation of the NF- κB and MAPK Pathways in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2350482. [PMID: 28331850 PMCID: PMC5346370 DOI: 10.1155/2017/2350482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/22/2016] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
Abstract
The aim of the present study was to determine the anti-inflammatory effect of IFN-τ on endometritis using a mouse model of S. aureus-induced endometritis and to elucidate the mechanism of action underlying these effects. In the present study, the effect of IFN-τ on S. aureus growth was monitored by turbidimeter at 600 nm. IFN-τ did not affect S. aureus growth. The histopathological changes indicated that IFN-τ had a protective effect on uterus tissues with S. aureus infection. The ELISA and qPCR results showed the production of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 was decreased with IFN-τ treatment. In contrast, the level of the anti-inflammatory cytokine IL-10 was increased. We further studied the signaling pathway associated with these observations, and the qPCR results showed that the expression of TLR2 was repressed by IFN-τ. Furthermore, the western blotting results showed the phosphorylation of IκB, NF-κB p65, and MAPKs (p38, JNK, and ERK) was inhibited by IFN-τ treatment. The results suggested that IFN-τ may be a potential drug for the treatment of uterine infection due to S. aureus or other infectious inflammatory diseases.
Collapse
|
50
|
Deng S, Yu K, Jiang W, Li Y, Wang S, Deng Z, Yao Y, Zhang B, Liu G, Liu Y, Lian Z. Over-expression of Toll-like receptor 2 up-regulates heme oxygenase-1 expression and decreases oxidative injury in dairy goats. J Anim Sci Biotechnol 2017; 8:3. [PMID: 28078083 PMCID: PMC5223356 DOI: 10.1186/s40104-016-0136-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
Background Mastitis, an infection caused by Gram-positive bacteria, produces udder inflammation and oxidative injury in milk-producing mammals. Toll-like receptor 2 (TLR2) is important for host recognition of invading Gram-positive microbes. Over-expression of TLR2 in transgenic dairy goats is a useful model for studying various aspects of infection with Gram-positive bacteria, in vivo. Methods We over-expressed TLR2 in transgenic dairy goats. Pam3CSK4, a component of Gram-positive bacteria, triggered the TLR2 signal pathway by stimulating the monocytes-macrophages from the TLR2-positive transgenic goats, and induced over-expression of activator protein-1 (AP-1), phosphatidylinositol 3-kinase (PI3K) and transcription factor nuclear factor kappa B (NF-κB) and inflammation factors downstream of the signal pathway. Results Compared with wild-type controls, measurements of various oxidative stress-related molecules showed that TLR2, when over-expressed in transgenic goat monocytes-macrophages, resulted in weak lipid damage, high level expression of anti-oxidative stress proteins, and significantly increased mRNA levels of transcription factor NF-E2-related factor-2 (Nrf2) and the downstream gene, heme oxygenase-1 (HO-1). When Pam3CSK4 was used to stimulate ear tissue in vivo the HO-1 protein of the transgenic goats had a relatively high expression level. Conclusions The results indicate that the oxidative injury in goats over-expressing TLR2 was reduced following Pam3CSK4 stimulation. The underlying mechanism for this reduction was increased expression of the anti-oxidation gene HO-1 by activation of the Nrf2 signal pathway.
Collapse
Affiliation(s)
- Shoulong Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Kun Yu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China.,National key Lab of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Wuqi Jiang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yan Li
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Shuotian Wang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Zhuo Deng
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078 USA
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People's Republic of China
| | - Baolu Zhang
- State Oceanic Administration, Beijing, 100860 People's Republic of China
| | - Guoshi Liu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yixun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhengxing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China.,National key Lab of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|