1
|
Ko S, Nguyen HMT, Lee W, Kim D. Developing the PIP-eco: An integrated genomic pipeline for identification and characterization of Escherichia coli pathotypes encompassing hybrid forms. Comput Struct Biotechnol J 2024; 23:3040-3049. [PMID: 39175796 PMCID: PMC11340603 DOI: 10.1016/j.csbj.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Pathogenic Escherichia coli (E. coli) strains are distinguished by their diverse virulence factors, which contribute to a wide spectrum of diseases. These pathogens evolve through the horizontal transfer of virulence factors, resulting in the emergence of hybrid pathotypes with complex and heterogeneous characteristics. Recognizing their profound impact on public health, this study introduces the PIP-eco pipeline, a comprehensive analytical tool designed for the precise identification and characterization of E. coli pathotypes. This PIP-eco pipeline advances beyond traditional molecular techniques by facilitating detailed analysis of both single and hybrid pathotypes. It integrates targeted marker gene analysis, virulence factor-based phylogenetic analysis, and pathogenicity islands (PAIs) profiling to elucidate the genetic diversity of E. coli pathotypes and support their accurate classification. This integrative approach enables PIP-eco to uncover connections among various E. coli pathotypes, highlight shared virulence factors, and provide insights into their evolutionary trajectories. By utilizing experimentally validated marker genes, the pipeline ensures robust identification of pathotypes, particularly those of hybrid pathotypes. Additionally, PAI analysis offers comprehensive genetic investigations, revealing strain-specific variations and potential virulence mechanisms. As a result, the PIP-eco pipeline emerges as a useful tool for dissecting the evolutionary dynamics of E. coli and characterizing complex pathotypes, addressing the critical need for accurate detection and understanding of hybrid pathotypes.
Collapse
Affiliation(s)
- Seyoung Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Huynh Minh Triet Nguyen
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Greig DR, Quinn OI, Rodwell EV, Olonade I, Swift C, Douglas A, Balasegram S, Jenkins C. Genomic analysis of an outbreak of Shiga toxin-producing Escherichia coli O183:H18 in the United Kingdom, 2023. Microb Genom 2024; 10:001243. [PMID: 38771013 PMCID: PMC11165631 DOI: 10.1099/mgen.0.001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
In June 2023, UKHSA surveillance systems detected an outbreak of severe gastrointestinal symptoms caused by a rare serotype of Shiga toxin-producing Escherichia coli, STEC O183:H18. There were 26 cases aged 6 months to 74 years (42 % cases were aged 0-9 years), distributed across the UK with onset dates range between 22 May 2023 and 4 July 2023. The epidemiological and food chain investigations were inconclusive, although meat products made from beef mince were implicated as a potential vehicle. The outbreak strain belonged to sequence type (ST) 657 and harboured a Shiga toxin (stx) subtype stx2a located on a prophage that was unique in the UKHSA stx-encoding bacteriophage database. Plasmid encoded, putative virulence genes subA, ehxA, saa, iha, lpfA and iss were detected, however, the established STEC virulence genes involved in attachment to the gut mucosa (eae and aggR) were absent. The acquisition of stx across the global population structure of ST657 appeared to correspond with the presence of subA, ehxA, saa, iha, lpfA and iss. During the outbreak investigation, we used long read sequencing to characterise the plasmid and prophage content of this atypical STEC, to look for evidence to explain its recent emergence. Although we were unable to determine source and transmission route of the outbreak strain, the genomic analysis revealed potential clues as to how novel strains for STEC evolve. With the implementation of PCR capable of detecting all STEC, and genome sequencing for typing and virulence profiling, we have the tools to enable us to monitor the changing landscape of STEC. Improvements in the standardised collection of epidemiological data and trace-back strategies within the food industry, will ensure we have a surveillance system capable of alerting us to emerging threats to public health.
Collapse
Affiliation(s)
- David R. Greig
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Orlagh I. Quinn
- Gastrointestinal Infections & Food Safety (One Health), Clinical & Public Health, UK Health Security Agency, London, UK
| | - Ella V. Rodwell
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Israel Olonade
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
| | - Craig Swift
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
| | - Amy Douglas
- Gastrointestinal Infections & Food Safety (One Health), Clinical & Public Health, UK Health Security Agency, London, UK
| | - Sooria Balasegram
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Gastrointestinal Infections & Food Safety (One Health), Clinical & Public Health, UK Health Security Agency, London, UK
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology, UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Kalalah AA, Koenig SSK, Feng P, Bosilevac JM, Bono JL, Eppinger M. Pathogenomes of Shiga Toxin Positive and Negative Escherichia coli O157:H7 Strains TT12A and TT12B: Comprehensive Phylogenomic Analysis Using Closed Genomes. Microorganisms 2024; 12:699. [PMID: 38674643 PMCID: PMC11052207 DOI: 10.3390/microorganisms12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Peter Feng
- U.S. Food and Drug Administration (FDA), College Park, MD 20740, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Patel D, Hansen M, Lambert C, Hegde S, Jayamohan H, Gale BK, Sant HJ. Characterizing a Silver Nanoparticle-Based Electrochemical Biosensor for Shiga Toxin Detection. ACS OMEGA 2023; 8:40898-40903. [PMID: 37929116 PMCID: PMC10620918 DOI: 10.1021/acsomega.3c06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Shiga toxins (1, 2) regularly cause outbreaks and food recalls and pose a significant health risk to the infected population. Therefore, new reliable tools are needed to rapidly detect Shiga toxin cost-effectively in food, water, and wastewater before human consumption. Enzyme immunoassay and polymerase chain reaction approaches are the gold standard detection methods for the Shiga toxin. However, these methods require expensive instruments along with expensive reagents, which makes them hard to convert into point-of-use and low-cost systems. This study introduces an electrochemical biosensing method that utilizes silver nanoparticles (AgNPs) as electrochemical tags and commercially available low-cost screen-printed carbon electrodes for detection. This study introduces the modification of reference electrodes on commercially available screen-printed carbon electrodes to detect AgNPs dissolved in nitric acid. This biosensor achieved a 2 ng/mL lowest measured concentration for Shiga toxin-1 in less than 3 h. These biosensor results also showed that the AgNP-based sensor has better linearity (for graph between peak current vs concentration) and lower standard deviation compared to gold nanoparticles (AuNP)-based electrochemical biosensors.
Collapse
Affiliation(s)
- Dhruv Patel
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
| | - Madison Hansen
- Department
of Biology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christopher Lambert
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Espira
Inc., 825 N 300 W Suite
N-223, Salt Lake City, Utah 84103, United States
| | - Shruti Hegde
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Harikrishnan Jayamohan
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
| | - Bruce K. Gale
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Espira
Inc., 825 N 300 W Suite
N-223, Salt Lake City, Utah 84103, United States
| | - Himanshu Jayant Sant
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Kartsev NN, Detusheva EV, Kalmantaeva OV, Korobova OV, Gerasimov VN, Kombarova TI, Borzilov AI, Fursova NK, Vereshchagin AN, Svetoch EA. Hetero-Pathogenic O181:H4 EAHEC Strain of Sequence Type ST678 Associated with Hemolytic-Uremic Syndrome in Schoolchildren in Russia. Microorganisms 2023; 11:1771. [PMID: 37512943 PMCID: PMC10383572 DOI: 10.3390/microorganisms11071771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In the last decade, the importance of hetero-pathogenic enteroaggregative Shiga-toxin-producing E. coli for public health has increased. Recently, we described the genetic background of the EAHEC O181:H4 strain of ST678 carrying the stx2 gene in prophage and five plasmids, including the plasmid-carrying aggR and aaiC genes. Here, we present the morphological and enzymatic characteristics of this strain, as well as susceptibility to antimicrobials, biofilm formation, etc. Methods: Bacterial morphology was studied using an electron microscope. Susceptibility to antimicrobials was determined using the microdilution method. Cytotoxicity was estimated in Vero cells. Virulence was studied on mice. RESULTS The morphological and enzymatic properties of the hetero-pathogenic EAHEC strain were typical for E. coli; electron microscopy revealed the specific flagella. The strain was susceptible to most antibiotics and disinfectants but resistant to ampicillin and ciprofloxacin and showed a high degree of biofilm formation. Cytotoxicity towards Vero cells was estimated as 80%. CONCLUSIONS The emergence of a new O181:H4 EAHEC strain poses a potential threat to humans because of the virulence potential that must be taken into account in the epidemiological analysis of outbreaks and sporadic cases of foodborne infections associated with hemolytic-uremic syndrome.
Collapse
Affiliation(s)
- Nikolay N Kartsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Elena V Detusheva
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Olga V Kalmantaeva
- Laboratory of Molecular Biology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Olga V Korobova
- Laboratory of Biological Trials, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Vladimir N Gerasimov
- Department of Disinfectology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Tatiana I Kombarova
- Laboratory of Biological Trials, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Aleksander I Borzilov
- Laboratory of Biological Trials, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | - Nadezhda K Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| | | | - Edward A Svetoch
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory "Kvartal A", 142279 Obolensk, Russia
| |
Collapse
|
6
|
The Prophage and Us-Shiga Toxin Phages Revisited. Pathogens 2023; 12:pathogens12020232. [PMID: 36839504 PMCID: PMC9960153 DOI: 10.3390/pathogens12020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The authors first met in 1998 at the University of Würzburg, Germany, at the Institute of Hygiene and Microbiology, in Helge Karch's lab, where Herbert Schmidt worked as a PostDoc and Maite Muniesa visited the lab for a postdoctoral research stay to work on phages encoding Shiga toxin 2e (Stx2e) [...].
Collapse
|
7
|
Guevarra RB, Kim ES, Cho JH, Song M, Cho JH, Lee JH, Kim H, Kim S, Keum GB, Lee CH, Cho WT, Watthanaphansak S, Kim HB. Gut microbial shifts by synbiotic combination of Pediococcus acidilactici and lactulose in weaned piglets challenged with Shiga toxin-producing Escherichia coli. Front Vet Sci 2023; 9:1101869. [PMID: 36713861 PMCID: PMC9879705 DOI: 10.3389/fvets.2022.1101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Development of alternatives to in-feed antibiotics in the swine industry have been the focused of many pig gut microbiota studies to improve animal health. In this study, we evaluated the effects of probiotic Pediococcus acidilactici (PRO), prebiotic lactulose (PRE), and their synbiotic combination (SYN) on gut microbiota using 16S rRNA gene sequencing in weaned piglets challenged with Shiga-toxin producing Escherichia coli (STEC). Our data showed that prebiotics, probiotics and synbiotics improved the intestinal health in weaned piglets. No significant differences were observed in species richness and species diversity in weaned piglets fed prebiotics, probiotics and their synbiotic combination. However, beta diversity analysis revealed distinct clustering of the microbiota of according to dietary treatment and by oral challenge of STEC. At the phylum level, Firmicutes to Bacteroidetes ratio was lower in the dietary treatment groups than the control group. Oral supplementation of prebiotics, probiotics and synbiotics enriched the abundance of Prevotella and Roseburia. Succinivibrio was elevated in PRO group; however, Phascolarctobacterium was depleted with STEC challenge regardless of dietary treatment. Overall, our data showed that administration of synbiotics in piglets improved intestinal health through gut microbiota modulation. Our data indicated that prebiotics, probiotics and their synbiotic combination could promote intestinal health through gut microbiota modulation in weaned piglets.
Collapse
Affiliation(s)
- Robin B. Guevarra
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jin Ho Cho
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jun Hyung Lee
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Hyeri Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Chan Ho Lee
- Gene Bio Tech Co., Ltd., Gongju, Republic of Korea
| | - Won Tak Cho
- Gene Bio Tech Co., Ltd., Gongju, Republic of Korea
| | - Suphot Watthanaphansak
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea,*Correspondence: Hyeun Bum Kim ✉
| |
Collapse
|
8
|
An Emerging Lineage of Uropathogenic Extended Spectrum β-Lactamase Escherichia coli ST127. Microbiol Spectr 2022; 10:e0251122. [PMID: 36416548 PMCID: PMC9769692 DOI: 10.1128/spectrum.02511-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is one of the most common causes of urinary tract infections. Here, we report for the first time the whole-genome sequencing (WGS) and analysis of four extended-spectrum β-lactamase (ESBL), UPEC sequence type (ST) 127 isolates that were recovered from patients in five hospitals in Armenia from January to August of 2019. A phylogenetic comparison revealed that our isolates were closely related to each other by their core and accessory genomes, despite having been isolated from different regions and hospitals in Armenia. We identified unique genes in our isolates and in a closely related isolate recovered in France. The unique genes (hemolysin E virulence gene, lactate utilization operon lutABC, and endonuclease restriction modification operon hsdMSR) were identified in three separate genomic regions that were adjacent to prophage genes, including one region containing the TonB-dependent iron siderophore receptor gene ireA, which was only found in 5 other ST127 isolates from the European Nucleotide Archive (ENA). We further identified that these isolates possessed unique virulence and metabolic genes and harbored antibiotic resistance genes, including the ESBL genes blaCTX-M-3 (n = 3), blaCTX-M-236 (n = 1), and blaTEM-1 (n = 1), in addition to a quinolone resistance protein gene qnrD1 (n = 1), which was absent in the ST127 isolates obtained from the ENA. Moreover, a plasmid replicon gene IncI2 (n = 1) was unique to ARM88 of the Armenian isolates. Our findings demonstrate that at the time of this study, E. coli ST127 was a cause of urinary tract infections in patients in different regions of Armenia, with a possibility of cross-country transmission between Armenia and France. IMPORTANCE Whole-genome sequencing studies of pathogens causing infectious diseases are seriously lacking in Armenia, hampering global efforts to track, trace and contain infectious disease outbreaks. In this study, we report for the first-time the whole-genome sequencing and analysis of ESBL UPEC ST127 isolates recovered from hospitalized patients in Armenia and compare them with other E. coli ST127 retrieved from the ENA. We found close genetic similarities of the Armenian isolates, indicating that E. coli ST127 was potentially a dominant lineage causing urinary tract infections in Armenia. Furthermore, we identified unique genes that were horizontally acquired in the clusters of Armenian and French isolates that were absent in other ST127 isolates obtained from the ENA. Our findings highlight a possible cross-country transmission between Armenia and France and the idea that the implementation of WGS surveillance could contribute to global efforts in tackling antibiotic resistance, as bacteria carrying antimicrobial resistance (AMR) genes do not recognize borders.
Collapse
|
9
|
Fang Y, Brückner LL, McMullen LM, Gänzle MG. Transduction of stx2a mediated by phage (Φ11-3088) from Escherichia coli O104:H4 in vitro and in situ during sprouting of mung beans. Int J Food Microbiol 2022; 383:109952. [PMID: 36191491 DOI: 10.1016/j.ijfoodmicro.2022.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022]
Abstract
Escherichia coli O104:H4 strain 11-3088 encoding Stx2a is epidemiologically related to the foodborne outbreak associated with sprouts in Germany, 2011. Sprouting provides suitable conditions for bacterial growth and may lead to transduction of non-pathogenic strains of E. coli with Stx phages. Although transduction of E. coli by Stx phages in food has been documented, data on the phages from E. coli O104:H4 is limited. This study determined the host range of the bacteriophage Φ11-3088 from E. coli O104:H4 using E. coli O104:H4 ∆stx2::gfp::ampr and demonstrated phage transduction during sprouting. The Φ11-3088∆stx transduced 5/45 strains, including generic E. coli, pap-positive E. coli O103:H2, ETEC, and S. sonnei. The expression level of Φ11-3088∆stx differed among lysogens upon induction. Of the 3 highly induced lysogens, the lytic cycle was induced in E. coli O104:H4∆stx2::gfp::ampr and O103:H2 but not in S. sonnei. E. coli DH5α was the only strain susceptible to lytic infection by Φ11-3088∆stx. To explore the effect of drying and rehydration during seed storage and sprouting on phage induction and transduction, mung beans inoculated with the phage donor E. coli O104:H4∆stx2::gfp::ampr (8 log CFU/g) were dried, rehydrated, and incubated with the phage recipient E. coli DH5α (7 log CFU/g) for 96 h. Sprouted seeds harbored about 3 log CFU/g of putative lysogens that acquired ampicillin resistance. At the end of sprouting, 71 % of putative lysogens encoded gfp, confirming phage transduction. Overall, stx transfer by phages may increase the cell counts of STEC during sprouting by converting generic E. coli to STEC.
Collapse
Affiliation(s)
- Yuan Fang
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Luisa Linda Brückner
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Lynn M McMullen
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| |
Collapse
|
10
|
Impact of Shiga-toxin encoding gene transduction from O80:H2 Shiga toxigenic Escherichia coli (STEC) on non-STEC strains. Sci Rep 2022; 12:21587. [PMID: 36517572 PMCID: PMC9751135 DOI: 10.1038/s41598-022-26198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are major foodborne pathogens that cause human diseases ranging from diarrhea to life-threatening complications including hemolytic-uremic syndrome. Virulence of STEC strains and their ability to cause severe diseases are associated with the activity of prophage-encoded Shiga toxins (Stxs). The first objective of this work was to isolate and characterize the Stx2d phage from STEC O80:H2 and to study the transfer of this phage in non-STEC strains. The second objective was to assess the survival of Galleria mellonella larvae inoculated with these transduced strains. Firstly, one bacteriophage isolated from a STEC O80:H2 strain was used to infect six non-STEC strains, resulting in the conversion of three strains. Then, stability assays were performed, showing that this phage was stable in the new STEC strains after three successive subculturing steps, as confirmed by a combination of short and long read genome sequencing approaches. This phage, vB_EcoS_ULI-O80_Stx2d, is resistant to moderate temperature and pH. It belongs to a currently unclassified genus and family within the Caudoviricetes class, shares 98% identity with Stx2_112808 phage and encodes several proteins involved in the lysogenic cycle. The yecE gene was identified at the insertion site. Finally, G. mellonella experiments showed that the transduced strains caused significantly higher mortality rates than the corresponding non-STEC strains. In conclusion, this study showed that stx2d gene from O80:H2 E. coli can be transferred to non-STEC strains and contributes to their virulence.
Collapse
|
11
|
Ray R, Singh P. Prevalence and Implications of Shiga Toxin-Producing E. coli in Farm and Wild Ruminants. Pathogens 2022; 11:1332. [PMID: 36422584 PMCID: PMC9694250 DOI: 10.3390/pathogens11111332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is a food-borne pathogen that causes human gastrointestinal infections across the globe, leading to kidney failure or even death in severe cases. E. coli are commensal members of humans and animals' (cattle, bison, and pigs) guts, however, may acquire Shiga-toxin-encoded phages. This acquisition or colonization by STEC may lead to dysbiosis in the intestinal microbial community of the host. Wildlife and livestock animals can be asymptomatically colonized by STEC, leading to pathogen shedding and transmission. Furthermore, there has been a steady uptick in new STEC variants representing various serotypes. These, along with hybrids of other pathogenic E. coli (UPEC and ExPEC), are of serious concern, especially when they possess enhanced antimicrobial resistance, biofilm formation, etc. Recent studies have reported these in the livestock and food industry with minimal focus on wildlife. Disturbed natural habitats and changing climates are increasingly creating wildlife reservoirs of these pathogens, leading to a rise in zoonotic infections. Therefore, this review comprehensively surveyed studies on STEC prevalence in livestock and wildlife hosts. We further present important microbial and environmental factors contributing to STEC spread as well as infections. Finally, we delve into potential strategies for limiting STEC shedding and transmission.
Collapse
Affiliation(s)
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| |
Collapse
|
12
|
Sokolovic M, Šimpraga B, Amšel-Zelenika T, Berendika M, Krstulović F. Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia. Microorganisms 2022; 10:1839. [PMID: 36144441 PMCID: PMC9505133 DOI: 10.3390/microorganisms10091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
A survey on prevalence and number of Shiga toxin-producing Escherichia (E.) coli (STEC) in animal feed was carried out over a period of nine years in the Republic of Croatia. A total of 1688 feed samples were collected from feed factories and poultry farms. Analysis included two standard procedures: sample enrichment and (a) immunomagnetic separation and plating on two selective media; or (b) plating on two selective media. Confirmation of STEC included morphological examination, biochemical tests, serotyping, and polymerase chain reaction. Morphological and biochemical characterization revealed 629 E. coli strains. Further serological screening method revealed 78 STEC and EPEC serotypes, while only 27 strains were confirmed as STEC with PCR. All positive samples (1.6%) originated from poultry farms and contained combination of virulence genes: eaeA, stx1, and/or stx2. Since the presence of stx (especially stx2) and eae are identified as risk factors for development of severe diseases in humans, results of this survey indicate that avian sources of STEC infections might be one of those "undefined sources" of human illnesses. Further research is necessary for evaluation of risks posed by contaminated feed, poultry, and environment.
Collapse
Affiliation(s)
- Marijana Sokolovic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, 10000 Zagreb, Croatia
| | - Borka Šimpraga
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
13
|
Virulence Genes of Pathogenic Escherichia coli in Wild Red Foxes (Vulpes vulpes). Animals (Basel) 2022; 12:ani12151959. [PMID: 35953948 PMCID: PMC9367424 DOI: 10.3390/ani12151959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Escherichia coli is a commensal of the intestinal tract of humans and animals, but some pathotypes can cause severe infections. Enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli (STEC), and enterohemorrhagic E. coli (EHEC) are the pathotypes most frequently involved in enteric disorders observed in people and domestic animals. Wildlife may harbor and excrete these pathotypes too, therefore, they may be source of infections for humans and domestic animals. Vulpes vulpes seem to be involved in the epidemiology of pathogenic E. coli strains, and thus they could be a relevant threat mainly when they invade human settlements in rural and urban areas. Abstract Different pathotypes of Escherichia coli can cause severe diseases in animals and humans. Wildlife may contribute to the circulation of pathogenic pathotypes, including enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli (STEC), and enterohemorrhagic E. coli (EHEC). This study analyzed 109 DNA samples previously extracted from fecal specimens collected from red foxes (Vulpes vulpes) to detect E. coli virulence genes eaeA, hlyA, stx1, and stx2, that characterize the EPEC, STEC, and EHEC strains. Thirty-one (28.4%) samples were positive for at least one investigated virulence gene: eaeA gene was detected in 21 (19.2%) samples, hlyA in 10 (9.1%), stx1 in 6 (5.5%), and stx2 in 4 (3.6%). Nine DNA samples resulted positive for two or three virulence genes: five (4.6%) samples were positive for eaeA and hlyA genes, two (1.8%) for eaeA and stx1, one (0.9%) for hlyA and stx1, one (0.9%) for eaeA, hlyA and stx2. Red foxes seem to be involved in the epidemiology of these infections and their role could be relevant because they may be source of pathogenic E. coli for other wild animals, as well as domestic animals and humans.
Collapse
|
14
|
Tan Y, Wang C, Schneider T, Li H, de Souza RF, Tang X, Swisher Grimm KD, Hsieh TF, Wang X, Li X, Zhang D. Comparative Phylogenomic Analysis Reveals Evolutionary Genomic Changes and Novel Toxin Families in Endophytic Liberibacter Pathogens. Microbiol Spectr 2021; 9:e0050921. [PMID: 34523996 PMCID: PMC8557891 DOI: 10.1128/spectrum.00509-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023] Open
Abstract
Liberibacter pathogens are the causative agents of several severe crop diseases worldwide, including citrus Huanglongbing and potato zebra chip. These bacteria are endophytic and nonculturable, which makes experimental approaches challenging and highlights the need for bioinformatic analysis in advancing our understanding about Liberibacter pathogenesis. Here, we performed an in-depth comparative phylogenomic analysis of the Liberibacter pathogens and their free-living, nonpathogenic, ancestral species, aiming to identify major genomic changes and determinants associated with their evolutionary transitions in living habitats and pathogenicity. Using gene neighborhood analysis and phylogenetic classification, we systematically uncovered, annotated, and classified all prophage loci into four types, including one previously unrecognized group. We showed that these prophages originated through independent gene transfers at different evolutionary stages of Liberibacter and only the SC-type prophage was associated with the emergence of the pathogens. Using ortholog clustering, we vigorously identified two additional sets of genomic genes, which were either lost or gained in the ancestor of the pathogens. Consistent with the habitat change, the lost genes were enriched for biosynthesis of cellular building blocks. Importantly, among the gained genes, we uncovered several previously unrecognized toxins, including new toxins homologous to the EspG/VirA effectors, a YdjM phospholipase toxin, and a secreted endonuclease/exonuclease/phosphatase (EEP) protein. Our results substantially extend the knowledge of the evolutionary events and potential determinants leading to the emergence of endophytic, pathogenic Liberibacter species, which will facilitate the design of functional experiments and the development of new methods for detection and blockage of these pathogens. IMPORTANCELiberibacter pathogens are associated with several severe crop diseases, including citrus Huanglongbing, the most destructive disease to the citrus industry. Currently, no effective cure or treatments are available, and no resistant citrus variety has been found. The fact that these obligate endophytic pathogens are not culturable has made it extremely challenging to experimentally uncover the genes/proteins important to Liberibacter pathogenesis. Further, earlier bioinformatics studies failed to identify key genomic determinants, such as toxins and effector proteins, that underlie the pathogenicity of the bacteria. In this study, an in-depth comparative genomic analysis of Liberibacter pathogens along with their ancestral nonpathogenic species identified the prophage loci and several novel toxins that are evolutionarily associated with the emergence of the pathogens. These results shed new light on the disease mechanism of Liberibacter pathogens and will facilitate the development of new detection and blockage methods targeting the toxins.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Cindy Wang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Theresa Schneider
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Huan Li
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kylie D. Swisher Grimm
- United States Department of Agriculture—Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Prosser, Washington, USA
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, Alabama, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Xu Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
- Bioinformatics and Computational Biology Program, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Loh B, Chen J, Manohar P, Yu Y, Hua X, Leptihn S. A Biological Inventory of Prophages in A. baumannii Genomes Reveal Distinct Distributions in Classes, Length, and Genomic Positions. Front Microbiol 2020; 11:579802. [PMID: 33343523 PMCID: PMC7744312 DOI: 10.3389/fmicb.2020.579802] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii is of major clinical importance as the bacterial pathogen often causes hospital acquired infections, further complicated by the high prevalence of antibiotic resistant strains. Aside from natural tolerance to certain antibiotic classes, resistance is often acquired by the exchange of genetic information via conjugation but also by the high natural competence exhibited by A. baumannii. In addition, bacteriophages are able to introduce resistance genes but also toxins and virulence factors via phage mediated transduction. In this work, we analyzed the complete genomes of 177 A. baumannii strains for the occurrence of prophages, and analyzed their taxonomy, size and positions of insertion. Among all the prophages that were detected, Siphoviridae and Myoviridae were the two most commonly found families, while the average genome size was determined to be approximately 4 Mbp. Our data shows the wide variation in the number of prophages in A. baumannii genomes and the prevalence of certain prophages within strains that are most "successful" or potentially beneficial to the host. Our study also revealed that only two specific sites of insertion within the genome of the host bacterium are being used, with few exceptions only. Lastly, we analyzed the existence of genes that are encoded in the prophages, which may confer antimicrobial resistance (AMR). Several phages carry AMR genes, including OXA-23 and NDM-1, illustrating the importance of lysogenic phages in the acquisition of resistance genes.
Collapse
Affiliation(s)
- Belinda Loh
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, China
| | - Jiayuan Chen
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, China
| | - Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
S. aureus Colonization, Biofilm Production, and Phage Susceptibility in Peritoneal Dialysis Patients. Antibiotics (Basel) 2020; 9:antibiotics9090582. [PMID: 32906685 PMCID: PMC7558627 DOI: 10.3390/antibiotics9090582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
Peritonitis caused by Staphylococcusaureus is of major importance in peritoneal dialysis (PD) patients due to its great virulence profile and biofilm formation ability. Bacteriophages are a potential tool to treat peritonitis resulting from biofilm-associated infections. We screened S. aureus colonization in 71 PD patients from the nasal cavity, groin, and PD exit-site regions and analyzed clinical outcomes in these patients. We performed biofilm-formation testing of different strains and compared the isolates of one patient to detect phenotypic differences in S. aureus. Phage cocktails were used to detect S. aureus in vitro susceptibility. An adaptation procedure was performed in cases of bacterial resistance. Around 30% of PD patients (n = 21) were found to be S. aureus carriers; from these, a total of 34 S. aureus strains were isolated, of which 61.8% (n = 21) produced a strong biofilm. Phenotypic differences in strain biofilm production were detected in eight patients out of ten. All strains were sensitive to commonly used antibiotics. Broadly positive phage lytic activity (100%) was observed in six cocktails out of seven, and bacterial resistance towards phages was overcome using adaptation. Overall phages showed a promising in vitro effect in biofilm-forming S. aureus strains.
Collapse
|
17
|
Franz E, Rotariu O, Lopes BS, MacRae M, Bono JL, Laing C, Gannon V, Söderlund R, van Hoek AHAM, Friesema I, French NP, George T, Biggs PJ, Jaros P, Rivas M, Chinen I, Campos J, Jernberg C, Gobius K, Mellor GE, Chandry PS, Perez-Reche F, Forbes KJ, Strachan NJC. Phylogeographic Analysis Reveals Multiple International transmission Events Have Driven the Global Emergence of Escherichia coli O157:H7. Clin Infect Dis 2020; 69:428-437. [PMID: 30371758 DOI: 10.1093/cid/ciy919] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/28/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Shiga toxin-producing Escherchia coli (STEC) O157:H7 is a zoonotic pathogen that causes numerous food and waterborne disease outbreaks. It is globally distributed, but its origin and the temporal sequence of its geographical spread are unknown. METHODS We analyzed whole-genome sequencing data of 757 isolates from 4 continents, and performed a pan-genome analysis to identify the core genome and, from this, extracted single-nucleotide polymorphisms. A timed phylogeographic analysis was performed on a subset of the isolates to investigate its worldwide spread. RESULTS The common ancestor of this set of isolates occurred around 1890 (1845-1925) and originated from the Netherlands. Phylogeographic analysis identified 34 major transmission events. The earliest were predominantly intercontinental, moving from Europe to Australia around 1937 (1909-1958), to the United States in 1941 (1921-1962), to Canada in 1960 (1943-1979), and from Australia to New Zealand in 1966 (1943-1982). This pre-dates the first reported human case of E. coli O157:H7, which was in 1975 from the United States. CONCLUSIONS Inter- and intra-continental transmission events have resulted in the current international distribution of E. coli O157:H7, and it is likely that these events were facilitated by animal movements (eg, Holstein Friesian cattle). These findings will inform policy on action that is crucial to reduce the further spread of E. coli O157:H7 and other (emerging) STEC strains globally.
Collapse
Affiliation(s)
- Eelco Franz
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Ovidiu Rotariu
- School of Biological Sciences, The University of Aberdeen, United Kingdom
| | - Bruno S Lopes
- School of Medicine, Medical Sciences & Nutrition, The University of Aberdeen, United Kingdom
| | - Marion MacRae
- School of Medicine, Medical Sciences & Nutrition, The University of Aberdeen, United Kingdom
| | - James L Bono
- United States Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, Nebraska
| | - Chad Laing
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta
| | - Victor Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta
| | | | - Angela H A M van Hoek
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Ingrid Friesema
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Nigel P French
- Molecular EpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Tessy George
- Molecular EpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- Molecular EpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patricia Jaros
- Molecular EpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Marta Rivas
- Instituto Nacional de Enfermedades Infecciosas, Administracion Nacional del Laboratorios et Institutos de Salud "Dr Carlos G. Malbrán," Buenos Aires, Argentina
| | - Isabel Chinen
- Instituto Nacional de Enfermedades Infecciosas, Administracion Nacional del Laboratorios et Institutos de Salud "Dr Carlos G. Malbrán," Buenos Aires, Argentina
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas, Administracion Nacional del Laboratorios et Institutos de Salud "Dr Carlos G. Malbrán," Buenos Aires, Argentina
| | - Cecilia Jernberg
- Department of Microbiology, The Public Health Agency of Sweden, Stockholm
| | - Kari Gobius
- The Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Werribee, Victoria, Australia
| | - Glen E Mellor
- The Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Werribee, Victoria, Australia
| | - P Scott Chandry
- The Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Werribee, Victoria, Australia
| | - Francisco Perez-Reche
- Institute of Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, United Kingdom
| | - Ken J Forbes
- School of Medicine, Medical Sciences & Nutrition, The University of Aberdeen, United Kingdom
| | | |
Collapse
|
18
|
Jinnerot T, Tomaselli ATP, Johannessen GS, Söderlund R, Urdahl AM, Aspán A, Sekse C. The prevalence and genomic context of Shiga toxin 2a genes in E. coli found in cattle. PLoS One 2020; 15:e0232305. [PMID: 32785271 PMCID: PMC7423110 DOI: 10.1371/journal.pone.0232305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) that cause severe disease predominantly carry the toxin gene variant stx2a. However, the role of Shiga toxin in the ruminant reservoirs of this zoonotic pathogen is poorly understood and strains that cause severe disease in humans (HUSEC) likely constitute a small and atypical subset of the overall STEC flora. The aim of this study was to investigate the presence of stx2a in samples from cattle and to isolate and characterize stx2a-positive E. coli. In nationwide surveys in Sweden and Norway samples were collected from individual cattle or from cattle herds, respectively. Samples were tested for Shiga toxin genes by real-time PCR and amplicon sequencing and stx2a-positive isolates were whole genome sequenced. Among faecal samples from Sweden, stx1 was detected in 37%, stx2 in 53% and stx2a in 5% and in skin (ear) samples in 64%, 79% and 2% respectively. In Norway, 79% of the herds were positive for stx1, 93% for stx2 and 17% for stx2a. Based on amplicon sequencing the most common stx2 types in samples from Swedish cattle were stx2a and stx2d. Multilocus sequence typing (MLST) of 39 stx2a-positive isolates collected from both countries revealed substantial diversity with 19 different sequence types. Only a few classical LEE-positive strains similar to HUSEC were found among the stx2a-positive isolates, notably a single O121:H19 and an O26:H11. Lineages known to include LEE-negative HUSEC were also recovered including, such as O113:H21 (sequence type ST-223), O130:H11 (ST-297), and O101:H33 (ST-330). We conclude that E. coli encoding stx2a in cattle are ranging from strains similar to HUSEC to unknown STEC variants. Comparison of isolates from human HUS cases to related STEC from the ruminant reservoirs can help identify combinations of virulence attributes necessary to cause HUS, as well as provide a better understanding of the routes of infection for rare and emerging pathogenic STEC.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Aspán
- National Veterinary Institute, Uppsala, Sweden
| | | |
Collapse
|
19
|
Collis RM, Biggs PJ, Midwinter AC, Browne AS, Wilkinson DA, Irshad H, French NP, Brightwell G, Cookson AL. Genomic epidemiology and carbon metabolism of Escherichia coli serogroup O145 reflect contrasting phylogenies. PLoS One 2020; 15:e0235066. [PMID: 32584859 PMCID: PMC7316241 DOI: 10.1371/journal.pone.0235066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne outbreaks of human disease, but they reside harmlessly as an asymptomatic commensal in the ruminant gut. STEC serogroup O145 are difficult to isolate as routine diagnostic methods are unable to distinguish non-O157 serogroups due to their heterogeneous metabolic characteristics, resulting in under-reporting which is likely to conceal their true prevalence. In light of these deficiencies, the purpose of this study was a twofold approach to investigate enhanced STEC O145 diagnostic culture-based methods: firstly, to use a genomic epidemiology approach to understand the genetic diversity and population structure of serogroup O145 at both a local (New Zealand) (n = 47) and global scale (n = 75) and, secondly, to identify metabolic characteristics that will help the development of a differential media for this serogroup. Analysis of a subset of E. coli serogroup O145 strains demonstrated considerable diversity in carbon utilisation, which varied in association with eae subtype and sequence type. Several carbon substrates, such as D-serine and D-malic acid, were utilised by the majority of serogroup O145 strains, which, when coupled with current molecular and culture-based methods, could aid in the identification of presumptive E. coli serogroup O145 isolates. These carbon substrates warrant subsequent testing with additional serogroup O145 strains and non-O145 strains. Serogroup O145 strains displayed extensive genetic heterogeneity that was correlated with sequence type and eae subtype, suggesting these genetic markers are good indicators for distinct E. coli phylogenetic lineages. Pangenome analysis identified a core of 3,036 genes and an open pangenome of >14,000 genes, which is consistent with the identification of distinct phylogenetic lineages. Overall, this study highlighted the phenotypic and genotypic heterogeneity within E. coli serogroup O145, suggesting that the development of a differential media targeting this serogroup will be challenging.
Collapse
Affiliation(s)
- Rose M. Collis
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A. Springer Browne
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David A. Wilkinson
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Hamid Irshad
- Animal Health Programme, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nigel P. French
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
20
|
Wang LYR, Jokinen CC, Laing CR, Johnson RP, Ziebell K, Gannon VPJ. Assessing the genomic relatedness and evolutionary rates of persistent verotoxigenic Escherichia coli serotypes within a closed beef herd in Canada. Microb Genom 2020; 6. [PMID: 32496181 PMCID: PMC7371104 DOI: 10.1099/mgen.0.000376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Verotoxigenic Escherichia coli (VTEC) are food- and water-borne pathogens associated with both sporadic illness and outbreaks of enteric disease. While it is known that cattle are reservoirs of VTEC, little is known about the genomic variation of VTEC in cattle, and whether the variation in genomes reported for human outbreak strains is consistent with individual animal or group/herd sources of infection. A previous study of VTEC prevalence identified serotypes carried persistently by three consecutive cohorts of heifers within a closed herd of cattle. This present study aimed to: (i) determine whether the genomic relatedness of bovine isolates is similar to that reported for human strains associated with single source outbreaks, (ii) estimate the rates of genome change among dominant serotypes over time within a cattle herd, and (iii) identify genomic features of serotypes associated with persistence in cattle. Illumina MiSeq genome sequencing and genotyping based on allelic and single nucleotide variations were completed, while genome change over time was measured using Bayesian evolutionary analysis sampling trees. The accessory genome, including the non-protein-encoding intergenic regions (IGRs), virulence factors, antimicrobial-resistance genes and plasmid gene content of representative persistent and sporadic cattle strains were compared using Fisher’s exact test corrected for multiple comparisons. Herd strains from serotypes O6:H34 (n=22), O22:H8 (n=30), O108:H8 (n=39), O139:H19 (n=44) and O157:H7 (n=106) were readily distinguishable from epidemiologically unrelated strains of the same serotype using a similarity threshold of 10 or fewer allele differences between adjacent nodes. Temporal-cohort clustering within each serotype was supported by date randomization analysis. Substitutions per site per year were consistent with previously reported values for E. coli; however, there was low branch support for these values. Acquisition of the phage-encoded Shiga toxin 2 gene in serotype O22:H8 was observed. Pan-genome analyses identified accessory regions that were more prevalent in persistent serotypes (P≤0.05) than in sporadic serotypes. These results suggest that VTEC serotypes from a specific cattle population are highly clonal with a similar level of relatedness as human single-source outbreak-associated strains, but changes in the genome occur gradually over time. Additionally, elements in the accessory genomes may provide a selective advantage for persistence of VTEC within cattle herds.
Collapse
Affiliation(s)
- Lu Ya Ruth Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | | | - Chad R Laing
- National Centre for Animal Disease, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Roger P Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
21
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Monteiro Pires S, Morabito S, Niskanen T, Scheutz F, da Silva Felício MT, Messens W, Bolton D. Pathogenicity assessment of Shiga toxin‐producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J 2020. [DOI: 10.2903/j.efsa.2020.5967] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
22
|
Shiga Toxin-Producing and Enteroaggregative Escherichia coli in Animal, Foods, and Humans: Pathogenicity Mechanisms, Detection Methods, and Epidemiology. Curr Microbiol 2019; 77:612-620. [DOI: 10.1007/s00284-019-01842-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
|
23
|
An Stx-EAEC O59:NM[H19] strain isolated from a hemolytic uremic syndrome case in Argentina. Rev Argent Microbiol 2019; 52:31-35. [PMID: 31262610 DOI: 10.1016/j.ram.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 11/23/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a heterogeneous group of foodborne pathogens causing a broad spectrum of human disease, from uncomplicated diarrhea to hemolytic uremic syndrome (HUS). In this study, we report an HUS case associated with an O59:NM[H19] strain, harboring stx2a, iha, lpfAO26, lpfAO113 genes associated with STEC, and aatA, aap, pic, sigA, agg4A genes associated with enteroaggregative E. coli (EAEC), named Stx-EAEC. The strain showed low toxicity on Vero cells, and was resistant to streptomycin and trimethoprim/sulfonamides. The child carried the bacteria for more than 100 days. Since the large outbreak associated with Stx-EAEC O104:H4, many strains with similar profiles have been described. In Germany, an O59:NM[H19] strain, with comparable characteristics to the Argentine strain, was isolated from a bloody diarrhea case. In Argentina, this is the first report of an HUS case associated with a Stx-EAEC infection, and represents a new challenge for the surveillance system.
Collapse
|
24
|
Bai X, Zhang J, Ambikan A, Jernberg C, Ehricht R, Scheutz F, Xiong Y, Matussek A. Molecular Characterization and Comparative Genomics of Clinical Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains in Sweden. Sci Rep 2019; 9:5619. [PMID: 30948755 PMCID: PMC6449507 DOI: 10.1038/s41598-019-42122-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Hybrid E. coli pathotypes are representing emerging public health threats with enhanced virulence from different pathotypes. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) have been reported to be associated with diarrheal disease and hemolytic uremic syndrome (HUS) in humans. Here, we identified and characterized four clinical STEC/ETEC hybrids from diarrheal patients with or without fever or abdominal pain and healthy contact in Sweden. Rare stx2 subtypes were present in STEC/ETEC hybrids. Stx2 production was detectable in stx2a and stx2e containing strains. Different copies of ETEC virulence marker, sta gene, were found in two hybrids. Three sta subtypes, namely, sta1, sta4 and sta5 were designated, with sta4 being predominant. The hybrids represented diverse and rare serotypes (O15:H16, O187:H28, O100:H30, and O136:H12). Genome-wide phylogeny revealed that these hybrids exhibited close relatedness with certain ETEC, STEC/ETEC hybrid and commensal E. coli strains, implying the potential acquisition of Stx-phages or/and ETEC virulence genes in the emergence of STEC/ETEC hybrids. Given the emergence and public health significance of hybrid pathotypes, a broader range of virulence markers should be considered in the E. coli pathotypes diagnostics, and targeted follow up of cases is suggested to better understand the hybrid infection.
Collapse
Affiliation(s)
- Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Zhang
- mEpiLab, New Zealand Food Safety Science & Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Massey, New Zealand
| | - Anoop Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Ralf Ehricht
- InfectoGnostics Research Campus e.V., Philosophenweg 7, Jena, Germany.,Leibniz Institute of Photonic Technology e.V. Jena (Leibniz-IPHT), Jena, Germany
| | - Flemming Scheutz
- The International Centre for Reference and Research on Escherichia and Klebsiella, Unit of Foodborne Bacteria and Typing, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden. .,Karolinska University Laboratory, Stockholm, Sweden. .,Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden.
| |
Collapse
|
25
|
de Sousa AL, Maués D, Lobato A, Franco EF, Pinheiro K, Araújo F, Pantoja Y, da Costa da Silva AL, Morais J, Ramos RTJ. PhageWeb - Web Interface for Rapid Identification and Characterization of Prophages in Bacterial Genomes. Front Genet 2018; 9:644. [PMID: 30619469 PMCID: PMC6305541 DOI: 10.3389/fgene.2018.00644] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/27/2018] [Indexed: 12/04/2022] Open
Abstract
This study developed a computational tool with a graphical interface and a web-service that allows the identification of phage regions through homology search and gene clustering. It uses G+C content variation evaluation and tRNA prediction sites as evidence to reinforce the presence of prophages in indeterminate regions. Also, it performs the functional characterization of the prophages regions through data integration of biological databases. The performance of PhageWeb was compared to other available tools (PHASTER, Prophinder, and PhiSpy) using Sensitivity (Sn) and Positive Predictive Value (PPV) tests. As a reference for the tests, more than 80 manually annotated genomes were used. In the PhageWeb analysis, the Sn index was 86.1% and the PPV was approximately 87%, while the second best tool presented Sn and PPV values of 83.3 and 86.5%, respectively. These numbers allowed us to observe a greater precision in the regions identified by PhageWeb while compared to other prediction tools submitted to the same tests. Additionally, PhageWeb was much faster than the other computational alternatives, decreasing the processing time to approximately one-ninth of the time required by the second best software. PhageWeb is freely available at http://computationalbiology.ufpa.br/phageweb.
Collapse
Affiliation(s)
| | - Dener Maués
- Institute of Exact and Natural Sciences, Federal University of Para, Belém, Brazil
| | - Amália Lobato
- Institute of Biological Sciences, Federal University of Para, Belém, Brazil
| | - Edian F. Franco
- Institute of Biological Sciences, Federal University of Para, Belém, Brazil
| | - Kenny Pinheiro
- Institute of Biological Sciences, Federal University of Para, Belém, Brazil
| | - Fabrício Araújo
- Institute of Biological Sciences, Federal University of Para, Belém, Brazil
| | - Yan Pantoja
- Institute of Biological Sciences, Federal University of Para, Belém, Brazil
| | | | - Jefferson Morais
- Institute of Exact and Natural Sciences, Federal University of Para, Belém, Brazil
| | - Rommel T. J. Ramos
- Institute of Biological Sciences, Federal University of Para, Belém, Brazil
| |
Collapse
|
26
|
Competition among Escherichia coli Strains for Space and Resources. Vet Sci 2018; 5:vetsci5040093. [PMID: 30400157 PMCID: PMC6313926 DOI: 10.3390/vetsci5040093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a subgroup of E. coli causing human diseases. Methods to control STEC in livestock and humans are limited. These and other emerging pathogens are a global concern and novel mitigation strategies are required. Habitats populated by bacteria are subjected to competition pressures due to limited space and resources but they use various strategies to compete in natural environments. Our objective was to evaluate non-pathogenic E. coli strains isolated from cattle feces for their ability to out-compete STEC. Competitive fitness of non-pathogenic E. coli against STEC were assessed in competitions using liquid, agar, and nutrient limiting assays. Winners were determined by enumeration using O-serogroup specific quantitative PCR or a semi-quantitative grading. Initial liquid competitions identified two strong non-pathogenic competitors (O103F and O26E) capable of eliminating various STEC including O157 and O111. The strain O103F was dominant across permeable physical barriers for all tested E. coli and STEC strains indicating the diffusion of antimicrobial molecules. In direct contact and even with temporal disadvantages, O103F out-competed STEC O157E. The results suggest that O103F or the diffusible molecule(s) it produces have a potential to be used as an alternative STEC mitigation strategy, either in medicine or the food industry.
Collapse
|
27
|
Characterization of a novel plasmid encoding F4-like fimbriae present in a Shiga-toxin producing enterotoxigenic Escherichia coli isolated during the investigation on a case of hemolytic-uremic syndrome. Int J Med Microbiol 2018; 308:947-955. [PMID: 30030028 DOI: 10.1016/j.ijmm.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
In February 2017 a case of Hemolytic-Uremic Syndrome (HUS) was reported to the National Registry of HUS in an adult living in Northern Italy. Stool specimens from the patient and his family contacts were collected and the analyses led to the isolation of a Locus of Enterocyte Effacement (LEE)-negative Shiga toxin 2 (Stx2)-producing Escherichia coli. The epidemiological investigations performed brought to collect fecal samples from the animals reared in a farm held by the case's family and a mixture of bovine and swine feces proved positive for Shiga toxin-producing E. coli (STEC) and yielded the isolation of a LEE-negative stx2-positive E. coli strain. Further characterization by whole genome sequencing led to identify the isolates as two identical O2:H27 hybrid Enterotoxigenic Shiga toxin-producing E. coli (ETEC-STEC). Sequencing of a high molecular weight plasmid present in the human isolate disclosed a peculiar plasmid harboring virulence genes characteristic for both pathotypes, including the enterohemolysin-coding gene and sta1, encoding the heat stable enterotoxin. Moreover, a complete fae locus encoding the ETEC F4 fimbriae could be identified, including a novel variant of faeG gene responsible for the production of the main structural subunit of the fimbriae. This novel faeG showed great diversity in the nucleotidic sequence when compared with the reference genes encoding the swine F4 allelic variants, whereas at the amino acid sequence level the predicted protein sequence showed some similarity with FaeG from E. coli strains of bovine origin. Further investigation on the plasmid region harboring the newly identified faeG allelic variant allowed to identify similar plasmids in NCBI sequence database, as part of the genome of other previously uncharacterized ETEC-STEC strains of bovine origin, suggesting that the novel F4-like fimbriae may play a role in bovine host specificity.
Collapse
|
28
|
Bai X, Fu S, Zhang J, Fan R, Xu Y, Sun H, He X, Xu J, Xiong Y. Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci Rep 2018; 8:6756. [PMID: 29712985 PMCID: PMC5928088 DOI: 10.1038/s41598-018-25233-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/17/2018] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin (Stx) is the key virulent factor in Shiga toxin-producing Escherichia coli (STEC). To date, three Stx1 subtypes and seven Stx2 subtypes have been described in E. coli, which differed in receptor preference and toxin potency. Here, we identified a novel Stx2 subtype designated Stx2h in E. coli strains isolated from wild marmots in the Qinghai-Tibetan plateau, China. Stx2h shares 91.9% nucleic acid sequence identity and 92.9% amino acid identity to the nearest Stx2 subtype. The expression of Stx2h in type strain STEC299 was inducible by mitomycin C, and culture supernatant from STEC299 was cytotoxic to Vero cells. The Stx2h converting prophage was unique in terms of insertion site and genetic composition. Whole genome-based phylo- and patho-genomic analysis revealed STEC299 was closer to other pathotypes of E. coli than STEC, and possesses virulence factors from other pathotypes. Our finding enlarges the pool of Stx2 subtypes and highlights the extraordinary genomic plasticity of E. coli strains. As the emergence of new Shiga toxin genotypes and new Stx-producing pathotypes pose a great threat to the public health, Stx2h should be further included in E. coli molecular typing, and in epidemiological surveillance of E. coli infections.
Collapse
Affiliation(s)
- Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Shanshan Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Ji Zhang
- mEpiLab, New Zealand Food Safety Science & Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Massey, New Zealand
| | - Ruyue Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yanmei Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiaohua He
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
29
|
Kampmeier S, Berger M, Mellmann A, Karch H, Berger P. The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 Outbreak-The Danger Is Still Out There. Curr Top Microbiol Immunol 2018; 416:117-148. [PMID: 30062592 DOI: 10.1007/82_2018_107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are Shiga toxin (Stx) producing bacteria causing a disease characterized by bloody (or non-bloody) diarrhea, which might progress to hemolytic uremic syndrome (HUS). EHEC O104:H4 caused the largest ever recorded EHEC outbreak in Germany in 2011, which in addition showed the so far highest incidence rate of EHEC-related HUS worldwide. The aggressive outbreak strain carries an unusual combination of virulence traits characteristic to both EHEC-a chromosomally integrated Stx-encoding bacteriophage, and enteroaggregative Escherichia coli-pAA plasmid-encoded aggregative adherence fimbriae mediating its tight adhesion to epithelia cells. There are currently still open questions regarding the 2011 EHEC outbreak, e.g., with respect to the exact molecular mechanisms resulting in the hypervirulence of the strain, the natural reservoir of EHEC O104:H4, and suitable therapeutic strategies. Nevertheless, our knowledge on these issues has substantially expanded since 2011. Here, we present an overview of the epidemiological, clinical, microbiological, and molecular biological data available on the 2011 German EHEC O104:H4 outbreak.
Collapse
Affiliation(s)
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Helge Karch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany.
| |
Collapse
|
30
|
Nyambe S, Burgess C, Whyte P, Bolton D. An investigation of vtx 2 bacteriophage transduction to different Escherichia coli patho-groups in food matrices and nutrient broth. Food Microbiol 2017; 68:1-6. [PMID: 28800816 DOI: 10.1016/j.fm.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 12/14/2022]
Abstract
This study investigated bacteriophage (phage) mediated transfer of the vtx2 gene from a donor Escherichia coli (C600φ3538(Δvtx2::cat)) to enteropathogenic (EPEC), enterotoxigenic (ETEC), enteroaggregative (EAEC), enteroinvasive (EIEC) and diffusely adherent (DAEC) E. coli strains in LB broth, milk, ground beef and lettuce. Two bacterial concentrations for both the E. coli donor and recipient strains, 3 and 5 log10 CFU/ml (LB broth and milk)/g (beef) or/cm2 (lettuce), were used. When transductants were obtained, the location of insertion of the phage (insertion sites wrbA, yehA, sbcB, yecE and/or Z2577) in the E. coli chromosome was investigated by PCR. The vtx2 gene was readily transferred to EAEC O104:H4 (E99518) in all matrices and inserted into the chromosome at the sbcB locus. At higher cell concentrations, transductants were also obtained with ETEC E4683, ETEC E8057 (insertion site unknown) and DAEC O75:H- E66438 (insertion site unknown) in LB broth and milk. It was concluded that the vtx2 gene may be transferred by bacteriophage to different E. coli pathotypes in laboratory and food matrices, resulting in the spread of the vtx2 gene and the emergence of novel foodborne pathogens.
Collapse
Affiliation(s)
- Sepo Nyambe
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
31
|
Brusa V, Restovich V, Galli L, Teitelbaum D, Signorini M, Brasesco H, Londero A, García D, Padola NL, Superno V, Sanz M, Petroli S, Costa M, Bruzzone M, Sucari A, Ferreghini M, Linares L, Suberbie G, Rodríguez R, Leotta GA. Isolation and characterization of non-O157 Shiga toxin-producing Escherichia coli from beef carcasses, cuts and trimmings of abattoirs in Argentina. PLoS One 2017; 12:e0183248. [PMID: 28829794 PMCID: PMC5568767 DOI: 10.1371/journal.pone.0183248] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Several foods contaminated with Shiga toxin-producing Escherichia coli (STEC) are associated with human diseases. Some countries have established microbiological criteria for non-O157 STEC, thus, the absence of serogroups O26, O45, O103, O104, O111, O121, and O145 in sprouts from the European Union or ground beef and beef trimmings from the United States is mandatory. While in Argentina screening for O26, O103, O111, O145 and O121 in ground beef, ready-to-eat food, sausages and vegetables is mandatory, other countries have zero-tolerance for all STEC in chilled beef. The aim of this study was to provide data on the prevalence of non-O157 STEC isolated from beef processed in eight Argentinean cattle slaughterhouses producing beef for export and local markets, and to know the non-O157 STEC profiles through strain characterization and genotypic analysis. Samples (n = 15,965) from 3,205 beef carcasses, 9,570 cuts and 3,190 trimmings collected between March and September 2014 were processed in pools of five samples each. Pools of samples (n = 3,193) from 641 carcasses, 1,914 cuts and 638 trimming were analyzed for non-O157 STEC isolation according to ISO/CEN 13136:2012. Of these, 37 pools of carcasses (5.8%), 111 pools of cuts (5.8%) and 45 pools of trimmings (7.0%) were positive for non-O157 STEC. STEC strains (n = 200) were isolated from 193 pools of samples. The most prevalent serotypes were O174:H21, O185:H7, O8:H19, O178:H19 and O130:H11, and the most prevalent genotypes were stx2c(vh-b) and stx2a/saa/ehxA. O103:H21 strain was eae-positive and one O178:H19 strain was aggR/aaiC-positive. The prevalence of non-O157 STEC in beef carcasses reported here was low. None of the non-O157 STEC strains isolated corresponded to the non-O157 STEC serotypes and virulence profiles isolated from human cases in Argentina in the same study period. The application of microbiological criteria for each foodstuff should be determined by risk analysis in order to have a stringent monitoring system. Likewise, zero-tolerance intervention measures should be applied in beef, together with GMP and HACCP. Further, collaborative efforts for risk assessment, management and communication are extremely important to improve the safety of foodstuffs.
Collapse
Affiliation(s)
- Victoria Brusa
- IGEVET—Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
- Laboratorio de Microbiología de Alimentos, Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Viviana Restovich
- IPCVA–Instituto de Promoción de la Carne Vacuna Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Galli
- IGEVET—Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - David Teitelbaum
- IPCVA–Instituto de Promoción de la Carne Vacuna Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Signorini
- CONICET—EEA Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), Santa Fe, Argentina
| | - Hebe Brasesco
- IPCVA–Instituto de Promoción de la Carne Vacuna Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Londero
- IGEVET—Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Diego García
- IPCVA–Instituto de Promoción de la Carne Vacuna Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nora Lía Padola
- CIVETAN–Centro de Investigación Veterinaria Tandil (CONICET, CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Valeria Superno
- IPCVA–Instituto de Promoción de la Carne Vacuna Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Sanz
- CIVETAN–Centro de Investigación Veterinaria Tandil (CONICET, CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Sandra Petroli
- IPCVA–Instituto de Promoción de la Carne Vacuna Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Magdalena Costa
- IGEVET—Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Mariana Bruzzone
- IPCVA–Instituto de Promoción de la Carne Vacuna Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Sucari
- Centro Estudios Infectológicos “Dr. Daniel Stamboulian”, División Alimentos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcela Ferreghini
- IPCVA–Instituto de Promoción de la Carne Vacuna Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciano Linares
- Laboratorio de Microbiología de Alimentos, Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Germán Suberbie
- SENASA–Servicio Nacional de Sanidad y Calidad Agroalimentaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ricardo Rodríguez
- Instituto de Economía (CICPES, INTA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gerardo A. Leotta
- IGEVET—Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| |
Collapse
|
32
|
Ivanova EI, Rychkova LV, Nemchenko UM, Bukharova EV, Savelkaeva MV, Dzhioev YP. The structure of the intestinal microbiota of the intestine and the frequency of detection of pathogenicity genes (stx1, stx2, bfp) in Escherichia coli with normal enzymatic activity isolated from children during the first year of life. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2017. [DOI: 10.3103/s0891416817010062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Grande L, Michelacci V, Bondì R, Gigliucci F, Franz E, Badouei MA, Schlager S, Minelli F, Tozzoli R, Caprioli A, Morabito S. Whole-Genome Characterization and Strain Comparison of VT2f-Producing Escherichia coli Causing Hemolytic Uremic Syndrome. Emerg Infect Dis 2016; 22:2078-2086. [PMID: 27584691 PMCID: PMC5189129 DOI: 10.3201/eid2212.160017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Strains from diarrheal illnesses could be transmitted from pigeons, but HUS-associated strains may derive from phage acquisition by isolates with larger virulence assets. Verotoxigenic Escherichia coli infections in humans cause disease ranging from uncomplicated intestinal illnesses to bloody diarrhea and systemic sequelae, such as hemolytic uremic syndrome (HUS). Previous research indicated that pigeons may be a reservoir for a population of verotoxigenic E. coli producing the VT2f variant. We used whole-genome sequencing to characterize a set of VT2f-producing E. coli strains from human patients with diarrhea or HUS and from healthy pigeons. We describe a phage conveying the vtx2f genes and provide evidence that the strains causing milder diarrheal disease may be transmitted to humans from pigeons. The strains causing HUS could derive from VT2f phage acquisition by E. coli strains with a virulence genes asset resembling that of typical HUS-associated verotoxigenic E. coli.
Collapse
|
34
|
Tozzoli R, Di Bartolo I, Gigliucci F, Brambilla G, Monini M, Vignolo E, Caprioli A, Morabito S. Pathogenic Escherichia coli and enteric viruses in biosolids and related top soil improvers in Italy. J Appl Microbiol 2016; 122:239-247. [PMID: 27684893 DOI: 10.1111/jam.13308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 11/29/2022]
Abstract
AIMS To investigate the presence of genomic traits associated with a set of enteric viruses as well as pathogenic Escherichia coli in top soil improvers (TSI) from Italy. METHODS AND RESULTS Twenty-four TSI samples originating from municipal sewage sludges, pig manure, green and household wastes were analysed by real time PCR for the presence of hepatitis E virus (HEV), porcine and human adenovirus (HuAdV), norovirus, rotavirus and diarrhoeagenic E. coli. None of the samples was found positive for HEV or rotavirus. Four samples were positive for the presence of nucleic acids from human norovirus, two of them being also positive for HuAdV. Real time PCR screening gave positive results for many of the virulence genes characteristic of diarrhoeagenic E. coli in 21 samples. These included the verocytotoxin-coding genes, in some cases associated with intimin-coding gene, and markers of enteroaggregative, enterotoxigenic and enteroinvasive E. coli. CONCLUSIONS These results provide evidence that enteric viruses and pathogenic E. coli may be released into the environment through the use of sludge-derived TSI. SIGNIFICANCE AND IMPACT OF THE STUDY The results highlight that the TSI-related environmental risk for the food chain should be more deeply assessed.
Collapse
Affiliation(s)
- R Tozzoli
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| | - I Di Bartolo
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| | - F Gigliucci
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| | - G Brambilla
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| | - M Monini
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| | - E Vignolo
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| | - A Caprioli
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| | - S Morabito
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
35
|
Karmali MA. Emerging Public Health Challenges of Shiga Toxin–ProducingEscherichia coliRelated to Changes in the Pathogen, the Population, and the Environment. Clin Infect Dis 2016; 64:371-376. [DOI: 10.1093/cid/ciw708] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/19/2016] [Indexed: 11/12/2022] Open
|
36
|
Hamm K, Barth SA, Stalb S, Geue L, Liebler-Tenorio E, Teifke JP, Lange E, Tauscher K, Kotterba G, Bielaszewska M, Karch H, Menge C. Experimental Infection of Calves with Escherichia coli O104:H4 outbreak strain. Sci Rep 2016; 6:32812. [PMID: 27600997 PMCID: PMC5013450 DOI: 10.1038/srep32812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022] Open
Abstract
In 2011, a severe outbreak of hemolytic-uremic syndrome was caused by an unusual, highly virulent enterohemorrhagic E. coli (EHEC) O104:H4 strain, which possessed EHEC virulence traits in the genetic background of human-adapted enteroaggregative E. coli. To determine magnitude of fecal shedding and site of colonization of EHEC O104:H4 in a livestock host, 30 (ten/strain) weaned calves were inoculated with 1010 CFU of EHEC O104:H4, EHEC O157:H7 (positive control) or E. coli strain 123 (negative control) and necropsied (4 or 28 d.p.i.). E. coli O157:H7 was recovered until 28 d.p.i. and O104:H4 until 24 d.p.i. At 4 d.p.i., EHEC O104:H4 was isolated from intestinal content and detected associated with the intestinal mucosa. These results are the first evidence that cattle, the most important EHEC reservoir, can also carry unusual EHEC strains at least transiently, questioning our current understanding of the molecular basis of host adaptation of this important E. coli pathovar.
Collapse
Affiliation(s)
- K Hamm
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - S A Barth
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - S Stalb
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - L Geue
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - E Liebler-Tenorio
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - J P Teifke
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - E Lange
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - K Tauscher
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - G Kotterba
- Friedrich-Loeffler-Institut, Institute of Infectology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - M Bielaszewska
- Institute of Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - H Karch
- Institute of Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - C Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
37
|
Molecular characterization and phylogeny of Shiga toxin–producing Escherichia coli isolates obtained from two Dutch regions using whole genome sequencing. Clin Microbiol Infect 2016; 22:642.e1-9. [DOI: 10.1016/j.cmi.2016.03.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/19/2022]
|
38
|
Nyambe S, Burgess C, Whyte P, Bolton D. The Survival of a Temperate vtx Bacteriophage and an Anti-Verocytotoxigenic Escherichia coli O157 Lytic Phage in Water and Soil Samples. Zoonoses Public Health 2016; 63:632-640. [PMID: 27334728 DOI: 10.1111/zph.12278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/28/2022]
Abstract
Verocytotoxigenic (vtx) Escherichia coli (VTEC) are zoonotic foodborne pathogens with the vtx operon encoded by lambdoid bacteriophage (phage). Despite much research on the host bacteria, similar data on the persistence of verocytotoxin converting phage and the ecological niches where transduction occurs are lacking and novel VTEC of important public health significance, have and continue to emerge. This study investigated the survival of a temperate vtx bacteriophage (24B ::kanamycinR ) in water (raw farm, pasteurized farm, laboratory tap and autoclaved purified water) and soil (sandy loam and loam soil). It also examined the persistence of an anti-VTEC lytic phage (e11/2) in the same matrices as this may be one option for controlling the emergence of novel VTEC, especially in farm ecological niches where other control options, such as chemical, heat or high pressure treatments, are not feasible. Samples inoculated with 24B ::kanamycinR and e11/2 bacteriophage (8 log10 pfu/ml or pfu/g) separately were incubated at 4°C and 14°C, representative Irish Winter and Summer temperatures, respectively, and tested every 2 days for 40 days. The transduction of 24B ::kanamycinR was also continuously assessed. Both phages survived with reductions observed, regardless of matrix or storage temperature. Moreover, 24B ::kanamycinR was able to transduce its host E. coli strain. It was therefore concluded that aquatic and soil environments on farms may serve as a vtx phage reservoir and transduction point but anti-VTEC phage is a possible biocontrol option.
Collapse
Affiliation(s)
- S Nyambe
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - C Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - P Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - D Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
39
|
Khalil RKS, Skinner C, Patfield S, He X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog Dis 2016; 74:ftw037. [PMID: 27109772 DOI: 10.1093/femspd/ftw037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 10/21/2022] Open
Abstract
Enterobacter cloacae M12X01451 strain recently identified from a clinical specimen produces a new Stx1 subtype (Stx1e) that was not neutralized by existing anti-Stx1 monoclonal antibodies. Acquisition of stx by Ent. cloacae is rare and origin/stability of stx1e in M12X01451 is not known. In this study, we confirmed the ability of Stx1a- and Stx1e-converting phages from an Escherichia coli O157:H7 strain RM8530 and M12X01451 respectively to infect several E. coli and Ent. cloacae strains. stx1e was detected in 97.5% and 72.5% of progenies of strains lysogenized by stx1e phage after 10 (T10) and 20 (T20) subcultures, versus 65% and 17.5% for stx1a gene. Infection of M12X01451 and RM8530 with each other's phages generated double lysogens containing both phages. stx1a was lost after T10, whereas the stx1e was maintained even after T20 in M12X01451 lysogens. In RM8530 lysogens, the acquired stx1e was retained with no mutations, but 20% of stx1a was lost after T20 ELISA and western blot analyses demonstrated that Stx1e was produced in all strains lysogenized by stx1e phage; however, Stx1a was not detected in any lysogenized strain. The study results highlight the potential risks of emerging Stx-producing strains via bacteriophages either in the human gastrointestinal tract or in food production environments, which are matters of great concern and may have serious impacts on human health.
Collapse
Affiliation(s)
- Rowaida K S Khalil
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Craig Skinner
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| | - Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|
40
|
Mody RK, Griffin PM. Editorial Commentary: Increasing Evidence That Certain Antibiotics Should Be Avoided for Shiga Toxin–ProducingEscherichia coliInfections: More Data Needed. Clin Infect Dis 2016; 62:1259-61. [DOI: 10.1093/cid/ciw101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/13/2022] Open
|
41
|
Askari Badouei M, Morabito S, Najafifar A, Mazandarani E. Molecular characterization of enterohemorrhagic Escherichia coli hemolysin gene (EHEC-hlyA)-harboring isolates from cattle reveals a diverse origin and hybrid diarrheagenic strains. INFECTION GENETICS AND EVOLUTION 2016; 39:342-348. [PMID: 26855346 DOI: 10.1016/j.meegid.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
In the present study we investigated the occurrence of Escherichia coli strains harboring the gene encoding enterohemorrhagic E. coli hemolysin (EHEC-HlyA) in cattle and the association of this gene with various diarrheagenic E. coli (DEC) pathotypes. First, the bovine E. coli isolates were screened for EHEC-hlyA gene by PCR, and then they were characterized for the phylogenetic groups and the presence of the major virulence genes of different DEC pathotypes. In total, 25 virulence gene profiles were observed in 54 EHEC-hlyA+ isolates that reflect a considerable heterogeneity. The EHEC-hlyA+ strains were mostly associated with EHEC (72%), while only 7.4% were enteropathogenic E. coli (EPEC). We also showed the presence of estA gene of enterotoxigenic E. coli (ETEC) in 6 isolates (11.1%). Interestingly, two of the estA+ strains showed hybrid pathotypes with one carrying eae/estA (EPEC/ETEC), and the other one stx2/astA/estA (EHEC/ETEC). None of the isolates were related to enteroaggregative E. coli (EAggEC), enteroinvasive E. coli (EIEC), and necrotoxigenic E. coli (NTEC). The EHEC-plasmid encoded genes occurred in seven different combinations with EHEC-hlyA/saa/subA/espP being the most prevalent (46.3%). All stx-/eae+ strains carried O island 57 (OI-57) molecular marker(s) that may indicate these to be the progenitors of EHEC or strains losing stx. The most prevalent phylogroup was B1 (61.1%), but the most heterogeneous strains including the hybrid strains belonged to A phylogroup. Overall, our results indicate that cattle EHEC-hlyA encoding E. coli isolates consist of diverse diarrheagenic strains with the possible existence of hybrid pathotypes. Future studies are required to clarify the evolutionary aspects and clinical significance of these strains in humans and domestic animals.
Collapse
Affiliation(s)
- Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
| | - Stefano Morabito
- European Union Reference Laboratory for Escherichia coli, Istituto Superiore di Sanita, Dipartimento di Sanita Pubblica Veterinaria e Sicurezza Alimentare, Rome, Italy
| | - Arash Najafifar
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Emad Mazandarani
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| |
Collapse
|
42
|
Söderlund R, Hurel J, Jinnerot T, Sekse C, Aspán A, Eriksson E, Bongcam-Rudloff E. Genomic comparison of Escherichia coli serotype O103:H2 isolates with and without verotoxin genes: implications for risk assessment of strains commonly found in ruminant reservoirs. Infect Ecol Epidemiol 2016; 6:30246. [PMID: 26895282 PMCID: PMC4759829 DOI: 10.3402/iee.v6.30246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/03/2022] Open
Abstract
Introduction Escherichia coli O103:H2 occurs as verotoxigenic E. coli (VTEC) carrying only vtx1 or vtx2 or both variants, but also as vtx-negative atypical enteropathogenic E. coli (aEPEC). The majority of E. coli O103:H2 identified from cases of human disease are caused by the VTEC form. If aEPEC strains frequently acquire verotoxin genes and become VTEC, they must be considered a significant public health concern. In this study, we have characterized and compared aEPEC and VTEC isolates of E. coli O103:H2 from Swedish cattle. Methods Fourteen isolates of E. coli O103:H2 with and without verotoxin genes were collected from samples of cattle feces taken during a nationwide cattle prevalence study 2011–2012. Isolates were sequenced with a 2×100 bp setup on a HiSeq2500 instrument producing >100× coverage per isolate. Single-nucleotide polymorphism (SNP) typing was performed using the genome analysis tool kit (GATK). Virulence genes and other regions of interest were detected. Susceptibility to transduction by two verotoxin-encoding phages was investigated for one representative aEPEC O103:H2 isolate. Results and Discussion This study shows that aEPEC O103:H2 is more commonly found (64%) than VTEC O103:H2 (36%) in the Swedish cattle reservoir. The only verotoxin gene variant identified was vtx1a. Phylogenetic comparison by SNP analysis indicates that while certain subgroups of aEPEC and VTEC are closely related and have otherwise near identical virulence gene repertoires, they belong to separate lineages. This indicates that the uptake or loss of verotoxin genes is a rare event in the natural cattle environment of these bacteria. However, a representative of a VTEC-like aEPEC O103:H2 subgroup could be stably lysogenized by a vtx-encoding phage in vitro.
Collapse
Affiliation(s)
- Robert Söderlund
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.,Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden;
| | - Julie Hurel
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Tomas Jinnerot
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Camilla Sekse
- Department of Laboratory Services, Norwegian Veterinary Institute (NVI), Oslo, Norway
| | - Anna Aspán
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Eriksson
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
43
|
Bonanno L, Petit MA, Loukiadis E, Michel V, Auvray F. Heterogeneity in Induction Level, Infection Ability, and Morphology of Shiga Toxin-Encoding Phages (Stx Phages) from Dairy and Human Shiga Toxin-Producing Escherichia coli O26:H11 Isolates. Appl Environ Microbiol 2016; 82:2177-2186. [PMID: 26826235 PMCID: PMC4807521 DOI: 10.1128/aem.03463-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/26/2016] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event.
Collapse
Affiliation(s)
- Ludivine Bonanno
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
- Actalia Produits Laitiers, Laboratoire de Microbiologie d'Intérêt Laitier, La Roche sur Foron, France
| | | | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, Laboratoire d'Études des Microorganismes Alimentaires Pathogènes/Laboratoire National de Référence pour les Escherichia coli y Compris les E. coli Producteurs de Shiga-Toxines, Marcy l'Etoile, France
- Université de Lyon, UMR 5557 Ecologie Microbienne, Université Lyon 1, CNRS, VetAgro Sup, Equipe Bactéries Pathogènes et Opportunistes, Villeurbanne, France
| | - Valérie Michel
- Actalia Produits Laitiers, Laboratoire de Microbiologie d'Intérêt Laitier, La Roche sur Foron, France
| | - Frédéric Auvray
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| |
Collapse
|
44
|
Silveyra IM, Pereyra AM, Alvarez MG, Villagran MD, Baroni AB, Deza N, Carbonari CC, Miliwebsky E, Rivas M. [Isolation of enteropathogenic Escherichia coli O157:H16 identified in a diarrhea case in a child and his household contacts in La Pampa Province, Argentina]. Rev Argent Microbiol 2015; 47:317-21. [PMID: 26627113 DOI: 10.1016/j.ram.2015.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 10/22/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major causative agent of acute diarrhea in children in developing countries. This pathotype is divided into typical EPEC (tEPEC) and atypical EPEC (aEPEC), based on the presence of the bfp virulence factor associated with adhesion, encoded in the pEAF plasmid. In the present study, the isolation of aEPEC O157:H16 from a bloody diarrhea case in a child and his household contacts (mother, father and sister) is described. The strain was characterized as E. coli O157:H16 eae-ɛ-positive, sorbitol fermenter with β-glucuronidase activity, susceptible to all antimicrobials tested, and negative for virulence factors stx1, stx2, ehxA and bfp. XbaI-PFGE performed on all isolates showed the AREXHX01.1040 macrorestriction pattern, with 100% similarity. These results highlight the importance of epidemiological surveillance of E. coli O157-associated diarrhea cases identified in children and their family contacts, as well as the incorporation of molecular techniques that allow the detection of the different E. coli pathotypes.
Collapse
Affiliation(s)
- Ivana M Silveyra
- Laboratorio de Microbiología, Hospital Gobernador Centeno, General Pico, La Pampa, Argentina; Comité de Epidemiología, Hospital Gobernador Centeno, General Pico, La Pampa, Argentina.
| | - Adriana M Pereyra
- Laboratorio de Microbiología, Hospital Gobernador Centeno, General Pico, La Pampa, Argentina; Comité de Epidemiología, Hospital Gobernador Centeno, General Pico, La Pampa, Argentina
| | - María G Alvarez
- Comité de Epidemiología, Hospital Gobernador Centeno, General Pico, La Pampa, Argentina
| | - Mariana D Villagran
- Comité de Epidemiología, Hospital Gobernador Centeno, General Pico, La Pampa, Argentina
| | - Andrea B Baroni
- Laboratorio de Microbiología, Hospital Gobernador Centeno, General Pico, La Pampa, Argentina
| | - Natalia Deza
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS «Dr. Carlos G. Malbrán», Buenos Aires, Argentina
| | - Claudia C Carbonari
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS «Dr. Carlos G. Malbrán», Buenos Aires, Argentina
| | - Elizabeth Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS «Dr. Carlos G. Malbrán», Buenos Aires, Argentina
| | - Marta Rivas
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS «Dr. Carlos G. Malbrán», Buenos Aires, Argentina
| |
Collapse
|
45
|
Franz E, Veenman C, van Hoek AHAM, de Roda Husman A, Blaak H. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater. Sci Rep 2015; 5:14372. [PMID: 26399418 PMCID: PMC4585870 DOI: 10.1038/srep14372] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/17/2015] [Indexed: 11/10/2022] Open
Abstract
To assess public health risks from environmental exposure to Extended-Spectrum β-Lactamases (ESBL)-producing bacteria, it is necessary to have insight in the proportion of relative harmless commensal variants and potentially pathogenic ones (which may directly cause disease). In the current study, 170 ESBL-producing E. coli from Dutch wastewater (n = 82) and surface water (n = 88) were characterized with respect to ESBL-genotype, phylogenetic group, resistance phenotype and virulence markers associated with enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), extraintesinal E. coli (ExPEC), and Shiga toxin-producing E. coli (STEC). Overall, 17.1% of all ESBL-producing E. coli were suspected pathogenic variants. Suspected ExPECs constituted 8.8% of all ESBL-producing variants and 8.3% were potential gastrointestinal pathogens (4.1% EAEC, 1.8% EPEC, 1.2% EIEC, 1.2% ETEC, no STEC). Suspected pathogens were significantly associated with ESBL-genotype CTX-M-15 (X2 = 14.7, P < 0.001) and phylogenetic group B2 (X2 = 23.5, P < 0.001). Finally, 84% of the pathogenic ESBL-producing E. coli isolates were resistant to three or more different classes of antibiotics. In conclusion, this study demonstrates that the aquatic environment is a potential reservoir of E. coli variants that combine ESBL-genes, a high level of multi-drug resistance and virulence factors, and therewith pose a health risk to humans upon exposure.
Collapse
Affiliation(s)
- Eelco Franz
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Christiaan Veenman
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Angela H A M van Hoek
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Ana de Roda Husman
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Hetty Blaak
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands
| |
Collapse
|
46
|
Is Shiga Toxin-Negative Escherichia coli O157:H7 Enteropathogenic or Enterohemorrhagic Escherichia coli? Comprehensive Molecular Analysis Using Whole-Genome Sequencing. J Clin Microbiol 2015; 53:3530-8. [PMID: 26311863 PMCID: PMC4609726 DOI: 10.1128/jcm.01899-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/20/2015] [Indexed: 12/24/2022] Open
Abstract
The ability of Escherichia coli O157:H7 to induce cellular damage leading to disease in humans is related to numerous virulence factors, most notably the stx gene, encoding Shiga toxin (Stx) and carried by a bacteriophage. Loss of the Stx-encoding bacteriophage may occur during infection or culturing of the strain. Here, we collected stx-positive and stx-negative variants of E. coli O157:H7/NM (nonmotile) isolates from patients with gastrointestinal complaints. Isolates were characterized by whole-genome sequencing (WGS), and their virulence properties and phylogenetic relationship were determined. Because of the presence of the eae gene but lack of the bfpA gene, the stx-negative isolates were considered atypical enteropathogenic E. coli (aEPEC). However, they had phenotypic characteristics similar to those of the Shiga toxin-producing E. coli (STEC) isolates and belonged to the same sequence type, ST11. Furthermore, EPEC and STEC isolates shared similar virulence genes, the locus of enterocyte effacement region, and plasmids. Core genome phylogenetic analysis using a gene-by-gene typing approach showed that the sorbitol-fermenting (SF) stx-negative isolates clustered together with an SF STEC isolate and that one non-sorbitol-fermenting (NSF) stx-negative isolate clustered together with NSF STEC isolates. Therefore, these stx-negative isolates were thought either to have lost the Stx phage or to be a progenitor of STEC O157:H7/NM. As detection of STEC infections is often based solely on the identification of the presence of stx genes, these may be misdiagnosed in routine laboratories. Therefore, an improved diagnostic approach is required to manage identification, strategies for treatment, and prevention of transmission of these potentially pathogenic strains.
Collapse
|
47
|
Moredo FA, Piñeyro PE, Márquez GC, Sanz M, Colello R, Etcheverría A, Padola NL, Quiroga MA, Perfumo CJ, Galli L, Leotta GA. Enterotoxigenic Escherichia coli Subclinical Infection in Pigs: Bacteriological and Genotypic Characterization and Antimicrobial Resistance Profiles. Foodborne Pathog Dis 2015. [PMID: 26217917 DOI: 10.1089/fpd.2015.1959] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for neonatal diarrhea, postweaning diarrhea, and edema disease in pigs. Although it can be harmless, ETEC is also present in the intestines of other animal species and humans, causing occasional diarrhea outbreaks. The evaluation of this pathogen's presence in food sources is becoming an increasingly important issue in human health. In order to determine the prevalence of ETEC in nondiarrheic pigs, 990 animals from 11 pig farms were sampled. Using end-time polymerase chain reaction (PCR), eltA, estI genes, or both, were detected in 150 (15.2%) animals. From the positive samples, 40 (26.6%) ETEC strains were isolated, showing 19 antibiotic-resistance patterns; 52.5% of these strains had multiple antibiotic resistances, and 17.5% carried the intI2 gene. The most prevalent genotypes were rfb(O157)/estII/aidA (32.5%) and estI/estII (25.0%). The estII gene was identified most frequently (97.5%), followed by estI (37.5%), astA (20.0%), and eltA (12.5%). The genes coding the fimbriae F5, F6, and F18 were detected in three single isolates. The aidA gene was detected in 20 ETEC strains associated with the estII gene. Among the isolated ETEC strains, stx(2e)/estI, stx(2e)/estI/estII, and stx(2e)/estI/estII/intI2 genotypes were identified. The ETEC belonged to 12 different serogroups; 37.5% of them belonged to serotype O157:H19. Isolates were grouped by enterobacterial repetitive intergenic consensus-PCR into 5 clusters with 100.0% similarity. In this study, we demonstrated that numerous ETEC genotypes cohabit and circulate in swine populations without clinical manifestation of neonatal diarrhea, postweaning diarrhea, or edema disease in different production stages. The information generated is important not only for diagnostic and epidemiological purposes, but also for understanding the dynamics and ecology of ETEC in pigs in different production stages that can be potentially transmitted to humans from food animals.
Collapse
Affiliation(s)
- Fabiana A Moredo
- 1 Cátedra de Microbiología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata , Buenos Aires, Argentina
| | - Pablo E Piñeyro
- 2 Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University , Ames, Iowa
| | - Gabriela C Márquez
- 3 Department of Animal and Poultry Sciences, Virginia Tech , Blacksburg, Virginia
| | - Marcelo Sanz
- 4 Laboratorio de Inmunoquímica y Biotecnología , CIVETAN-CONICET/CIC/FCV-UNCPBA, Tandil, Buenos Aires, Argentina
| | - Rocío Colello
- 4 Laboratorio de Inmunoquímica y Biotecnología , CIVETAN-CONICET/CIC/FCV-UNCPBA, Tandil, Buenos Aires, Argentina
| | - Analía Etcheverría
- 4 Laboratorio de Inmunoquímica y Biotecnología , CIVETAN-CONICET/CIC/FCV-UNCPBA, Tandil, Buenos Aires, Argentina
| | - Nora L Padola
- 4 Laboratorio de Inmunoquímica y Biotecnología , CIVETAN-CONICET/CIC/FCV-UNCPBA, Tandil, Buenos Aires, Argentina
| | - María A Quiroga
- 5 Instituto de Patología Dr. B. Epstein, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata , Buenos Aires, Argentina
| | - Carlos J Perfumo
- 5 Instituto de Patología Dr. B. Epstein, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata , Buenos Aires, Argentina
| | - Lucía Galli
- 6 Instituto de Genética Veterinaria "Ing Fernando Noel Dulout ," CCT-La Plata, CONICET, FCV-UNLP, Buenos Aires, Argentina
| | - Gerardo A Leotta
- 6 Instituto de Genética Veterinaria "Ing Fernando Noel Dulout ," CCT-La Plata, CONICET, FCV-UNLP, Buenos Aires, Argentina
| |
Collapse
|
48
|
Yan X, Fratamico PM, Bono JL, Baranzoni GM, Chen CY. Genome sequencing and comparative genomics provides insights on the evolutionary dynamics and pathogenic potential of different H-serotypes of Shiga toxin-producing Escherichia coli O104. BMC Microbiol 2015; 15:83. [PMID: 25887577 PMCID: PMC4393859 DOI: 10.1186/s12866-015-0413-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/12/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Various H-serotypes of the Shiga toxin-producing Escherichia coli (STEC) O104, including H4, H7, H21, and H¯, have been associated with sporadic cases of illness and have caused food-borne outbreaks globally. In the U.S., STEC O104:H21 caused an outbreak associated with milk in 1994. However, there is little known on the evolutionary origins of STEC O104 strains, and how genotypic diversity contributes to pathogenic potential of various O104 H-antigen serotypes isolated from different ecological niches and/or geographical regions. RESULTS Two STEC O104:H21 (milk outbreak strain) and O104:H7 (cattle isolate) strains were shot-gun sequenced, and the genomes were closed. The intimin (eae) gene, involved in the attaching-effacing phenotype of diarrheagenic E. coli, was not found in either strain. Examining various O104 genome sequences, we found that two "complete" left and right end portions of the locus of enterocyte effacement (LEE) pathogenicity island were present in 13 O104 strains; however, the central portion of LEE was missing, where the eae gene is located. In O104:H4 strains, the missing central portion of the LEE locus was replaced by a pathogenicity island carrying the aidA (adhesin involved in diffuse adherence) gene and antibiotic resistance genes commonly carried on plasmids. Enteroaggregative E. coli-specific virulence genes and European outbreak O104:H4-specific stx2-encoding Escherichia P13374 or Escherichia TL-2011c bacteriophages were missing in some of the O104:H4 genome sequences available from public databases. Most of the genomic variations in the strains examined were due to the presence of different mobile genetic elements, including prophages and genomic island regions. The presence of plasmids carrying virulence-associated genes may play a role in the pathogenic potential of O104 strains. CONCLUSIONS The two strains sequenced in this study (O104:H21 and O104:H7) are genetically more similar to each other than to the O104:H4 strains that caused an outbreak in Germany in 2011 and strains found in Central Africa. A hypothesis on strain evolution and pathogenic potential of various H-serotypes of E. coli O104 strains is proposed.
Collapse
Affiliation(s)
- Xianghe Yan
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
- U.S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, 600 East Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - Pina M Fratamico
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - James L Bono
- USDA, Agricultural Research Service, Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Gian Marco Baranzoni
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - Chin-Yi Chen
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| |
Collapse
|
49
|
Singh P, Sha Q, Lacher DW, Del Valle J, Mosci RE, Moore JA, Scribner KT, Manning SD. Characterization of enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem. Front Cell Infect Microbiol 2015; 5:29. [PMID: 25883908 PMCID: PMC4381715 DOI: 10.3389/fcimb.2015.00029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Cattle are suggested to be an important reservoir for STEC; however, these pathogens have also been isolated from other livestock and wildlife. In this study we sought to investigate transmission of STEC, enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) between cattle and white-tailed deer in a shared agroecosystem. Cattle feces were collected from 100 animals in a Michigan dairy farm in July 2012, while 163 deer fecal samples were collected during two sampling periods (March and June). The locations of deer fecal pellets were recorded via geographic information system mapping and microsatellite multi-locus genotyping was used to link the fecal samples to individual deer at both time points. Following subculture to sorbitol MacConkey agar and STEC CHROMagar, the pathogens were characterized by serotyping, stx profiling, and PCR-based fingerprinting; multilocus sequence typing (MLST) was performed on a subset. STEC and EHEC were cultured from 12 to 16% of cattle, respectively, and EPEC was found in 36%. Deer were significantly less likely to have a pathogen in March vs. June where the frequency of STEC, EHEC, and EPEC was 1, 6, and 22%, respectively. PCR fingerprinting and MLST clustered the cattle- and deer-derived strains together in a phylogenetic tree. Two STEC strains recovered from both animal species shared MLST and fingerprinting profiles, thereby providing evidence of interspecies transmission and highlighting the importance of wildlife species in pathogen shedding dynamics and persistence in the environment and cattle herds.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, USA
| | - Qiong Sha
- Department of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, USA
| | - David W. Lacher
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationLaurel, MD, USA
| | - Jacquelyn Del Valle
- Department of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, USA
| | - Rebekah E. Mosci
- Department of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, USA
| | | | - Kim T. Scribner
- Department of Fisheries and Wildlife, Michigan State UniversityEast Lansing, MI, USA
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
50
|
|