1
|
Arenas-Mosquera D, Pinto A, Cerny N, Berdasco C, Cangelosi A, Geoghegan PA, Malchiodi EL, De Marzi M, Goldstein J. Cytokines expression from altered motor thalamus and behavior deficits following sublethal administration of Shiga toxin 2a involve the induction of the globotriaosylceramide receptor. Toxicon 2022; 216:115-124. [PMID: 35835234 DOI: 10.1016/j.toxicon.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
Encephalopathy associated with hemolytic uremic syndrome is produced by enterohemorrhagic E. coli (EHEC) infection, which releases the virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS). Neurological compromise is a poor prognosis and mortality factor of the disease, and the thalamus is one of the brain areas most frequently affected. We have previously demonstrated the effectiveness of anti-inflammatory drugs to ameliorate the deleterious effects of these toxins. However, the thalamic production of cytokines involved in pro-inflammatory processes has not yet been acknowledged. The aim of this work attempts to determine whether systemic sublethal Stx2a or co-administration of Stx2a with LPS are able to rise a proinflammatory profile accompanying alterations of the neurovascular unit in anterior and lateral ventral nuclei of the thalamus (VA-VL) and motor behavior in mice. After 4 days of treatment, Stx2a affected the lectin-bound microvasculature distribution while increasing the expression of GFAP in reactive astrocytes and producing aberrant NeuN distribution in degenerative neurons. In addition, increased swimming latency was observed in a motor behavioral test. All these alterations were heightened when Stx2a was co-administered with LPS. The expression of pro-inflammatory cytokines TNFα, INF-γ and IL-2 was detected in VA-VL. All these effects were concomitant with increased expression of the Stx receptor globotriaosylceramide (Gb3), which hints at receptor involvement in the neuroinflammatory process as a key finding of this study. In conclusion, Stx2a to Gb3 may be determinant in triggering a neuroinflammatory event, which may resemble clinical outcomes and should thus be considered in the development of preventive strategies.
Collapse
Affiliation(s)
- David Arenas-Mosquera
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - Natacha Cerny
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología e Instituto de Estudios de La Inmunidad Humoral (IDEHU), UBA-CONICET, Junín 956 Piso 4, 1113, Ciudad de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología e Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Paraguay 2155 Piso 12, 1121, Ciudad de Buenos Aires, Argentina
| | - Clara Berdasco
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), "ANLIS, Dr. Carlos G. Malbrán", Avenida Vélez Sarsfield 563, 1282, Ciudad de Buenos Aires, Argentina
| | - Patricia Andrea Geoghegan
- Centro Nacional de Control de Calidad de Biológicos (CNCCB), "ANLIS, Dr. Carlos G. Malbrán", Avenida Vélez Sarsfield 563, 1282, Ciudad de Buenos Aires, Argentina
| | - Emilio Luis Malchiodi
- Universidad de Buenos Aires, IDEHU-CONICET, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Junín 956, Piso 4°, 1113, Ciudad de Buenos Aires, Argentina
| | - Mauricio De Marzi
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Ruta 5 y Avenida Constitución (6700) Luján, Buenos Aires, Argentina; Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES)-CONICET, Laboratorio de Inmunología, Ruta 5 y Avenida Constitución (6700) Luján, Buenos Aires, Argentina
| | - Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica ''Houssay" (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Paraguay 2155 Piso 7, 1121, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Li S, Chen Y, Zhang Y, Lv H, Luo L, Wang S, Guan X. Polyphenolic Extracts of Coffee Cherry Husks Alleviated Colitis-Induced Neural Inflammation via NF-κB Signaling Regulation and Gut Microbiota Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6467-6477. [PMID: 35588304 DOI: 10.1021/acs.jafc.2c02079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coffee cherry husks, the main byproduct of coffee production, contain an abundance of polyphenols. In this study, dextran sodium sulfate (DSS)-induced colitis mice were used to study the protective effects of polyphenolic extracts of coffee cherry husks (CCHP) on inflammation. The results indicated that CCHP administration alleviated the histological changes of DSS-induced colitis in mice and downregulated the mRNA level of TNF-α, IL-1β, IL-6 and Cox-2. Interestingly, CCHP inhibited the activation of microglia and suppressed neural inflammation in the brain. The TLR4/Myd88/NF-κB signaling pathway was examined and found to be inhibited by CCHP. Furthermore, a determination of the gut microbiota showed that an alteration of microbiota induced by DSS was restored by CCHP, including the decrease of the relative abundance of Proteobacteria and the increase of Bacteroidota. In conclusion, our results revealed the great potential of CCHP to alleviate brain inflammation in colitis mice by inhibiting the NF-κB signaling pathway and regulating gut microbiota.
Collapse
Affiliation(s)
- Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Yu Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongyan Lv
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Lei Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Shuo Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
3
|
Kim JS, Lee MS, Kim JH. Recent Updates on Outbreaks of Shiga Toxin-Producing Escherichia coli and Its Potential Reservoirs. Front Cell Infect Microbiol 2020; 10:273. [PMID: 32582571 PMCID: PMC7287036 DOI: 10.3389/fcimb.2020.00273] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Following infection with certain strains of Shiga toxin-producing Escherichia coli (STEC), particularly enterohemorrhagic ones, patients are at elevated risk for developing life-threatening extraintestinal complications, such as acute renal failure. Hence, these bacteria represent a public health concern in both developed and developing countries. Shiga toxins (Stxs) expressed by STEC are highly cytotoxic class II ribosome-inactivating proteins and primary virulence factors responsible for major clinical signs of Stx-mediated pathogenesis, including bloody diarrhea, hemolytic uremic syndrome (HUS), and neurological complications. Ruminant animals are thought to serve as critical environmental reservoirs of Stx-producing Escherichia coli (STEC), but other emerging or arising reservoirs of the toxin-producing bacteria have been overlooked. In particular, a number of new animal species from wildlife and aquaculture industries have recently been identified as unexpected reservoir or spillover hosts of STEC. Here, we summarize recent findings about reservoirs of STEC and review outbreaks of these bacteria both within and outside the United States. A better understanding of environmental transmission to humans will facilitate the development of novel strategies for preventing zoonotic STEC infection.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Moo-Seung Lee
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea.,Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
4
|
Molecular Biology of Escherichia Coli Shiga Toxins' Effects on Mammalian Cells. Toxins (Basel) 2020; 12:toxins12050345. [PMID: 32456125 PMCID: PMC7290813 DOI: 10.3390/toxins12050345] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Shiga toxins (Stxs), syn. Vero(cyto)toxins, are potent bacterial exotoxins and the principal virulence factor of enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin-producing E. coli (STEC). EHEC strains, e.g., strains of serovars O157:H7 and O104:H4, may cause individual cases as well as large outbreaks of life-threatening diseases in humans. Stxs primarily exert a ribotoxic activity in the eukaryotic target cells of the mammalian host resulting in rapid protein synthesis inhibition and cell death. Damage of endothelial cells in the kidneys and the central nervous system by Stxs is central in the pathogenesis of hemolytic uremic syndrome (HUS) in humans and edema disease in pigs. Probably even more important, the toxins also are capable of modulating a plethora of essential cellular functions, which eventually disturb intercellular communication. The review aims at providing a comprehensive overview of the current knowledge of the time course and the consecutive steps of Stx/cell interactions at the molecular level. Intervention measures deduced from an in-depth understanding of this molecular interplay may foster our basic understanding of cellular biology and microbial pathogenesis and pave the way to the creation of host-directed active compounds to mitigate the pathological conditions of STEC infections in the mammalian body.
Collapse
|
5
|
Pradhan S, Karve SS, Weiss AA, Hawkins J, Poling HM, Helmrath MA, Wells JM, McCauley HA. Tissue Responses to Shiga Toxin in Human Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2020; 10:171-190. [PMID: 32145469 PMCID: PMC7240222 DOI: 10.1016/j.jcmgh.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Shiga toxin (Stx)-producing Escherichia coli (eg, O157:H7) infection produces bloody diarrhea, while Stx inhibits protein synthesis and causes the life-threatening systemic complication of hemolytic uremic syndrome. The murine intestinal tract is resistant to O157:H7 and Stx, and human cells in culture fail to model the complex tissue responses to intestinal injury. We used genetically identical, human stem cell-derived intestinal tissues of varying complexity to study Stx toxicity in vitro and in vivo. METHODS In vitro susceptibility to apical or basolateral exposure to Stx was assessed using human intestinal organoids (HIOs) derived from embryonic stem cells, or enteroids derived from multipotent intestinal stem cells. HIOs contain a lumen, with a single layer of differentiated epithelium surrounded by mesenchymal cells. Enteroids only contain epithelium. In vivo susceptibility was assessed using HIOs, with or without an enteric nervous system, transplanted into mice. RESULTS Stx induced necrosis and apoptotic death in both epithelial and mesenchymal cells. Responses that require protein synthesis (cellular proliferation and wound repair) also were observed. Epithelial barrier function was maintained even after epithelial cell death was seen, and apical to basolateral translocation of Stx was seen. Tissue cross-talk, in which mesenchymal cell damage caused epithelial cell damage, was observed. Stx induced mesenchymal expression of the epithelial marker E-cadherin, the initial step in mesenchymal-epithelial transition. In vivo responses of HIO transplants injected with Stx mirrored those seen in vitro. CONCLUSIONS Intestinal tissue responses to protein synthesis inhibition by Stx are complex. Organoid models allow for an unprecedented examination of human tissue responses to a deadly toxin.
Collapse
Affiliation(s)
- Suman Pradhan
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio
| | - Sayali S Karve
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio
| | - Alison A Weiss
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio.
| | | | | | | | - James M Wells
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Heather A McCauley
- Center for Stem Cell and Organoid Medicine, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
6
|
Exeni RA, Fernandez-Brando RJ, Santiago AP, Fiorentino GA, Exeni AM, Ramos MV, Palermo MS. Pathogenic role of inflammatory response during Shiga toxin-associated hemolytic uremic syndrome (HUS). Pediatr Nephrol 2018; 33:2057-2071. [PMID: 29372302 DOI: 10.1007/s00467-017-3876-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/01/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Hemolytic uremic syndrome (HUS) is defined as a triad of noninmune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The most frequent presentation is secondary to Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, which is termed postdiarrheal, epidemiologic or Stx-HUS, considering that Stx is the necessary etiological factor. After ingestion, STEC colonize the intestine and produce Stx, which translocates across the intestinal epithelium. Once Stx enters the bloodstream, it interacts with renal endothelial and epithelial cells, and leukocytes. This review summarizes the current evidence about the involvement of inflammatory components as central pathogenic factors that could determine outcome of STEC infections. Intestinal inflammation may favor epithelial leakage and subsequent passage of Stx to the systemic circulation. Vascular damage triggered by Stx promotes not only release of thrombin and increased fibrin concentration but also production of cytokines and chemokines by endothelial cells. Recent evidence from animal models and patients strongly indicate that several immune cells types may participate in HUS physiopathology: neutrophils, through release of proteases and reactive oxygen species (ROS); monocytes/macrophages through secretion of cytokines and chemokines. In addition, high levels of Bb factor and soluble C5b-9 (sC5b-9) in plasma as well as complement factors adhered to platelet-leukocyte complexes, microparticles and microvesicles, suggest activation of the alternative pathway of complement. Thus, acute immune response secondary to STEC infection, the Stx stimulatory effect on different immune cells, and inflammatory stimulus secondary to endothelial damage all together converge to define a strong inflammatory status that worsens Stx toxicity and disease.
Collapse
Affiliation(s)
- Ramon Alfonso Exeni
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Romina Jimena Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Adriana Patricia Santiago
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Gabriela Alejandra Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
- Laboratorio, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Andrea Mariana Exeni
- Servicio de Nefrología, Hospital Austral, Pilar, Provincia de Buenos Aires, Argentina
| | - Maria Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|