1
|
Silva MJA, Silva CS, Brasil TP, Alves AK, dos Santos EC, Frota CC, Lima KVB, Lima LNGC. An update on leprosy immunopathogenesis: systematic review. Front Immunol 2024; 15:1416177. [PMID: 39308868 PMCID: PMC11412872 DOI: 10.3389/fimmu.2024.1416177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Leprosy is a chronic infectious condition and the main cause of neuropathy that occurs brought on by M. leprae. It is known that the biological characteristics of the human host, such as the immunological ones, have a higher influence on the pathology of this disease than the intrinsic mechanisms of the bacterium. The objective of this work was to review the scientific knowledge about the relationship between immunopathology and the severity of leprosy. Methods A systematic review following the PRISMA 2020 recommendations was conducted in the PUBMED, LILACS, SciELO and Science Direct databases using articles in English, Portuguese or Spanish between January 2011 and May 2022 with the descriptors "Leprosy/Immunology", "Cytokines" and "Mycobacterium leprae". A methodological quality assessment was carried out using the JBI checklists. Results A total of 49 articles were included. There is a relationship of greater severity of infection associated with lower release of MHC molecules in response to PGL-1 that inhibit the promotion of resolving T lymphocytes arising from dendritic cells (DCs) stimulation. In addition, the differentiation of macrophage phenotypes dependent on the activation of PRRs can define activation and the distinct type of T helper (Th) cells involved according to severity. Activated CD8+ T cells also have distinct types at the appropriate poles of the disease, and B cells show at the most severe pole of the LL, specific induction of IgA and more Treg-type CD8+ T cells that further contribute to T cell anergy. Conclusion Therefore, the adaptive immune system aggravates nerve damage and defines the type of leprosy, while the innate immune system is considerably more significant in the onset of nerve damage, symptomatic of the initial presentation of illness and in several critical immune responses, including inflammation and elimination of dead M. leprae.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of Pará State (UEPA), Belém, Brazil
| | - Caroliny Soares Silva
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of Pará State (UEPA), Belém, Brazil
| | - Thiago Pinto Brasil
- Department of Biomedicine, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Ana Karoliny Alves
- Department of Biomedicine, Federal University of Ceará (UFC), Fortaleza, Brazil
| | | | - Cristiane Cunha Frota
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, Brazil
| | | | | |
Collapse
|
2
|
dos Santos PMF, Díaz Acosta CC, Rosa TLSA, Ishiba MH, Dias AA, Pereira AMR, Gutierres LD, Pereira MP, da Silva Rocha M, Rosa PS, Bertoluci DFF, Meyer-Fernandes JR, da Mota Ramalho Costa F, Marques MAM, Belisle JT, Pinheiro RO, Rodrigues LS, Pessolani MCV, Berrêdo-Pinho M. Adenosine A 2A receptor as a potential regulator of Mycobacterium leprae survival mechanisms: new insights into leprosy neural damage. Front Pharmacol 2024; 15:1399363. [PMID: 39005937 PMCID: PMC11239521 DOI: 10.3389/fphar.2024.1399363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.
Collapse
Affiliation(s)
| | - Chyntia Carolina Díaz Acosta
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - Michelle Harumi Ishiba
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Luísa Domingos Gutierres
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Melissa Pontes Pereira
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matheus da Silva Rocha
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Daniele F. F. Bertoluci
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, São Paulo, Brazil
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Angela M. Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
de Lima Santana N, Neves de Farias L, Lago T, Leal-Calvo T, Lima Machado PR, Castellucci LC. MicroRNAs correlate with bacillary index and genes associated to cell death processes in leprosy. Microbes Infect 2024; 26:105300. [PMID: 38224943 DOI: 10.1016/j.micinf.2024.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Mycobacterium leprae infects skin and peripheral nerves causing a broad of clinical forms. MicroRNAs (miRNAs) control immune mechanisms such as apoptosis, autophagy as well as to target genes leading to abnormal proliferation, metastasis, and invasion of cells. Herein we evaluated miRNAs expression for leprosy phenotypes in biopsies obtained from patients with and without reactions. We also correlated those miRNAs with both, bacillary index (BI) and genes involved in the micobacteria elimination process. Our results show a significant increase in the miR-125a-3p expression in paucibacillary (PB) patients vs multibacillary (MB) subjects (p = 0.007) and vs reversal reactions (RR) (p = 0.005), respectively. Likewise, there was a higher expression of miR-125a-3p in patients with erythema nodosum leprosum (ENL) vs MB without reactions (p = 0.002). Furthermore, there was a positive correlation between miR-125a-3p, miR-146b-5p and miR-132-5p expression and BI in patients with RR and ENL. These miRNAS were also correlated with genes such as ATG12 (miR-125a-3p), TNFRSF10A (miR-146b-5p), PARK2, CFLAR and STX7 (miR-132-5p). All together we underpin a role for these miRNAs in leprosy pathogenesis, implicating mechanisms such as apoptosis and autophagy in skin. The miR-125a-3p might have a distinct role associated with PB phenotype and ENL in MB patients.
Collapse
Affiliation(s)
- Nadja de Lima Santana
- Programa de Pós-graduação em Ciências da Saúde da Universidade Federal da Bahia, Salvador, Brazil; Serviço de Imunologia da Universidade Federal da Bahia, Salvador, Brazil.
| | - Lucas Neves de Farias
- Programa de Pós-graduação em Ciências da Saúde da Universidade Federal da Bahia, Salvador, Brazil; Serviço de Imunologia da Universidade Federal da Bahia, Salvador, Brazil.
| | - Tainã Lago
- Programa de Pós-graduação em Ciências da Saúde da Universidade Federal da Bahia, Salvador, Brazil; Serviço de Imunologia da Universidade Federal da Bahia, Salvador, Brazil.
| | - Thyago Leal-Calvo
- Laboratório de Hanseníase, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil.
| | - Paulo Roberto Lima Machado
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Brazil; Programa de Pós-graduação em Ciências da Saúde da Universidade Federal da Bahia, Salvador, Brazil; Serviço de Imunologia da Universidade Federal da Bahia, Salvador, Brazil.
| | - Léa Cristina Castellucci
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Brazil; Programa de Pós-graduação em Ciências da Saúde da Universidade Federal da Bahia, Salvador, Brazil; Serviço de Imunologia da Universidade Federal da Bahia, Salvador, Brazil.
| |
Collapse
|
4
|
Hasanoor Reja AH, De A, Chakraborty D, Singh S, Sarda A, Das S. A Cross-Sectional Study to Evaluate the Role of the Nuclear Factor Kappa B (Nf-κB) Pathway in Regulating the Cytokine Cascade and as a Potential Therapeutic Target in Leprosy. Indian J Dermatol 2024; 69:165-170. [PMID: 38841230 PMCID: PMC11149790 DOI: 10.4103/ijd.ijd_443_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Pattern recognition receptors (PRRs), which are found in microorganisms but not in hosts, allow Leprae bacilli to be recognized as foreign. Several kinds of pattern recognition receptors, such as toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-1-like receptors (RLRs), are present in the innate immune system. Sen and Baltimore (1986) discovered the transcription factor nuclear factor kappa-B (NF-B), employed by eukaryotic cells to regulate immunity, cell differentiation and proliferation. This study aimed to evaluate the role of the nuclear factor kappa B (NF-B) pathway in controlling the cytokine cascade in leprosy due to a lack of understanding of the link between cytokines and the severity of leprosy. Clinically suspected Hansen's patients were analysed for 4 years. Newly diagnosed leprosy patients were considered to have leprosy disease control (LDC). The cases with active or new lesions and an increase in BI by at least 2+, 12 months after completion of MDT were considered leprosy disease relapse (LDR) cases. Age- and sex-matched healthy individuals served as our control group (HC). An ELISA was performed to measure the concentration of five human cytokines. By qRT-PCR, the quantitative expression of receptor genes (NOD1 and NOD2), cytokine genes and the expression of the transcription factor NFκβ were evaluated. This was followed by a transcription factor NFκβ assay to see its expression in the monocytes of study subjects. Nuclear factor NF-κβ was found to have a pronounced response in monocytes of HC and LDC patients and LDR cases when treated with NOD1 and NOD2 ligands. Our study concludes that the NF-kB pathway is involved in the induction and regulation of the cytokine cascade that contributes to chronic inflammation in leprosy.
Collapse
Affiliation(s)
| | - Abhishek De
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Disha Chakraborty
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Sushil Singh
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Aarti Sarda
- Department of Dermatology, Wizderm, Kolkata, West Bengal, India
| | - Sudip Das
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Dagenais A, Villalba-Guerrero C, Olivier M. Trained immunity: A “new” weapon in the fight against infectious diseases. Front Immunol 2023; 14:1147476. [PMID: 36993966 PMCID: PMC10040606 DOI: 10.3389/fimmu.2023.1147476] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Innate immune cells can potentiate the response to reinfection through an innate form of immunological memory known as trained immunity. The potential of this fast-acting, nonspecific memory compared to traditional adaptive immunological memory in prophylaxis and therapy has been a topic of great interest in many fields, including infectious diseases. Amidst the rise of antimicrobial resistance and climate change—two major threats to global health—, harnessing the advantages of trained immunity compared to traditional forms of prophylaxis and therapy could be game-changing. Here, we present recent works bridging trained immunity and infectious disease that raise important discoveries, questions, concerns, and novel avenues for the modulation of trained immunity in practice. By exploring the progress in bacterial, viral, fungal, and parasitic diseases, we equally highlight future directions with a focus on particularly problematic and/or understudied pathogens.
Collapse
Affiliation(s)
- Amy Dagenais
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Carlos Villalba-Guerrero
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Martin Olivier,
| |
Collapse
|
6
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
7
|
Sadhu S, Kumar S, Mitra DK, Joshi B. Activated TLR2/4-positive T cells boost cell exhaustion during lepromatous leprosy infection via PD-1 upregulation. Heliyon 2022; 8:e11633. [DOI: 10.1016/j.heliyon.2022.e11633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
|
8
|
Cabral N, de Figueiredo V, Gandini M, de Souza CF, Medeiros RA, Lery LMS, Lara FA, de Macedo CS, Pessolani MCV, Pereira GMB. Modulation of the Response to Mycobacterium leprae and Pathogenesis of Leprosy. Front Microbiol 2022; 13:918009. [PMID: 35722339 PMCID: PMC9201476 DOI: 10.3389/fmicb.2022.918009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
The initial infection by the obligate intracellular bacillus Mycobacterium leprae evolves to leprosy in a small subset of the infected individuals. Transmission is believed to occur mainly by exposure to bacilli present in aerosols expelled by infected individuals with high bacillary load. Mycobacterium leprae-specific DNA has been detected in the blood of asymptomatic household contacts of leprosy patients years before active disease onset, suggesting that, following infection, the bacterium reaches the lymphatic drainage and the blood of at least some individuals. The lower temperature and availability of protected microenvironments may provide the initial conditions for the survival of the bacillus in the airways and skin. A subset of skin-resident macrophages and the Schwann cells of peripheral nerves, two M. leprae permissive cells, may protect M. leprae from effector cells in the initial phase of the infection. The interaction of M. leprae with these cells induces metabolic changes, including the formation of lipid droplets, that are associated with macrophage M2 phenotype and the production of mediators that facilitate the differentiation of specific T cells for M. leprae-expressed antigens to a memory regulatory phenotype. Here, we discuss the possible initials steps of M. leprae infection that may lead to active disease onset, mainly focusing on events prior to the manifestation of the established clinical forms of leprosy. We hypothesize that the progressive differentiation of T cells to the Tregs phenotype inhibits effector function against the bacillus, allowing an increase in the bacillary load and evolution of the infection to active disease. Epigenetic and metabolic mechanisms described in other chronic inflammatory diseases are evaluated for potential application to the understanding of leprosy pathogenesis. A potential role for post-exposure prophylaxis of leprosy in reducing M. leprae-induced anti-inflammatory mediators and, in consequence, Treg/T effector ratios is proposed.
Collapse
Affiliation(s)
- Natasha Cabral
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vilma de Figueiredo
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cíntia Fernandes de Souza
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rychelle Affonso Medeiros
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Letícia Miranda Santos Lery
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Flávio Alves Lara
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cristiana Santos de Macedo
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Geraldo Moura Batista Pereira
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Maciel-Fiuza MF, Costa PDSS, Kowalski TW, Schuler-Faccini L, Bonamigo RR, Vetoratto R, Eidt LM, de Moraes PC, Silveira MIDS, Camargo LMA, Callegari-Jacques SM, Castro SMDJ, Vianna FSL. Evaluation of Polymorphisms in Toll-Like Receptor Genes as Biomarkers of the Response to Treatment of Erythema Nodosum Leprosum. Front Med (Lausanne) 2022; 8:713143. [PMID: 35141236 PMCID: PMC8819000 DOI: 10.3389/fmed.2021.713143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Erythema nodosum leprosum (ENL) is an inflammatory complication caused by a dysregulated immune response to Mycobacterium leprae. Some Toll-like receptors (TLRs) have been identified as capable of recognizing antigens from M. leprae, triggering a wide antimicrobial and inflammatory response. Genetic polymorphisms in these receptors could influence in the appearance of ENL as well as in its treatment. Thus, the objective of this work was to evaluate the association of genetic variants of TLRs genes with the response to treatment of ENL with thalidomide and prednisone. A total of 162 ENL patients were recruited from different regions of Brazil and clinical information was collected from their medical records. Genomic DNA was isolated from blood and saliva samples and genetic variants in TLR1 (rs4833095), TLR2 (rs3804099), TLR4 (rs1927914), and TLR6 (rs5743810) genes were genotyped by TaqMan real-time PCR system. In order to evaluate the variants' association with the dose of the medications used during the treatment, we applied the Generalized Estimating Equations (GEE) analysis. In the present sample, 123 (75.9%) patients were men and 86 (53.1%) were in treatment for leprosy during the ENL episode. We found an association between polymorphisms in TLR1/rs4833095, TLR2/rs3804099, TLR4/rs1927914, and TLR6/rs5783810 with the dose variation of thalidomide in a time-dependent manner, i.e., the association with the genetic variant and the dose of the drug was different depending on the moment of the treatment evaluated. In addition, we identified that the association of polymorphisms in TLR1/rs4833095, TLR2/rs3804099, and TLR6/rs5783810 with the dose variation of prednisone also were time-dependent. Despite these associations, in all the interactions found, the influence of genetic variants on dose variation was not clinically relevant for therapeutic changes. The results obtained in this study show that TLRs polymorphism might play a role in the response to ENL treatment, however, in this context, they could not be considered as useful biomarkers in the clinical setting due small differences in medication doses. A larger sample size with patients with a more genetic profile is fundamental in order to estimate the association of genetic variants with the treatment of ENL and their clinical significance.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | | | - Thayne Woycinck Kowalski
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Teratogen Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Post-graduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Rodrigo Vetoratto
- Dermatology Service of Santa Casa Hospital of Porto Alegre, Porto Alegre, Brazil
| | - Letícia Maria Eidt
- Sanitary Dermatology Clinic, Secretaria De Saúde Do Estado Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Paulo Cezar de Moraes
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Sanitary Dermatology Clinic, Secretaria De Saúde Do Estado Do Rio Grande Do Sul, Porto Alegre, Brazil
| | | | - Luis Marcelo Aranha Camargo
- National Reference Center for Health Dermatology Dona Libania, Fortaleza, Brazil
- Center for Research in Tropical Medicine, Porto Velho, Rondonia, Brazil
- National Institute of Science and Technology-EpiAmo, Rondonia, Brazil
- Department of Medicine, Centro Universitario São Lucas, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology/CNPq-EpiAmo, Rondonia, Brazil
| | - Sidia Maria Callegari-Jacques
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Statistics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Stela Maris de Jezus Castro
- Department of Statistics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Epidemiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Soto JA, Gálvez NMS, Andrade CA, Ramírez MA, Riedel CA, Kalergis AM, Bueno SM. BCG vaccination induces cross-protective immunity against pathogenic microorganisms. Trends Immunol 2022; 43:322-335. [PMID: 35074254 DOI: 10.1016/j.it.2021.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis strain used as a vaccine to prevent Mycobacterium tuberculosis (M. tb) infection. Its ability to potentiate the immune response induced by other vaccines and to promote nonspecific immunomodulatory effects has been described. These effects can be triggered by epigenetic reprogramming and metabolic shifts on innate immune cells, a phenomenon known as trained immunity. The induction of trained immunity may contribute to explain why BCG vaccination effectively decreases disease symptoms caused by pathogens different from M. tb. This article explains the importance of BCG immunization and the possible mechanisms associated with the induction of trained immunity, which might be used as a strategy for rapid activation of the immune system against unrelated pathogens.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Nicolás M S Gálvez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Catalina A Andrade
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Mario A Ramírez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Claudia A Riedel
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
11
|
Oliveira JAP, Gandini M, Sales JS, Fujimori SK, Barbosa MGM, Frutuoso VS, Moraes MO, Sarno EN, Pessolani MCV, Pinheiro RO. Mycobacterium leprae induces a tolerogenic profile in monocyte-derived dendritic cells via TLR2 induction of IDO. J Leukoc Biol 2020; 110:167-176. [PMID: 33040382 PMCID: PMC8359402 DOI: 10.1002/jlb.4a0320-188r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The enzyme IDO‐1 is involved in the first stage of tryptophan catabolism and has been described in both microbicidal and tolerogenic microenvironments. Previous data from our group have shown that IDO‐1 is differentially regulated in the distinctive clinical forms of leprosy. The present study aims to investigate the mechanisms associated with IDO‐1 expression and activity in human monocyte‐derived dendritic cells (mDCs) after stimulation with irradiated Mycobacterium leprae and its fractions. M. leprae and its fractions induced the expression and activity of IDO‐1 in human mDCs. Among the stimuli studied, irradiated M. leprae and its membrane fraction (MLMA) induced the production of proinflammatory cytokines TNF and IL‐6 whereas irradiated M. leprae and its cytosol fraction (MLSA) induced an increase in IL‐10. We investigated if TLR2 activation was necessary for IDO‐1 induction in mDCs. We observed that in cultures treated with a neutralizing anti‐TLR2 antibody, there was a decrease in IDO‐1 activity and expression induced by M. leprae and MLMA. The same effect was observed when we used a MyD88 inhibitor. Our data demonstrate that coculture of mDCs with autologous lymphocytes induced an increase in regulatory T (Treg) cell frequency in MLSA‐stimulated cultures, showing that M. leprae constituents may play opposite roles that may possibly be related to the dubious effect of IDO‐1 in the different clinical forms of disease. Our data show that M. leprae and its fractions are able to differentially modulate the activity and functionality of IDO‐1 in mDCs by a pathway that involves TLR2, suggesting that this enzyme may play an important role in leprosy immunopathogenesis.
Collapse
Affiliation(s)
- Jéssica A P Oliveira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jorgenilce S Sales
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Sérgio K Fujimori
- Laboratory for Development and Analytical Validation, Oswaldo Cruz Foundation, Farmanguinhos, Rio de Janeiro, Brazil
| | - Mayara G M Barbosa
- Cascalho-Platt Laboratory, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Valber S Frutuoso
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Milton O Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria C V Pessolani
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta O Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Korppi M, Teräsjärvi J, Lauhkonen E, Huhtala H, Nuolivirta K, He Q. Toll-like receptor 4 polymorphisms were associated with low serum pro-inflammatory cytokines in BCG osteitis survivors. Acta Paediatr 2020; 109:1417-1422. [PMID: 31755594 DOI: 10.1111/apa.15104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
AIM The aim of the study was to evaluate the association of Toll-like receptor 4 (TLR4) gene variations with osteitis risk after Bacillus Calmette-Guérin (BCG) vaccination given at birth and with serum cytokine levels measured in adulthood. METHODS We determined the TLR4 rs4986790 single-nucleotide polymorphism (SNP) in 132 study subjects with BCG osteitis in infancy and compared the genotype distributions and allele frequencies between them and population controls. Serum concentrations of 11 cytokines measured in adulthood were compared between study subjects with the wild vs variant TLR4 rs4986790 genotype. RESULTS The genotypes and allele frequencies of the TLR4 rs4986790 SNP did not differ between BCG osteitis cases and population controls. Instead, subjects with the variant genotype presented with lower serum interleukin (IL) concentrations of the pro-inflammatory IL-6, IL-17A and IL-12 cytokines and with marginally lower interferon-γ concentrations, but with higher serum anti-inflammatory IL-4 concentration. The results concern also the TLR4 rs4986791, since these two SNPs are co-segregating in the Finnish population. CONCLUSION The findings suggest that TLR4 has no significant role in the emergence of osteitis after newborn BCG vaccination, but the variant genotypes of the TLR4 rs4986790 and rs4986791 may impair the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Matti Korppi
- Center for Child Health Research Faculty of Medicine and Life Sciences University of Tampere and University Hospital Tampere Finland
| | | | - Eero Lauhkonen
- Center for Child Health Research Faculty of Medicine and Life Sciences University of Tampere and University Hospital Tampere Finland
| | - Heini Huhtala
- Faculty of Social Sciences Tampere University Tampere Finland
| | - Kirsi Nuolivirta
- Department of Pediatrics Seinäjoki Central Hospital Seinäjoki Finland
| | - Qiushui He
- Institute of Biomedicine University of Turku Turku Finland
- Department of Medical Microbiology Capital Medical University Beijing China
| |
Collapse
|
13
|
Pinheiro RO, Schmitz V, Silva BJDA, Dias AA, de Souza BJ, de Mattos Barbosa MG, de Almeida Esquenazi D, Pessolani MCV, Sarno EN. Innate Immune Responses in Leprosy. Front Immunol 2018; 9:518. [PMID: 29643852 PMCID: PMC5882777 DOI: 10.3389/fimmu.2018.00518] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management.
Collapse
Affiliation(s)
- Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - André Alves Dias
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Salgado CG, Pinto P, Bouth RC, Gobbo AR, Messias ACC, Sandoval TV, Dos Santos AMR, Moreira FC, Vidal AF, Goulart LR, Barreto JG, da Silva MB, Frade MAC, Spencer JS, Santos S, Ribeiro-Dos-Santos Â. miRNome Expression Analysis Reveals New Players on Leprosy Immune Physiopathology. Front Immunol 2018; 9:463. [PMID: 29593724 PMCID: PMC5854644 DOI: 10.3389/fimmu.2018.00463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Leprosy remains as a public health problem and its physiopathology is still not fully understood. MicroRNAs (miRNA) are small RNA non-coding that can interfere with mRNA to regulate gene expression. A few studies using DNA chip microarrays have explored the expression of miRNA in leprosy patients using a predetermined set of genes as targets, providing interesting findings regarding the regulation of immune genes. However, using a predetermined set of genes restricted the possibility of finding new miRNAs that might be involved in different mechanisms of disease. Thus, we examined the miRNome of tuberculoid (TT) and lepromatous (LL) patients using both blood and lesional biopsies from classical leprosy patients (LP) who visited the Dr. Marcello Candia Reference Unit in Sanitary Dermatology in the State of Pará and compared them with healthy subjects. Using a set of tools to correlate significantly differentially expressed miRNAs with their gene targets, we identified possible interactions and networks of miRNAs that might be involved in leprosy immunophysiopathology. Using this approach, we showed that the leprosy miRNA profile in blood is distinct from that in lesional skin as well as that four main groups of genes are the targets of leprosy miRNA: (1) recognition and phagocytosis, with activation of immune effector cells, where the immunosuppressant profile of LL and immunoresponsive profile of TT are clearly affected by miRNA expression; (2) apoptosis, with supportive data for an antiapoptotic leprosy profile based on BCL2, MCL1, and CASP8 expression; (3) Schwann cells (SCs), demyelination and epithelial–mesenchymal transition (EMT), supporting a role for different developmental or differentiation gene families, such as Sox, Zeb, and Hox; and (4) loss of sensation and neuropathic pain, revealing that RHOA, ROCK1, SIGMAR1, and aquaporin-1 (AQP1) may be involved in the loss of sensation or leprosy pain, indicating possible new therapeutic targets. Additionally, AQP1 may also be involved in skin dryness and loss of elasticity, which are well known signs of leprosy but with unrecognized physiopathology. In sum, miRNA expression reveals new aspects of leprosy immunophysiopathology, especially on the regulation of the immune system, apoptosis, SC demyelination, EMT, and neuropathic pain.
Collapse
Affiliation(s)
- Claudio Guedes Salgado
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Pablo Pinto
- Laboratório de Genética Humana e Médica, ICB, UFPA, Belém, Brazil.,Núcleo de Pesquisas em Oncologia (NPO), UFPA, Belém, Brazil
| | - Raquel Carvalho Bouth
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Angélica Rita Gobbo
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Ana Caroline Cunha Messias
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | | | | | | | | | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Josafá Gonçalves Barreto
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil.,Laboratório de Epidemiologia Espacial (LabEE), Campus Castanhal, UFPA, Belém, Brazil
| | - Moisés Batista da Silva
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal do Pará (UFPA), Marituba, Brazil
| | - Marco Andrey Cipriani Frade
- Divisão de Dermatologia, Departamento de Clínica Médica da Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | - John Stewart Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, ICB, UFPA, Belém, Brazil.,Núcleo de Pesquisas em Oncologia (NPO), UFPA, Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, ICB, UFPA, Belém, Brazil.,Núcleo de Pesquisas em Oncologia (NPO), UFPA, Belém, Brazil
| |
Collapse
|
15
|
Coppola M, van den Eeden SJF, Robbins N, Wilson L, Franken KLMC, Adams LB, Gillis TP, Ottenhoff THM, Geluk A. Vaccines for Leprosy and Tuberculosis: Opportunities for Shared Research, Development, and Application. Front Immunol 2018. [PMID: 29535713 PMCID: PMC5834475 DOI: 10.3389/fimmu.2018.00308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) and leprosy still represent significant public health challenges, especially in low- and lower middle-income countries. Both poverty-related mycobacterial diseases require better tools to improve disease control. For leprosy, there has been an increased emphasis on developing tools for improved detection of infection and early diagnosis of disease. For TB, there has been a similar emphasis on such diagnostic tests, while increased research efforts have also focused on the development of new vaccines. Bacille Calmette–Guérin (BCG), the only available TB vaccine, provides insufficient and inconsistent protection to pulmonary TB in adults. The impact of BCG on leprosy, however, is significant, and the introduction of new TB vaccines that might replace BCG could, therefore, have serious impact also on leprosy. Given the similarities in antigenic makeup between the pathogens Mycobacterium tuberculosis (Mtb) and M. leprae, it is well possible, however, that new TB vaccines could cross-protect against leprosy. New TB subunit vaccines currently evaluated in human phase I and II studies indeed often contain antigens with homologs in M. leprae. In this review, we discuss pre-clinical studies and clinical trials of subunit or whole mycobacterial vaccines for TB and leprosy and reflect on the development of vaccines that could provide protection against both diseases. Furthermore, we provide the first preclinical evidence of such cross-protection by Mtb antigen 85B (Ag85B)-early secretory antigenic target (ESAT6) fusion recombinant proteins in in vivo mouse models of Mtb and M. leprae infection. We propose that preclinical integration and harmonization of TB and leprosy research should be considered and included in global strategies with respect to cross-protective vaccine research and development.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Naoko Robbins
- The National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Louis Wilson
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Linda B Adams
- The National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Tom P Gillis
- The National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. RECENT FINDINGS DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. SUMMARY Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.
Collapse
|
17
|
Ge C, Li R, Song H, Geng T, Yang J, Tan Q, Song L, Wang Y, Xue Y, Li Z, Dong S, Zhang Z, Zhang N, Guo J, Hua L, Chen S, Song X. Phase I clinical trial of a novel autologous modified-DC vaccine in patients with resected NSCLC. BMC Cancer 2017; 17:884. [PMID: 29268708 PMCID: PMC5740508 DOI: 10.1186/s12885-017-3859-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The primary aim of this study was to evaluate the safety of a novel dendritic cell (DC) vaccine pulsed with survivin and MUC1, silenced with suppressor of cytokine signaling 1 (SOCS1), and immune stimulated with flagellin for patients with stage I to IIIA non-small cell lung cancer (NSCLC) in a phase I open-label, uncontrolled, and dose-escalation trial. Moreover, we evaluate the potential efficacy of this modified DC vaccine as secondary aim. METHODS The patients were treated with the vaccine at 1 × 106, 1 × 107and the maximum dose 8 × 107 at day 7, 14, and 21 after characterization of the vaccine phenotype by flow cytometry. The safety of the vaccine was assessed by adverse events, and the efficacy by the levels of several specific tumor markers and the patient quality of life. RESULTS The vaccine was well tolerated without dose-limiting toxicity even at higher doses. The most common adverse event reported was just grade 1 flu-like symptoms without unanticipated or serious adverse event. A significant decrease in CD3 + CD4 + CD25 + Foxp3+ T regulatory (Treg) cell number and increase in TNF-α and IL-6 were observed in two patients. Two patients showed 15% and 64% decrease in carcino-embryonic antigen and CYFRA21, respectively. The vaccination with the maximum dose significantly improved the patients'quality of life when administered at the highest dose. More importantly, in the long-term follow-up until February 17, 2017, 1 patient had no recurrence, 1 patients had a progressive disease (PD), and 1 patient was died in the low dose group. In the middle dose group, all 3 patients had no recurrence. In the high dose group, 1 patient was died, 1 patient had a PD, and the other 7 patients had no recurrence. CONCLUSIONS We provide preliminary data on the safety and efficacy profile of a novel vaccine against non-small cell lung cancer, which was reasonably well tolerated, induced modest antitumor activity without dose-limiting toxicity, and improved patients' quality of life. Further more, the vaccine maybe a very efficacious treatment for patients with resected NSCLC to prevent recurrence. Our findings on the safety and efficacy of the vaccine in this phase I trial warrant future phase II/III clinical trial.
Collapse
Affiliation(s)
- Chunlei Ge
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Ruilei Li
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Haifeng Song
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Tao Geng
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Jinyan Yang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Qinghua Tan
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Linfeng Song
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Ying Wang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Yuanbo Xue
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Zhen Li
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Suwei Dong
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Zhiwei Zhang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Na Zhang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Jiyin Guo
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Lin Hua
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Siyi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX USA
- Department of Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Xin Song
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| |
Collapse
|
18
|
Torre C, Laure Tsoumtsa L, Ghigo É. La mémoire immunitaire entraînée chez les invertébrés. Med Sci (Paris) 2017; 33:979-983. [DOI: 10.1051/medsci/20173311015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Serrano-Coll H, Acevedo-Saenz L, Cardona-Castro N. A hypothetical role for Notch signaling pathway in immunopathogenesis of leprosy. Med Hypotheses 2017; 109:162-169. [DOI: 10.1016/j.mehy.2017.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
|
20
|
Oldenburg R, Demangel C. Pathogenic and immunosuppressive properties of mycobacterial phenolic glycolipids. Biochimie 2017; 141:3-8. [DOI: 10.1016/j.biochi.2017.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 01/29/2023]
|
21
|
Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Front Immunol 2017; 8:982. [PMID: 28861086 PMCID: PMC5559470 DOI: 10.3389/fimmu.2017.00982] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Owing to its memory and plasticity, the immune system (IS) is capable of recording all the immunological experiences and stimuli it was exposed to. The combination of type, dose, intensity, and temporal sequence of antigenic stimuli that each individual is exposed to has been named “immunobiography.” This immunological history induces a lifelong continuous adaptation of the IS, which is responsible for the capability to mount strong, weak or no response to specific antigens, thus determining the large heterogeneity of immunological responses. In the last years, it is becoming clear that memory is not solely a feature of adaptive immunity, as it has been observed that also innate immune cells are provided with a sort of memory, dubbed “trained immunity.” In this review, we discuss the main characteristics of trained immunity as a possible contributor to inflammaging within the perspective of immunobiography, with particular attention to the phenotypic changes of the cell populations known to be involved in trained immunity. In conclusion, immunobiography emerges as a pervasive and comprehensive concept that could help in understanding and interpret the individual heterogeneity of immune responses (to infections and vaccinations) that becomes particularly evident at old age and could affect immunosenescence and inflammaging.
Collapse
Affiliation(s)
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|