1
|
D’Angelo C, Faggiano S, Imbimbo P, Viale E, Casillo A, Bettati S, Olimpo D, Tutino ML, Monti DM, Corsaro MM, Ronda L, Parrilli E. Pentadecanoic Acid-Releasing PDMS: Towards a New Material to Prevent S. epidermidis Biofilm Formation. Int J Mol Sci 2024; 25:10727. [PMID: 39409056 PMCID: PMC11476977 DOI: 10.3390/ijms251910727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Microbial biofilm formation on medical devices paves the way for device-associated infections. Staphylococcus epidermidis is one of the most common strains involved in such infections as it is able to colonize numerous devices, such as intravenous catheters, prosthetic joints, and heart valves. We previously reported the antibiofilm activity against S. epidermidis of pentadecanoic acid (PDA) deposited by drop-casting on the silicon-based polymer poly(dimethyl)siloxane (PDMS). This material exerted an antibiofilm activity by releasing PDA; however, a toxic effect on bacterial cells was observed, which could potentially favor the emergence of resistant strains. To develop a PDA-functionalized material for medical use and overcome the problem of toxicity, we produced PDA-doped PDMS by either spray-coating or PDA incorporation during PDMS polymerization. Furthermore, we created a strategy to assess the kinetics of PDA release using ADIFAB, a very sensitive free fatty acids fluorescent probe. Spray-coating resulted in the most promising strategy as the concentration of released PDA was in the range 0.8-1.5 μM over 21 days, ensuring long-term effectiveness of the antibiofilm molecule. Moreover, the new coated material resulted biocompatible when tested on immortalized human keratinocytes. Our results indicate that PDA spray-coated PDMS is a promising material for the production of medical devices endowed with antibiofilm activity.
Collapse
Affiliation(s)
- Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (P.I.); (A.C.); (D.O.); (M.L.T.); (D.M.M.); (M.M.C.)
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
- Institute of Biophysics, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (S.B.); (L.R.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (P.I.); (A.C.); (D.O.); (M.L.T.); (D.M.M.); (M.M.C.)
| | - Elisabetta Viale
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy;
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (P.I.); (A.C.); (D.O.); (M.L.T.); (D.M.M.); (M.M.C.)
| | - Stefano Bettati
- Institute of Biophysics, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (S.B.); (L.R.)
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy;
| | - Diana Olimpo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (P.I.); (A.C.); (D.O.); (M.L.T.); (D.M.M.); (M.M.C.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (P.I.); (A.C.); (D.O.); (M.L.T.); (D.M.M.); (M.M.C.)
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (P.I.); (A.C.); (D.O.); (M.L.T.); (D.M.M.); (M.M.C.)
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (P.I.); (A.C.); (D.O.); (M.L.T.); (D.M.M.); (M.M.C.)
| | - Luca Ronda
- Institute of Biophysics, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (S.B.); (L.R.)
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy;
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (P.I.); (A.C.); (D.O.); (M.L.T.); (D.M.M.); (M.M.C.)
| |
Collapse
|
2
|
Caudal F, Roullier C, Rodrigues S, Dufour A, Artigaud S, Le Blay G, Bazire A, Petek S. Anti-Biofilm Extracts and Molecules from the Marine Environment. Mar Drugs 2024; 22:313. [PMID: 39057422 PMCID: PMC11278325 DOI: 10.3390/md22070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Pathogenic bacteria and their biofilms are involved in many diseases and represent a major public health problem, including the development of antibiotic resistance. These biofilms are known to cause chronic infections for which conventional antibiotic treatments are often ineffective. The search for new molecules and innovative solutions to combat these pathogens and their biofilms has therefore become an urgent need. The use of molecules with anti-biofilm activity would be a potential solution to these problems. The marine world is rich in micro- and macro-organisms capable of producing secondary metabolites with original skeletons. An interest in the chemical strategies used by some of these organisms to regulate and/or protect themselves against pathogenic bacteria and their biofilms could lead to the development of bioinspired, eco-responsible solutions. Through this original review, we listed and sorted the various molecules and extracts from marine organisms that have been described in the literature as having strictly anti-biofilm activity, without bactericidal activity.
Collapse
Affiliation(s)
- Flore Caudal
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMER, UR 2160, 40000 Nantes, France;
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
| | - Sébastien Artigaud
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| | - Gwenaelle Le Blay
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France; (F.C.); (S.R.); (A.D.)
| | - Sylvain Petek
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, IUEM, 29280 Plouzane, France; (S.A.); (G.L.B.)
| |
Collapse
|
3
|
Verma J, Devi S, Narang A, Kaur S, Manhas RK. Probiotic potential of Streptomyces levis strain HFM-2 isolated from human gut and its antibiofilm properties against pathogenic bacteria. BMC Microbiol 2024; 24:208. [PMID: 38862894 PMCID: PMC11165917 DOI: 10.1186/s12866-024-03353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a serious worldwide public health concern that needs immediate action. Probiotics could be a promising alternative for fighting antibiotic resistance, displaying beneficial effects to the host by combating diseases, improving growth, and stimulating the host immune responses against infection. This study was conducted to evaluate the probiotic, antibacterial, and antibiofilm potential of Streptomyces levis strain HFM-2 isolated from the healthy human gut. RESULTS In vitro antibacterial activity in the cell-free supernatant of S. levis strain HFM-2 was evaluated against different pathogens viz. K. pneumoniae sub sp. pneumoniae, S. aureus, B. subtilis, VRE, S. typhi, S. epidermidis, MRSA, V. cholerae, M. smegmatis, E. coli, P. aeruginosa and E. aerogenes. Further, the ethyl acetate extract from S. levis strain HFM-2 showed strong biofilm inhibition against S. typhi, K. pneumoniae sub sp. pneumoniae, P. aeruginosa and E. coli. Fluorescence microscopy was used to detect biofilm inhibition properties. MIC and MBC values of EtOAc extract were determined at 500 and 1000 µg/mL, respectively. Further, strain HFM-2 showed high tolerance in gastric juice, pancreatin, bile, and at low pH. It exhibited efficient adhesion properties, displaying auto-aggregation (97.0%), hydrophobicity (95.71%, 88.96%, and 81.15% for ethyl acetate, chloroform and xylene, respectively), and showed 89.75%, 86.53%, 83.06% and 76.13% co-aggregation with S. typhi, MRSA, S. pyogenes and E. coli, respectively after 60 min of incubation. The S. levis strain HFM-2 was susceptible to different antibiotics such as tetracycline, streptomycin, kanamycin, ciprofloxacin, erythromycin, linezolid, meropenem, amikacin, gentamycin, clindamycin, moxifloxacin and vancomycin, but resistant to ampicillin and penicillin G. CONCLUSION The study shows that S. levis strain HFM-2 has significant probiotic properties such as good viability in bile, gastric juice, pancreatin environment, and at low pH; proficient adhesion properties, and antibiotic susceptibility. Further, the EtOAc extract of Streptomyces levis strain HFM-2 has a potent antibiofilm and antibacterial activity against antibacterial-resistant clinical pathogens.
Collapse
Affiliation(s)
- Jaya Verma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sapna Devi
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
4
|
D’Angelo C, Trecca M, Carpentieri A, Artini M, Selan L, Tutino ML, Papa R, Parrilli E. Cold-Azurin, a New Antibiofilm Protein Produced by the Antarctic Marine Bacterium Pseudomonas sp. TAE6080. Mar Drugs 2024; 22:61. [PMID: 38393032 PMCID: PMC10890351 DOI: 10.3390/md22020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm is accountable for nosocomial infections and chronic illness, making it a serious economic and public health problem. Staphylococcus epidermidis, thanks to its ability to form biofilm and colonize biomaterials, represents the most frequent causative agent involved in biofilm-associated infections of medical devices. Therefore, the research of new molecules able to interfere with S. epidermidis biofilm formation has a remarkable interest. In the present work, the attention was focused on Pseudomonas sp. TAE6080, an Antarctic marine bacterium able to produce and secrete an effective antibiofilm compound. The molecule responsible for this activity was purified by an activity-guided approach and identified by LC-MS/MS. Results indicated the active protein was a periplasmic protein similar to the Pseudomonas aeruginosa PAO1 azurin, named cold-azurin. The cold-azurin was recombinantly produced in E. coli and purified. The recombinant protein was able to impair S. epidermidis attachment to the polystyrene surface and effectively prevent biofilm formation.
Collapse
Affiliation(s)
- Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| |
Collapse
|
5
|
Artini M, Papa R, Vrenna G, Trecca M, Paris I, D’Angelo C, Tutino ML, Parrilli E, Selan L. Antarctic Marine Bacteria as a Source of Anti-Biofilm Molecules to Combat ESKAPE Pathogens. Antibiotics (Basel) 2023; 12:1556. [PMID: 37887257 PMCID: PMC10604463 DOI: 10.3390/antibiotics12101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The ESKAPE pathogens, including bacteria such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, pose a global health threat due to their ability to resist antimicrobial drugs and evade the immune system. These pathogens are responsible for hospital-acquired infections, especially in intensive care units, and contribute to the growing problem of multi-drug resistance. In this study, researchers focused on exploring the potential of Antarctic marine bacteria as a source of anti-biofilm molecules to combat ESKAPE pathogens. Four Antarctic bacterial strains were selected, and their cell-free supernatants were tested against 60 clinical ESKAPE isolates. The results showed that the supernatants did not exhibit antimicrobial activity but effectively prevented biofilm formation and dispersed mature biofilms. This research highlights the promising potential of Antarctic bacteria in producing compounds that can counteract biofilms formed by clinically significant bacterial species. These findings contribute to the development of new strategies for preventing and controlling infections caused by ESKAPE pathogens.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Irene Paris
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| |
Collapse
|
6
|
Eze OC, Berebon DP, Emencheta SC, Evurani SA, Okorie CN, Balcão VM, Vila MMDC. Therapeutic Potential of Marine Probiotics: A Survey on the Anticancer and Antibacterial Effects of Pseudoalteromonas spp. Pharmaceuticals (Basel) 2023; 16:1091. [PMID: 37631006 PMCID: PMC10458718 DOI: 10.3390/ph16081091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the increasing limitations and negative impacts of the current options for preventing and managing diseases, including chemotherapeutic drugs and radiation, alternative therapies are needed, especially ones utilizing and maximizing natural products (NPs). NPs abound with diverse bioactive primary and secondary metabolites and compounds with therapeutic properties. Marine probiotics are beneficial microorganisms that inhabit marine environments and can benefit their hosts by improving health, growth, and disease resistance. Several studies have shown they possess potential bioactive and therapeutic actions against diverse disease conditions, thus opening the way for possible exploitation of their benefits through their application. Pseudoalteromonas spp. are a widely distributed heterotrophic, flagellated, non-spore-forming, rod-shaped, and gram-negative marine probiotic bacteria species with reported therapeutic capabilities, including anti-cancer and -bacterial effects. This review discusses the basic concepts of marine probiotics and their therapeutic effects. Additionally, a survey of the anticancer and antibacterial effects of Pseudoalteromonas spp. is presented. Finally, marine probiotic production, advances, prospects, and future perspectives is presented.
Collapse
Affiliation(s)
- Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| | - Somtochukwu A. Evurani
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Chibundo N. Okorie
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria; (O.C.E.); (S.A.E.); (C.N.O.)
| | - Victor M. Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Marta M. D. C. Vila
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil; (V.M.B.); (M.M.D.C.V.)
| |
Collapse
|
7
|
Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico. Metabolites 2023; 13:metabo13020281. [PMID: 36837900 PMCID: PMC9966293 DOI: 10.3390/metabo13020281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Breynia cernua has been used as an alternative medicine for wounds, smallpox, cervical cancer, and breast cancer. This plant is a potential source of new plant-derived drugs to cure numerous diseases for its multiple therapeutic functions. An in vitro study revealed that the methanol extract of B. cernua (stem) exhibits antioxidant activity according to DPPH and SOD methods, with IC50 values of 33 and 8.13 ppm, respectively. The extract also exerts antibacterial activity against Staphylococcus aureus with minimum bactericidal concentration of 1875 ppm. Further analysis revealed that the extract with a concentration of 1-2 ppm protects erythrocytes from the ring formation stage of Plasmodium falciparum, while the extract with a concentration of 1600 ppm induced apoptosis in the MCF-7 breast cancer cell line. GC-MS analysis showed 45 bioactive compounds consisting of cyclic, alkyl halide, organosulfur, and organoarsenic compounds. Virtual screening via a blind docking approach was conducted to analyze the binding affinity of each metabolite against various target proteins. The results unveiled that two compounds, namely, N-[β-hydroxy-β-[4-[1-adamantyl-6,8-dichloro]quinolyl]ethyl]piperidine and 1,3-phenylene, bis(3-phenylpropenoate), demonstrated the best binding score toward four tested proteins with a binding affinity varying from -8.3 to -10.8 kcal/mol. Site-specific docking analysis showed that the two compounds showed similar binding energy with native ligands. This finding indicated that the two phenolic compounds could be novel antioxidant, antibacterial, antiplasmodial, and anticancer drugs. A thorough analysis by monitoring drug likeness and pharmacokinetics revealed that almost all the identified compounds can be considered as drugs, and they have good solubility, oral bioavailability, and synthetic accessibility. Altogether, the in vitro and in silico analysis suggested that the extract of B. cernua (stem) contains various compounds that might be correlated with its bioactivities.
Collapse
|
8
|
D’Angelo C, Casillo A, Melchiorre C, Lauro C, Corsaro MM, Carpentieri A, Tutino ML, Parrilli E. CATASAN Is a New Anti-Biofilm Agent Produced by the Marine Antarctic Bacterium Psychrobacter sp. TAE2020. Mar Drugs 2022; 20:md20120747. [PMID: 36547894 PMCID: PMC9785100 DOI: 10.3390/md20120747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The development of new approaches to prevent microbial surface adhesion and biofilm formation is an emerging need following the growing understanding of the impact of biofilm-related infections on human health. Staphylococcus epidermidis, with its ability to form biofilm and colonize biomaterials, represents the most frequent causative agent involved in infections of medical devices. In the research of new anti-biofilm agents against S. epidermidis biofilm, Antarctic marine bacteria represent an untapped reservoir of biodiversity. In the present study, the attention was focused on Psychrobacter sp. TAE2020, an Antarctic marine bacterium that produces molecules able to impair the initial attachment of S. epidermidis strains to the polystyrene surface. The setup of suitable purification protocols allowed the identification by NMR spectroscopy and LC-MS/MS analysis of a protein-polysaccharide complex named CATASAN. This complex proved to be a very effective anti-biofilm agent. Indeed, it not only interferes with cell surface attachment, but also prevents biofilm formation and affects the mature biofilm matrix structure of S. epidermidis. Moreover, CATASAN is endowed with a good emulsification activity in a wide range of pH and temperature. Therefore, its use can be easily extended to different biotechnological applications.
Collapse
Affiliation(s)
- Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi—I.N.B.B., Viale Medaglie d’Oro, 305-00136 Rome, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
- Correspondence: ; Tel.: +39-081674003; Fax: +39-081674113
| |
Collapse
|
9
|
Kok MGM, Mora MF, Noell AC, Parker CW, Willis PA. A Novel and Sensitive Method for the Analysis of Fatty Acid Biosignatures by Capillary Electrophoresis-Mass Spectrometry. Anal Chem 2022; 94:12807-12814. [PMID: 36066097 DOI: 10.1021/acs.analchem.2c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fatty acids are a well-established class of compounds targeted as biosignatures for future missions to look for evidence of life on ocean worlds such as Europa and Enceladus. In order to establish their abiotic or biotic origin, we need to separate and quantify fatty acids to determine their relative abundances within a sample. In this study, we demonstrate the high potential of capillary electrophoresis coupled to mass spectrometry (CE-MS) for the efficient separation and sensitive detection of a wide variety of fatty acids. Three derivatization strategies were evaluated to allow the detection of fatty acids by positive ionization mode MS. Furthermore, CE-MS conditions were optimized to provide maximum separation efficiencies and detection sensitivities for the analysis of saturated and unsaturated fatty acids with even- and odd-numbered carbon chain lengths. Optimum separation and detection were obtained using a background electrolyte of 2 M acetic acid in 45% acetonitrile, after derivatization of the fatty acids with 2-picolylamine or N,N-diethylethylenediamine. The limits of detection for the derivatized fatty acids using the optimized method ranged from 25 to 250 nM. The optimized method was also used for the analysis of fatty acids in cell cultures and natural samples. Two distinctive biosignatures were obtained for the microorganisms Halobacillus halophilus and Pseudoalteromonas haloplanktis. In addition, multiple fatty acids were detected in a natural sample from Mono Lake, California.
Collapse
Affiliation(s)
- Miranda G M Kok
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Maria F Mora
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Aaron C Noell
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Ceth W Parker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Peter A Willis
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
10
|
Antagonistic activity of selenium-enriched Bifidobacterium breve against Clostridioides difficile. Appl Microbiol Biotechnol 2022; 106:6181-6194. [PMID: 35962282 DOI: 10.1007/s00253-022-12124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Probiotics have the potential to be used in the prevention of Clostridioides difficile infection (CDI). In this study, selenium (Se)-enriched Bifidobacterium breve YH68-Se was obtained under optimal culture conditions with single-factor and response surface optimization. The overall environmental resistance of YH68-Se was superior to that of the parental strain YH68, mainly reflected in the substantial improvement of antioxidant activity and gastrointestinal tolerance. YH68-Se dramatically inhibited C. difficile growth, spore, biofilm, toxin production, and virulence gene expression, rapidly disrupted C. difficile cell membrane permeability and integrity, and altered the membrane proton motive force (PMF), induced a large outflow of intracellular substances and eventually caused bacterial death. The main factor inducing this process originated from the lactic acid (LD) in YH68-Se. In addition, the LD production of YH68 increased with increasing selenite concentration and was accompanied by enhanced activities of thioredoxin reductase (TrxR), glutathione peroxidase (GSH-Px), and increased concentration of autoinducer-2 (AI-2), which may be the crucial factors contributing to the outstanding probiotic properties of YH68-Se and their potent antagonism of C. difficile. KEY POINTS: • Compared with the parental strain B. breve YH68, the environmental resistance of YH68-Se was improved. • YH68-Se was able to produce more lactic acid, which suppressed the important physiological activities of C. difficile and rapidly disrupted their cell membrane structures. • Sodium selenite in the suitable concentration range gradually increases the yield of lactic acid and phenylacetic acid, increased the concentration of autoinducer-2, and enhanced the activities of antioxidant enzymes TrxR and GSH-Px in YH68.
Collapse
|
11
|
Venuti I, Ceruso M, D’Angelo C, Casillo A, Pepe T. Antimicrobial activity evaluation of pure compounds obtained from Pseudoalteromonas haloplanktis against Listeria monocytogenes: Preliminary results. Ital J Food Saf 2022; 11:10320. [PMID: 35832041 PMCID: PMC9272078 DOI: 10.4081/ijfs.2022.10320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
L. monocytogenes is a foodborne pathogen responsible for a serious disease with a high mortality rate, particularly in vulnerable consumers. Recently, the scientific community has shown increasing attention to the search for new natural molecules with antimicrobial activity, aimed at preventing the spread of foodborne diseases. Extremophilic microorganisms, typical of extreme temperature environments, are a valuable source of these molecules. The present work aimed to study the antibacterial activity of four pure compounds derived from a molecule, the pentadecanal, produced by the Antarctic bacterium Pseudoalteromonas haloplanktis, against two different pathotypes of L. monocytogenes. Growth assays were performed in 96-well polystyrene plates with serial dilutions of the tested compounds at different concentrations (0.6, 0.3, 0.15, 0.07 mg/mL). The plates were incubated at 37°C for 24 h, with a spectrophotometric reading at OD 600 nm. Preliminary results of this study showed that pentadecanal inhibits the growth of L. monocytogenes, with a MIC (Minimum Inhibitory Concentration) of 0.6 mg/mL. Acetal, carboxylic acid, and ester did not demonstrate antibacterial activity at the concentrations tested. These findings suggest the possibility of using pentadecanal as a natural antibacterial to improve safety standards along the food supply chain.
Collapse
Affiliation(s)
| | - Marina Ceruso
- Department of Veterinary Medicine and Animal Production
| | | | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production
| |
Collapse
|
12
|
Artini M, Papa R, Sapienza F, Božović M, Vrenna G, Tuccio Guarna Assanti V, Sabatino M, Garzoli S, Fiscarelli EV, Ragno R, Selan L. Essential Oils Biofilm Modulation Activity and Machine Learning Analysis on Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Microorganisms 2022; 10:microorganisms10050887. [PMID: 35630332 PMCID: PMC9145053 DOI: 10.3390/microorganisms10050887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is often involved in airway infections of cystic fibrosis (CF) patients. It persists in the hostile CF lung environment, inducing chronic infections due to the production of several virulence factors. In this regard, the ability to form a biofilm plays a pivotal role in CF airway colonization by P. aeruginosa. Bacterial virulence mitigation and bacterial cell adhesion hampering and/or biofilm reduced formation could represent a major target for the development of new therapeutic treatments for infection control. Essential oils (EOs) are being considered as a potential alternative in clinical settings for the prevention, treatment, and control of infections sustained by microbial biofilms. EOs are complex mixtures of different classes of organic compounds, usually used for the treatment of upper respiratory tract infections in traditional medicine. Recently, a wide series of EOs were investigated for their ability to modulate biofilm production by different pathogens comprising S. aureus, S. epidermidis, and P. aeruginosa strains. Machine learning (ML) algorithms were applied to develop classification models in order to suggest a possible antibiofilm action for each chemical component of the studied EOs. In the present study, we assessed the biofilm growth modulation exerted by 61 commercial EOs on a selected number of P. aeruginosa strains isolated from CF patients. Furthermore, ML has been used to shed light on the EO chemical components likely responsible for the positive or negative modulation of bacterial biofilm formation.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Mijat Božović
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy; (V.T.G.A.); (E.V.F.)
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy; (V.T.G.A.); (E.V.F.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
- Società Italiana Ricerca Oli Essenziali, Viale Regina Elena 299, 00161 Roma, Italy
- Correspondence: (R.R.); (L.S.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
- Correspondence: (R.R.); (L.S.)
| |
Collapse
|
13
|
Lauro C, Colarusso A, Calvanese M, Parrilli E, Tutino ML. Conditional gene silencing in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Res Microbiol 2022; 173:103939. [DOI: 10.1016/j.resmic.2022.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
14
|
Riccardi C, D'Angelo C, Calvanese M, Ricciardelli A, Sellitto A, Giurato G, Tutino ML, Weisz A, Parrilli E, Fondi M. Whole-genome sequencing of Pseudomonas sp. TAE6080, a strain capable of inhibiting Staphylococcus epidermidis biofilm. Mar Genomics 2021; 60:100887. [PMID: 34627549 DOI: 10.1016/j.margen.2021.100887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022]
Abstract
Antarctic bacteria are able to survive under extreme environmental conditions and have adapted to exploit some of the most ephemeral nutrient pockets. Importantly, such strains have been often shown to be capable of synthesizing compounds of valuable biotechnological importance. Here we show that Pseudomonas sp. TAE6080, a possibly new bacterium isolated in 1994 during water column samplings near the French Antarctic station Dumont d'Urville, is capable of inhibiting the formation of Staphylococcus epidermidis biofilm, known to be an important opportunistic pathogen in infections associated to medical devices. A better understanding of this bacterium can therefore provide useful insight on new bioactive molecules that could play a role against chronic infections. To this end, the anti-biofilm effect of cell-free supernatant of Pseudomonas sp. TAE6080 was evaluated on S. epidermidis RP62A biofilm formation, demonstrating that it significantly reduced its aggregation. Furthermore, genome sequencing, assembly and mining revealed a plethora of putative biosynthetic gene clusters that might be involved in biofilm disruption. The experimental and genomic data presented here open the venue to further investigations on the molecular basis underlying biofilm inhibition.
Collapse
Affiliation(s)
- Christopher Riccardi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Italy.
| | - Caterina D'Angelo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy
| | - Marzia Calvanese
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy
| | - Annarita Ricciardelli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 84081 Baronissi, Italy; Genome Research Center for Health - GRGS, Campus di Medicina, Via S. Allende, 84081 Baronissi, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 84081 Baronissi, Italy; Genome Research Center for Health - GRGS, Campus di Medicina, Via S. Allende, 84081 Baronissi, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Galdiero E, Ricciardelli A, D'Angelo C, de Alteriis E, Maione A, Albarano L, Casillo A, Corsaro MM, Tutino ML, Parrilli E. Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: towards the development of an anti-biofilm coating to prevent polymicrobial infections. Res Microbiol 2021; 172:103880. [PMID: 34563667 DOI: 10.1016/j.resmic.2021.103880] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
The ability to form biofilms is a common feature of microorganisms, which can colonize a variety of surfaces, such as host tissues and medical devices, resulting in infections highly resistant to conventional drugs. This aspect is particularly critical in polymicrobial biofilms involving both fungi and bacteria, therefore, to eradicate such severe infections, new and effective anti-biofilm strategies are needed. The efficacy of pentadecanal and pentadecanoic acid as anti-biofilm agents has been recently reported against different bacterial strains. Their chemical similarity with diffusible signal factors (DSFs), plus the already known ability of fatty acids to act as anti-biofilm agents, suggested to explore their use against Candida albicans and Klebsiella pneumoniae mixed biofilm. In this work, we demonstrated the ability of both molecules to prevent the formation and destabilize the structure of the dual-species biofilm. Moreover, the pentadecanoic acid anti-biofilm coating, previously developed through the adsorption of the fatty acid on polydimethylsiloxane (PDMS), was proved to prevent the polymicrobial biofilm formation in dynamic conditions by confocal laser scanning microscopy analysis. Finally, the evaluation of the expression levels of some biofilm-related genes of C. albicans and K. pneumoniae treated with pentadecanoic acid provided some insights into the molecular mechanisms underpinning its anti-biofilm effect.
Collapse
Affiliation(s)
- E Galdiero
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Santangelo, Via Cinthia 21, 80126, Naples, Italy
| | - A Ricciardelli
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - C D'Angelo
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - E de Alteriis
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Santangelo, Via Cinthia 21, 80126, Naples, Italy
| | - A Maione
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Santangelo, Via Cinthia 21, 80126, Naples, Italy
| | - L Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Santangelo, Via Cinthia 21, 80126, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy; Department of Marine Biothecnology, Stazione Zoologica Anton Dohrn Villa Comunale, 80121, Naples, Italy
| | - A Casillo
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - M M Corsaro
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - M L Tutino
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - E Parrilli
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy.
| |
Collapse
|
16
|
Papa R, Vrenna G, D’Angelo C, Casillo A, Relucenti M, Donfrancesco O, Corsaro MM, Fiscarelli EV, Tuccio Guarna Assanti V, Tutino ML, Parrilli E, Artini M, Selan L. Anti-Virulence Activity of the Cell-Free Supernatant of the Antarctic Bacterium Psychrobacter sp. TAE2020 against Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Antibiotics (Basel) 2021; 10:944. [PMID: 34438994 PMCID: PMC8388993 DOI: 10.3390/antibiotics10080944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen often involved in airway infections of cystic fibrosis (CF) patients. Its pathogenicity is related to several virulence factors, such as biofilm formation, motility and production of toxins and proteases. The expression of these virulence factors is controlled by quorum sensing (QS). Thus, QS inhibition is considered a novel strategy for the development of antipathogenic compounds acting on specific bacterial virulence programs without affecting bacterial vitality. In this context, cold-adapted marine bacteria living in polar regions represent an untapped reservoir of biodiversity endowed with an interesting chemical repertoire. In this paper, we investigated the biological activity of a supernatant derived from a novel Antarctic bacterium (SN_TAE2020) against specific virulence factors produced by P. aeruginosa strains isolated from FC patients. Our results clearly show a reduction in pyocyanin and protease production in the presence of SN_TAE2020. Finally, SN_TAE2020 was also able to strongly affect swarming and swimming motility for almost all tested strains. Furthermore, the effect of SN_TAE2020 was investigated on biofilm growth and texture, captured by SEM analysis. In consideration of the novel results obtained on clinical strains, polar bacteria might represent potential candidates for the discovery of new compounds limiting P. aeruginosa virulence in CF patients.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (L.S.)
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (L.S.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Angela Casillo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Ersilia Vita Fiscarelli
- Unit Cystic Fibrosis Diagnostic Microbiology and Immunology Diagnostics, Diagnostic Medicine and Laboratory Department, Bambino Gesù Children’s IRCCS Hospital, 00165 Rome, Italy; (E.V.F.); (V.T.G.A.)
| | - Vanessa Tuccio Guarna Assanti
- Unit Cystic Fibrosis Diagnostic Microbiology and Immunology Diagnostics, Diagnostic Medicine and Laboratory Department, Bambino Gesù Children’s IRCCS Hospital, 00165 Rome, Italy; (E.V.F.); (V.T.G.A.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.M.C.); (M.L.T.); (E.P.)
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (L.S.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (G.V.); (L.S.)
| |
Collapse
|
17
|
Lacerna NM, Ramones CMV, Robes JMD, Picart MRD, Tun JO, Miller BW, Haygood MG, Schmidt EW, Salvador-Reyes LA, Concepcion GP. Inhibition of Biofilm Formation by Modified Oxylipins from the Shipworm Symbiont Teredinibacter turnerae. Mar Drugs 2020; 18:md18120656. [PMID: 33419303 PMCID: PMC7766104 DOI: 10.3390/md18120656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
The bioactivity-guided purification of the culture broth of the shipworm endosymbiont Teredinibacter turnerae strain 991H.S.0a.06 yielded a new fatty acid, turneroic acid (1), and two previously described oxylipins (2–3). Turneroic acid (1) is an 18-carbon fatty acid decorated by a hydroxy group and an epoxide ring. Compounds 1–3 inhibited bacterial biofilm formation in Staphylococcus epidermidis, while only 3 showed antimicrobial activity against planktonic S. epidermidis. Comparison of the bioactivity of 1–3 with structurally related compounds indicated the importance of the epoxide moiety for selective and potent biofilm inhibition.
Collapse
Affiliation(s)
- Noel M. Lacerna
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (N.M.I.II); (C.M.V.R.); (J.M.D.R.); (M.R.D.P.); (J.O.T.); (L.A.S.-R.)
| | - Cydee Marie V. Ramones
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (N.M.I.II); (C.M.V.R.); (J.M.D.R.); (M.R.D.P.); (J.O.T.); (L.A.S.-R.)
| | - Jose Miguel D. Robes
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (N.M.I.II); (C.M.V.R.); (J.M.D.R.); (M.R.D.P.); (J.O.T.); (L.A.S.-R.)
| | - Myra Ruth D. Picart
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (N.M.I.II); (C.M.V.R.); (J.M.D.R.); (M.R.D.P.); (J.O.T.); (L.A.S.-R.)
| | - Jortan O. Tun
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (N.M.I.II); (C.M.V.R.); (J.M.D.R.); (M.R.D.P.); (J.O.T.); (L.A.S.-R.)
| | - Bailey W. Miller
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (B.W.M.); (M.G.H.); (E.W.S.)
| | - Margo G. Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (B.W.M.); (M.G.H.); (E.W.S.)
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (B.W.M.); (M.G.H.); (E.W.S.)
| | - Lilibeth A. Salvador-Reyes
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (N.M.I.II); (C.M.V.R.); (J.M.D.R.); (M.R.D.P.); (J.O.T.); (L.A.S.-R.)
| | - Gisela P. Concepcion
- The Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (N.M.I.II); (C.M.V.R.); (J.M.D.R.); (M.R.D.P.); (J.O.T.); (L.A.S.-R.)
- Correspondence: ; Tel.: +632-8275-2877
| |
Collapse
|
18
|
Mohamed AMHA, Sorokin VV, Skladnev DA, Shevlyagina NV, Zhukhovitsky VG, Pshenichnikova AB. Biosynthesis of Silver Nanoparticles by Methylophilus quaylei, Characterization and Its Impact on Established Biofilms. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00780-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Nunes SDO, Rosa HDS, Canellas ALB, Romanos MTV, Dos Santos KRN, Muricy G, Oelemann WMR, Laport MS. High reduction of staphylococcal biofilm by aqueous extract from marine sponge-isolated Enterobacter sp. Res Microbiol 2020; 172:103787. [PMID: 33049327 DOI: 10.1016/j.resmic.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are among the most important bacterial species responsible for biofilm formation on indwelling medical devices, including orthopaedic implants. The increasing resistance to antimicrobials, partly attributed to the ability to form biofilms, is a challenge for the development of new antimicrobial agents. In this study, the cell-free supernatant obtained from sponge-associated Enterobacter strain 84.3 culture inhibited biofilm formation (>65%) and dissociated mature biofilm (>85%) formed by S. aureus and S. epidermidis strains. The culture supernatant was subjected to solvent partitioning and the aqueous extract presented a concentration-dependent antibiofilm activity for each strain with a minimum biofilm eradication concentration (MBEC) ranging from 16 to 256 μg/mL. The effect of the aqueous extract on mature S. aureus biofilm was analyzed by confocal scanning laser microscopy, showing a significant reduction of the biofilm layer as well as diminished interactions among the cells. This extract is not toxic for mammalian cells (L929 cell line). Studies targeting substances with antibiofilm activity gained significant attention in recent years due to difficult-to-treat biofilm infections. Here, sponge-associated Enterobacter 84.3 proved to be a source of substances capable of eradicating staphylococcal biofilm, with potential medical use in the future.
Collapse
Affiliation(s)
- Suzanne de Oliveira Nunes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Heloisa da Silva Rosa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Maria Teresa Villela Romanos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Katia R N Dos Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Guilherme Muricy
- Museu Nacional, Universidade Federal Do Rio de Janeiro, Quinta da Boa Vista s/no., São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil
| | - Walter M R Oelemann
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
The Rhodamine Isothiocyanate Analogue as a Quorum Sensing Inhibitor Has the Potential to Control Microbially-Induced Biofouling. Mar Drugs 2020; 18:md18090484. [PMID: 32971837 PMCID: PMC7551263 DOI: 10.3390/md18090484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 12/02/2022] Open
Abstract
Quorum sensing inhibitors (QSIs) have been proven to be an innovative approach to interfering with biofilm formation, since this process is regulated by QS signals. However, most studies have focused on single-species biofilm formation, whereas studies of the effects of signal interference on the development of multispecies biofilm, especially in the natural environment, are still lacking. Here we develop and evaluate the anti-biofilm capability of a new QSI (rhodamine isothiocyanate analogue, RIA) in natural seawater. During the experiment, biofilm characteristics, microbial communities/functions and network interactions were monitored at 36, 80, and 180 h, respectively. The results showed that the biomass and 3D structure of the biofilm were significantly different in the presence of the QSI. The expression of genes involved in extracellular polysaccharide synthesis was also downregulated in the QSI-treated group. Dramatic differences in microbial composition, β-diversity and functions between the RIA-treated group and the control group were also observed, especially in the early stage of biofilm development. Furthermore, co-occurrence model analysis showed that RIA reduced the complexity of the microbial network. This study demonstrates that rhodamine isothiocyanate analogue is an efficient QS inhibitor and has potential applications in controlling biofouling caused by multispecies biofilm, especially in the early stage of biofouling formation.
Collapse
|
21
|
Doghri I, Portier E, Desriac F, Zhao JM, Bazire A, Dufour A, Rochette V, Sablé S, Lanneluc I. Anti-Biofilm Activity of a Low Weight Proteinaceous Molecule from the Marine Bacterium Pseudoalteromonas sp. IIIA004 against Marine Bacteria and Human Pathogen Biofilms. Microorganisms 2020; 8:E1295. [PMID: 32854286 PMCID: PMC7563690 DOI: 10.3390/microorganisms8091295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 11/17/2022] Open
Abstract
Pseudoalteromonas bacteria are known as potential bioactive metabolite producers. Because of the need to obtain natural molecules inhibiting the bacterial biofilms, we investigated the biofilm inhibitory activity of the marine bacterium Pseudoalteromonas sp. IIIA004 against the pioneer surface colonizer Roseovarius sp. VA014. The anti-biofilm activity from the culture supernatant of Pseudoalteromonas sp. IIIA004 (SNIIIA004) was characterized in microtiter plates (static conditions/polystyrene surface) and in flow cell chambers (dynamic conditions/glass surface). The Pseudoalteromonas exoproducts exhibited an inhibition of Roseovarius sp. VA014 biofilm formation as well as a strong biofilm dispersion, without affecting the bacterial growth. Microbial adhesion to solvent assays showed that SNIIIA004 did not change the broad hydrophilic and acid character of the Roseovarius strain surface. Bioassay-guided purification using solid-phase extraction and C18 reverse-phase-high-performance liquid chromatography (RP-HPLC) was performed from SNIIIA004 to isolate the proteinaceous active compound against the biofilm formation. This new anti-biofilm low weight molecule (< 3kDa), named P004, presented a wide spectrum of action on various bacterial biofilms, with 71% of sensitive strains including marine bacteria and human pathogens. Pseudoalteromonas sp. IIIA004 is a promising source of natural anti-biofilm compounds that combine several activities.
Collapse
Affiliation(s)
- Ibtissem Doghri
- LIENSs UMR 7266 CNRS-Université La Rochelle, Université de La Rochelle, 17000 La Rochelle, France; (I.D.); (E.P.); (J.M.Z.); (V.R.); (S.S.)
| | - Emilie Portier
- LIENSs UMR 7266 CNRS-Université La Rochelle, Université de La Rochelle, 17000 La Rochelle, France; (I.D.); (E.P.); (J.M.Z.); (V.R.); (S.S.)
| | - Florie Desriac
- LBCM EA3884, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud, 56100 Lorient, France; (F.D.); (A.B.); (A.D.)
| | - Jean Michel Zhao
- LIENSs UMR 7266 CNRS-Université La Rochelle, Université de La Rochelle, 17000 La Rochelle, France; (I.D.); (E.P.); (J.M.Z.); (V.R.); (S.S.)
| | - Alexis Bazire
- LBCM EA3884, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud, 56100 Lorient, France; (F.D.); (A.B.); (A.D.)
| | - Alain Dufour
- LBCM EA3884, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud, 56100 Lorient, France; (F.D.); (A.B.); (A.D.)
| | - Vincent Rochette
- LIENSs UMR 7266 CNRS-Université La Rochelle, Université de La Rochelle, 17000 La Rochelle, France; (I.D.); (E.P.); (J.M.Z.); (V.R.); (S.S.)
| | - Sophie Sablé
- LIENSs UMR 7266 CNRS-Université La Rochelle, Université de La Rochelle, 17000 La Rochelle, France; (I.D.); (E.P.); (J.M.Z.); (V.R.); (S.S.)
| | - Isabelle Lanneluc
- LIENSs UMR 7266 CNRS-Université La Rochelle, Université de La Rochelle, 17000 La Rochelle, France; (I.D.); (E.P.); (J.M.Z.); (V.R.); (S.S.)
| |
Collapse
|
22
|
Khan F, Oloketuyi SF, Kim YM. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria. Curr Drug Targets 2020; 20:1156-1179. [PMID: 31020938 DOI: 10.2174/1389450120666190423161249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| | | | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
23
|
Marine Terpenoids from Polar Latitudes and Their Potential Applications in Biotechnology. Mar Drugs 2020; 18:md18080401. [PMID: 32751369 PMCID: PMC7459527 DOI: 10.3390/md18080401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/03/2023] Open
Abstract
Polar marine biota have adapted to thrive under one of the ocean’s most inhospitable scenarios, where extremes of temperature, light photoperiod and ice disturbance, along with ecological interactions, have selected species with a unique suite of secondary metabolites. Organisms of Arctic and Antarctic oceans are prolific sources of natural products, exhibiting wide structural diversity and remarkable bioactivities for human applications. Chemical skeletons belonging to terpene families are the most commonly found compounds, whereas cytotoxic antimicrobial properties, the capacity to prevent infections, are the most widely reported activities from these environments. This review firstly summarizes the regulations on access and benefit sharing requirements for research in polar environments. Then it provides an overview of the natural product arsenal from Antarctic and Arctic marine organisms that displays promising uses for fighting human disease. Microbes, such as bacteria and fungi, and macroorganisms, such as sponges, macroalgae, ascidians, corals, bryozoans, echinoderms and mollusks, are the main focus of this review. The biological origin, the structure of terpenes and terpenoids, derivatives and their biotechnological potential are described. This survey aims to highlight the chemical diversity of marine polar life and the versatility of this group of biomolecules, in an effort to encourage further research in drug discovery.
Collapse
|
24
|
Diauxie and co-utilization of carbon sources can coexist during bacterial growth in nutritionally complex environments. Nat Commun 2020; 11:3135. [PMID: 32561713 PMCID: PMC7305145 DOI: 10.1038/s41467-020-16872-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
It is commonly thought that when multiple carbon sources are available, bacteria metabolize them either sequentially (diauxic growth) or simultaneously (co-utilization). However, this view is mainly based on analyses in relatively simple laboratory settings. Here we show that a heterotrophic marine bacterium, Pseudoalteromonas haloplanktis, can use both strategies simultaneously when multiple possible nutrients are provided in the same growth experiment. The order of nutrient uptake is partially determined by the biomass yield that can be achieved when the same compounds are provided as single carbon sources. Using transcriptomics and time-resolved intracellular 1H-13C NMR, we reveal specific pathways for utilization of various amino acids. Finally, theoretical modelling indicates that this metabolic phenotype, combining diauxie and co-utilization of substrates, is compatible with a tight regulation that allows the modulation of assimilatory pathways. It is thought that when multiple carbon sources are available, bacteria metabolize them either sequentially or simultaneously. Here, the authors show that a marine bacterium can use a mixed strategy when multiple possible nutrients are provided, and analyse the metabolic pathways involved.
Collapse
|
25
|
Characterization of Scardovia wiggsiae Biofilm by Original Scanning Electron Microscopy Protocol. Microorganisms 2020; 8:microorganisms8060807. [PMID: 32471210 PMCID: PMC7355790 DOI: 10.3390/microorganisms8060807] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/11/2023] Open
Abstract
Early childhood caries (ECC) is a severe manifestation of carious pathology with rapid and disruptive progression. The ECC microbiota includes a wide variety of bacterial species, among which is an anaerobic newly named species, Scardovia wiggsiae, a previously unidentified Bifidobacterium. Our aim was to provide the first ultrastructural characterization of S. wiggsiae and its biofilm by scanning electron microscopy (SEM) using a protocol that faithfully preserved the biofilm architecture and allowed an investigation at very high magnifications (order of nanometers) and with the appropriate resolution. To accomplish this task, we analyzed Streptococcus mutans’ biofilm by conventional SEM and VP-SEM protocols, in addition, we developed an original procedure, named OsO4-RR-TA-IL, which avoids dehydration, drying and sputter coating. This innovative protocol allowed high-resolution and high-magnification imaging (from 10000× to 35000×) in high-vacuum and high-voltage conditions. After comparing three methods, we chose OsO4-RR-TA-IL to investigate S. wiggsiae. It appeared as a fusiform elongated bacterium, without surface specialization, arranged in clusters and submerged in a rich biofilm matrix, which showed a well-developed micro-canalicular system. Our results provide the basis for the development of innovative strategies to quantify the effects of different treatments, in order to establish the best option to counteract ECC in pediatric patients.
Collapse
|
26
|
Bioaldehydes and beyond: Expanding the realm of bioderived chemicals using biogenic aldehydes as platforms. Curr Opin Chem Biol 2020; 59:37-46. [PMID: 32454426 DOI: 10.1016/j.cbpa.2020.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 01/06/2023]
Abstract
Biofuels and biochemicals derived from renewable resources are sconsidered as potential solutions for the energy crisis and associated environmental problems that human beings are facing today. However, so far the available types of bioderived chemicals are rather limited, and production efficiency is generally low. Expanding the realm of bioderived chemicals and relevant derivatives can help motivate the development of bioenergy and the general bioeconomy. Aldehydes, possessing unique reactivity, hold great promise as platform chemicals for producing a large portfolio of bioproducts. In this review, we focus on production of aldehydes from renewable bioresources and derivatization of aldehydes through chemocatalysis, biocatalysis, or de novo biosynthesis. Perspectives on combining protein engineering and cascade reactions for advanced aldehyde derivatization are also provided.
Collapse
|
27
|
Antibiofilm Activity of a Trichoderma Metabolite against Xanthomonas campestris pv. campestris, Alone and in Association with a Phage. Microorganisms 2020; 8:microorganisms8050620. [PMID: 32344872 PMCID: PMC7284391 DOI: 10.3390/microorganisms8050620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Biofilm protects bacteria against the host’s immune system and adverse environmental conditions. Several studies highlight the efficacy of lytic phages in the prevention and eradication of bacterial biofilms. In this study, the lytic activity of Xccφ1 (Xanthomonas campestris pv. campestris-specific phage) was evaluated in combination with 6-pentyl-α-pyrone (a secondary metabolite produced by Trichoderma atroviride P1) and the mineral hydroxyapatite. Then, the antibiofilm activity of this interaction, called a φHA6PP complex, was investigated using confocal laser microscopy under static and dynamic conditions. Additionally, the mechanism used by the complex to modulate the genes (rpf, gumB, clp and manA) involved in the biofilm formation and stability was also studied. Our results demonstrated that Xccφ1, alone or in combination with 6PP and HA, interfered with the gene pathways involved in the formation of biofilm. This approach can be used as a model for other biofilm-producing bacteria.
Collapse
|
28
|
Ricciardelli A, Casillo A, Corsaro MM, Tutino ML, Parrilli E, van der Mei HC. Pentadecanal and pentadecanoic acid coatings reduce biofilm formation of Staphylococcus epidermidis on PDMS. Pathog Dis 2020; 78:5762676. [PMID: 32105313 DOI: 10.1093/femspd/ftaa012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus epidermidis is well known to be one of the major causes of infections related to medical devices, mostly due to its strong capacity to form device-associated biofilms. Nowadays, these infections represent a severe burden to the public health system and the necessity of novel antibacterial strategies for the treatment of these difficult-to-eradicate infections is urgent. The Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 was found to be able to produce an anti-biofilm molecule, the pentadecanal, active against S. epidermidis. In this work, we modified one of the most widely used silicone-based polymers, polydimethylsiloxane (PDMS), by adsorption of pentadecanal and its most promising derivative, pentadecanoic acid, on the PDMS surface. The biofilm formation of S. epidermidis RP62A on both untreated and modified PDMS was performed in a parallel plate flow chamber system, demonstrating the capability of the proposed anti-biofilm coatings to strongly reduce the biofilm formation. Furthermore, drug-release capacity and long-term efficacy (21 days) were also proven for the pentadecanoic acid coating.
Collapse
Affiliation(s)
- Annarita Ricciardelli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
29
|
Bacteriophages Promote Metabolic Changes in Bacteria Biofilm. Microorganisms 2020; 8:microorganisms8040480. [PMID: 32231093 DOI: 10.3390/microorganisms8040480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial biofilm provides bacteria with resistance and protection against conventional antimicrobial agents and the host immune system. Bacteriophages are known to move across the biofilm to make it permeable to antimicrobials. Mineral hydroxyapatite (HA) can improve the lytic activity of bacteriophages, and, together with eicosanoic acid (C20:0), can destroy the biofilm structure. Here, we demonstrate the efficacy of the combined use of phage, HA and C20:0 against Xanthomonas campestris pv campestris (Xcc) biofilm. We used nuclear magnetic resonance (NMR)-based metabolomics to investigate the molecular determinants related to the lytic action, aiming at identifying the metabolic pathways dysregulated by phage treatment. Furthermore, we identified specific markers (amino acids, lactate and galactomannan) which are involved in the control of biofilm stability. Our data show that Xccφ1, alone or in combination with HA and C20:0, interferes with the metabolic pathways involved in biofilm formation. The approach described here might be extended to other biofilm-producing bacteria.
Collapse
|
30
|
Rogers AD, Frinault BAV, Barnes DKA, Bindoff NL, Downie R, Ducklow HW, Friedlaender AS, Hart T, Hill SL, Hofmann EE, Linse K, McMahon CR, Murphy EJ, Pakhomov EA, Reygondeau G, Staniland IJ, Wolf-Gladrow DA, Wright RM. Antarctic Futures: An Assessment of Climate-Driven Changes in Ecosystem Structure, Function, and Service Provisioning in the Southern Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:87-120. [PMID: 31337252 DOI: 10.1146/annurev-marine-010419-011028] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, we analyze the impacts of climate change on Antarctic marine ecosystems. Observations demonstrate large-scale changes in the physical variables and circulation of the Southern Ocean driven by warming, stratospheric ozone depletion, and a positive Southern Annular Mode. Alterations in the physical environment are driving change through all levels of Antarctic marine food webs, which differ regionally. The distributions of key species, such as Antarctic krill, are also changing. Differential responses among predators reflect differences in species ecology. The impacts of climate change on Antarctic biodiversity will likely vary for different communities and depend on species range. Coastal communities and those of sub-Antarctic islands, especially range-restricted endemic communities, will likely suffer the greatest negative consequences of climate change. Simultaneously, ecosystem services in the Southern Ocean will likely increase. Such decoupling of ecosystem services and endemic species will require consideration in the management of human activities such as fishing in Antarctic marine ecosystems.
Collapse
Affiliation(s)
- A D Rogers
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom;
- REV Ocean, 1366 Lysaker, Norway
| | - B A V Frinault
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, United Kingdom
| | - D K A Barnes
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - N L Bindoff
- Antarctic Climate and Ecosystems Cooperative Research Centre and CSIRO Oceans and Atmospheres, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - R Downie
- WWF, Living Planet Centre, Surrey GU21 4LL, United Kingdom
| | - H W Ducklow
- Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences, Columbia University, Palisades, New York 10964-8000, USA
| | - A S Friedlaender
- Institute for Marine Sciences, University of California, Santa Cruz, California 95060, USA
| | - T Hart
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom;
| | - S L Hill
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - E E Hofmann
- Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia 23508, USA
| | - K Linse
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - C R McMahon
- Integrated Marine Observing System Animal Tracking Facility, Sydney Institute of Marine Science, Sydney, New South Wales 2088, Australia
| | - E J Murphy
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - E A Pakhomov
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Aquatic Ecosystems Research Lab, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - G Reygondeau
- Aquatic Ecosystems Research Lab, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - I J Staniland
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom
| | - D A Wolf-Gladrow
- Alfred-Wegener-Institut Helmholtz Zentrum für Polar- und Meeresforschung (AWI), 27570 Bremerhaven, Germany
| | - R M Wright
- Tyndall Centre, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
31
|
Yin J, Li F, Kong X, Wen C, Guo Q, Zhang L, Wang W, Duan Y, Li T, Tan Z, Yin Y. Dietary xylo-oligosaccharide improves intestinal functions in weaned piglets. Food Funct 2020; 10:2701-2709. [PMID: 31025998 DOI: 10.1039/c8fo02485e] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed at investigating the effects of dietary xylo-oligosaccharide (XOS) on intestinal functions (i.e., intestinal morphology, tight junctions, gut microbiota and metabolism) and growth performance in weaned piglets. 19 weaned piglets were randomly divided into two groups (n = 9/10): a control group (basic diet) and a XOS treated group in which piglets were fed 0.01% XOS for 28 days. Growth performance, blood cells and biochemical parameters, serum cytokines, intestinal morphology, tight junctions, gut microbiota, and the metabolic profiles of the gut digesta were analyzed. The results showed that dietary supplementation with XOS had little effects on growth performance, blood cells and biochemical parameters, and intestinal morphology. However, the inflammatory status and intestinal barrier were improved in XOS-fed piglets evidenced by the reduction of IFN-γ and upregulation of ZO-1. Microbiota analysis showed that XOS enhanced α-diversity and affected the relative abundances of Lactobacillus, Streptococcus, and Turicibacter at the genus level. The alterations in the microbiota might be further involved in carbohydrate metabolism, cell motility, cellular processes and signaling, lipid metabolism, and metabolism of other amino acids by functional prediction. A metabolomics study identified three differentiated metabolites, including coenzyme Q6, zizyphine A, and pentadecanal, which might be produced by the microbiota and further affect host metabolism. In conclusion, dietary XOS improved the inflammatory status, gut barrier, and microbiota communities, which might be used as a potential feed additive to prevent gut dysfunction caused by weaning in the pig industry.
Collapse
Affiliation(s)
- Jie Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rasooly R, Molnar A, Choi HY, Do P, Racicot K, Apostolidis E. In-Vitro Inhibition of Staphylococcal Pathogenesis by Witch-Hazel and Green Tea Extracts. Antibiotics (Basel) 2019; 8:antibiotics8040244. [PMID: 31795423 PMCID: PMC6963777 DOI: 10.3390/antibiotics8040244] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
whISOBAX (WH), an extract of the witch-hazel plant that is native to the Northeast coast of the United States, contains significant amounts of a phenolic compound, Hamamelitannin (HAMA). Green tea (GT) is a widely consumed plant that contains various catechins. Both plants have been associated with antimicrobial effects. In this study we test the effects of these two plant extracts on the pathogenesis of staphylococci, and evaluate their effects on bacterial growth, biofilm formation, and toxin production. Our observations show that both extracts have antimicrobial effects against both strains of S. aureus and S. epidermidis tested, and that this inhibitory effect is synergistic. Also, we confirmed that this inhibitory effect does not depend on HAMA, but rather on other phenolic compounds present in WH and GT. In terms of biofilm inhibition, only WH exhibited an effect and the observed anti-biofilm effect was HAMA-depended. Finally, among the tested extracts, only WH exhibited an effect against Staphylococcal Enterotoxin A (SEA) production and this effect correlated to the HAMA present in WH. Our results suggest that GT and WH in combination can enhance the antimicrobial effects against staphylococci. However, only WH can control biofilm development and SEA production, due to the presence of HAMA. This study provides the initial rationale for the development of natural antimicrobials, to protect from staphylococcal colonization, infection, or contamination.
Collapse
Affiliation(s)
- Reuven Rasooly
- U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
- Correspondence: (R.R.); (E.A.)
| | - Adel Molnar
- Department of Chemistry and Food Science, Framingham State University, Framingham, MA 01702, USA; (A.M.); (H.-Y.C.)
| | - Hwang-Yong Choi
- Department of Chemistry and Food Science, Framingham State University, Framingham, MA 01702, USA; (A.M.); (H.-Y.C.)
| | - Paula Do
- U.S. Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
| | - Kenneth Racicot
- United States Army Combat Capabilities Development Command—Soldier Center (CCDC-SC), Natick, MA 01760, USA;
| | - Emmanouil Apostolidis
- Department of Chemistry and Food Science, Framingham State University, Framingham, MA 01702, USA; (A.M.); (H.-Y.C.)
- Correspondence: (R.R.); (E.A.)
| |
Collapse
|
33
|
Artini M, Papa R, Vrenna G, Lauro C, Ricciardelli A, Casillo A, Corsaro MM, Tutino ML, Parrilli E, Selan L. Cold-adapted bacterial extracts as a source of anti-infective and antimicrobial compounds against Staphylococcus aureus. Future Microbiol 2019; 14:1369-1382. [PMID: 31596138 DOI: 10.2217/fmb-2019-0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: The dramatic emergence of antibiotic resistance has directed the interest of research toward the discovery of novel antimicrobial molecules. In this context, cold-adapted marine bacteria living in polar regions represent an untapped reservoir of biodiversity endowed with an interesting chemical repertoire. The aim of this work was to identify new antimicrobials and/or antibiofilm molecules produced by cold-adapted bacteria. Materials & methods: Organic extracts obtained from polar marine bacteria were tested against Staphylococcus aureus. Most promising samples were subjected to suitable purification strategies. Results: Results obtained led to the identification of a novel lipopeptide able to effectively inhibit the biofilm formation of S. aureus. Conclusion: New lipopeptide may be potentially useful in a wide variety of biotechnological and medical applications.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health & Infectious Diseases, Sapienza University, 00185 Rome, Italy
| | - Rosanna Papa
- Department of Public Health & Infectious Diseases, Sapienza University, 00185 Rome, Italy
| | - Gianluca Vrenna
- Department of Public Health & Infectious Diseases, Sapienza University, 00185 Rome, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | | | - Angela Casillo
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | - Maria M Corsaro
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | - Maria L Tutino
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | | | - Laura Selan
- Department of Public Health & Infectious Diseases, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
34
|
Pires MEE, Parreira AG, Silva TNL, Colares HC, da Silva JA, de Magalhães JT, Galdino AS, Gonçalves DB, Granjeiro JM, Granjeiro PA. Recent Patents on Impact of Lipopeptide on the Biofilm Formation onto Titanium and Stainless Steel Surfaces. Recent Pat Biotechnol 2019; 14:49-62. [PMID: 31438836 DOI: 10.2174/1872208313666190822150323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Numerous causes of infection in arthroplasties are related to biofilm formation on implant surfaces. In order to circumvent this problem, new alternatives to prevent bacterial adhesion biosurfactants-based are emerging due to low toxicity, biodegradability and antimicrobial activity of several biosurfactants. We revised all patents relating to biosurfactants of applicability in orthopedic implants. METHODS This work aims to evaluate the capability of a lipopeptide produced by Bacillus subtilis ATCC 19659 isolates acting as inhibitors of the adhesion of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 onto titanium and stainless steel surfaces and its antimicrobial activity. RESULTS The adhesion of the strains to the stainless-steel surface was higher than that of titanium. Preconditioning of titanium and stainless-steel surfaces with 10 mg mL-1 lipopeptide reduced the adhesion of E. coli by up to 93% and the adhesion of S. aureus by up to 99.9%, suggesting the strong potential of lipopeptides in the control of orthopedic infections. The minimal inhibitory concentration and minimum bactericidal concentration were 10 and 240 µg mL-1 for E. coli and S. aureus, respectively. CONCLUSION The lipopeptide produced by Bacillus subtilis ATCC 19659 presented high biotechnological application in human health against orthopedic implants infections.
Collapse
Affiliation(s)
- Mauro Ezio Eustáquio Pires
- Biotechnology Process and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of Sao Joao Del-Rei, Divinopolis, MG, Zip Code: 35501296, Brazil
| | - Adriano Guimarães Parreira
- Biotechnology Process and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of Sao Joao Del-Rei, Divinopolis, MG, Zip Code: 35501296, Brazil
| | - Tuânia Natacha Lopes Silva
- Biotechnology Process and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of Sao Joao Del-Rei, Divinopolis, MG, Zip Code: 35501296, Brazil
| | - Heloísa Carneiro Colares
- Biotechnology Process and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of Sao Joao Del-Rei, Divinopolis, MG, Zip Code: 35501296, Brazil
| | - José Antonio da Silva
- Biotechnology Process and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of Sao Joao Del-Rei, Divinopolis, MG, Zip Code: 35501296, Brazil
| | - Juliana Teixeira de Magalhães
- Microbiology Laboratory, Campus Centro Oeste, Federal University of Sao Joao Del-Rei, Divinópolis, MG, 35501296, Brazil
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Campus Centro Oeste, Federal University of Sao Joao Del-Rei, Divinopolis, MG, 35501296, Brazil
| | - Daniel Bonoto Gonçalves
- Biotechnology Process and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of Sao Joao Del-Rei, Divinopolis, MG, Zip Code: 35501296, Brazil
| | - José Mauro Granjeiro
- Bioengineering Laboratory, National Institute of Metrology, Quality and Technology, Xerem, Duque de Caxias, RJ, 25250-020, Brazil.,Dental Clinical Research, Dentistry School, Fluminense Federal University, Niteroi, Rio de Janeiro, 24020-140, Brazil
| | - Paulo Afonso Granjeiro
- Biotechnology Process and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of Sao Joao Del-Rei, Divinopolis, MG, Zip Code: 35501296, Brazil
| |
Collapse
|
35
|
Zhao J, Li X, Hou X, Quan C, Chen M. Widespread Existence of Quorum Sensing Inhibitors in Marine Bacteria: Potential Drugs to Combat Pathogens with Novel Strategies. Mar Drugs 2019; 17:md17050275. [PMID: 31072008 PMCID: PMC6562741 DOI: 10.3390/md17050275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Quorum sensing (QS) is a phenomenon of intercellular communication discovered mainly in bacteria. A QS system consisting of QS signal molecules and regulatory protein components could control physiological behaviors and virulence gene expression of bacterial pathogens. Therefore, QS inhibition could be a novel strategy to combat pathogens and related diseases. QS inhibitors (QSIs), mainly categorized into small chemical molecules and quorum quenching enzymes, could be extracted from diverse sources in marine environment and terrestrial environment. With the focus on the exploitation of marine resources in recent years, more and more QSIs from the marine environment have been investigated. In this article, we present a comprehensive review of QSIs from marine bacteria. Firstly, screening work of marine bacteria with potential QSIs was concluded and these marine bacteria were classified. Afterwards, two categories of marine bacteria-derived QSIs were summarized from the aspects of sources, structures, QS inhibition mechanisms, environmental tolerance, effects/applications, etc. Next, structural modification of natural small molecule QSIs for future drug development was discussed. Finally, potential applications of QSIs from marine bacteria in human healthcare, aquaculture, crop cultivation, etc. were elucidated, indicating promising and extensive application perspectives of QS disruption as a novel antimicrobial strategy.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xinyun Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xiyan Hou
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116600, China.
| |
Collapse
|
36
|
Parrilli E, Tedesco P, Fondi M, Tutino ML, Lo Giudice A, de Pascale D, Fani R. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys Life Rev 2019; 36:137-161. [PMID: 31072789 DOI: 10.1016/j.plrev.2019.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/10/2023]
Abstract
Extremophilic microbes have adapted to thrive in ecological niches characterized by harsh chemical/physical conditions such as, for example, very low/high temperature. Living organisms inhabiting these environments have developed peculiar mechanisms to cope with extreme conditions, in such a way that they mark the chemical-physical boundaries of life on Earth. Studying such mechanisms is stimulating from a basic research viewpoint and because of biotechnological applications. Pseudoalteromonas species are a group of marine gamma-proteobacteria frequently isolated from a range of extreme environments, including cold habitats and deep-sea sediments. Since deep-sea floors constitute almost 60% of the Earth's surface and cold temperatures represent the most common of the extreme conditions, the genus Pseudoalteromonas can be considered one of the most important model systems for studying microbial adaptation. Particularly, among all Pseudoalteromonas representatives, P. haloplanktis TAC125 has recently gained a central role. This bacterium was isolated from seawater sampled along the Antarctic ice-shell and is considered one of the model organisms of cold-adapted bacteria. It is capable of thriving in a wide temperature range and it has been suggested as an alternative host for the soluble overproduction of heterologous proteins, given its ability to rapidly multiply at low temperatures. In this review, we will present an overview of the recent advances in the characterization of Pseudoalteromonas strains and, more importantly, in the understanding of their evolutionary and chemical-physical strategies to face such a broad array of extreme conditions. A particular attention will be given to systems-biology approaches in the study of the above-mentioned topics, as genome-scale datasets (e.g. genomics, proteomics, phenomics) are beginning to expand for this group of organisms. In this context, a specific section dedicated to P. haloplanktis TAC125 will be presented to address the recent efforts in the elucidation of the metabolic rewiring of the organisms in its natural environment (Antarctica).
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Pietro Tedesco
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | | | - Donatella de Pascale
- Institute of Protein Biochemistry, CNR, Napoli, Italy, Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Napoli, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
37
|
Casillo A, Di Guida R, Carillo S, Chen C, Kamasaka K, Kawamoto J, Kurihara T, Corsaro MM. Structural Elucidation of a Novel Lipooligosaccharide from the Antarctic Bacterium OMVs Producer Shewanella sp. HM13. Mar Drugs 2019; 17:E34. [PMID: 30626008 PMCID: PMC6357163 DOI: 10.3390/md17010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 01/08/2023] Open
Abstract
Shewanella sp. HM13 is a cold-adapted Gram-negative bacterium isolated from the intestine of a horse mackerel. It produces a large amount of outer membrane vesicles (OMVs), which are particles released in the medium where the bacterium is cultured. This strain biosynthesizes a single major cargo protein in the OMVs, a fact that makes Shewanella sp. HM13 a good candidate for the production of extracellular recombinant proteins. Therefore, the structural characterization of the components of the vesicles, such as lipopolysaccharides, takes on a fundamental role for understanding the mechanism of biogenesis of the OMVs and their applications. The aim of this study was to investigate the structure of the oligosaccharide (OS) isolated from Shewanella sp. HM13 cells as the first step for a comparison with that from the vesicles. The lipooligosaccharide (LOS) was isolated from dry cells, purified, and hydrolyzed by alkaline treatment. The obtained OS was analyzed completely, and the composition of fatty acids was obtained by chemical methods. In particular, the OS was investigated in detail by ¹H and 13C NMR spectroscopy and MALDI-TOF mass spectrometry. The oligosaccharide was characterized by the presence of a residue of 8-amino-3,8-dideoxy-manno-oct-2-ulosonic acid (Kdo8N) and of a d,d-heptose, with both residues being identified in other oligosaccharides from Shewanella species.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.
| | - Rossella Di Guida
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.
| | - Sara Carillo
- Characterisation and Comparability Laboratory, National Institute for Bioprocessing Research and Training. Fosters Avenue, Mount Merrion. Blackrock, Co., A94 X099 Dublin, Ireland.
| | - Chen Chen
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Kouhei Kamasaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.
| |
Collapse
|
38
|
Albano M, Crulhas BP, Alves FCB, Pereira AFM, Andrade BFMT, Barbosa LN, Furlanetto A, Lyra LPDS, Rall VLM, Júnior AF. Antibacterial and anti-biofilm activities of cinnamaldehyde against S. epidermidis. Microb Pathog 2019; 126:231-238. [DOI: 10.1016/j.micpath.2018.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
39
|
Role of phage ϕ1 in two strains of Salmonella Rissen, sensitive and resistant to phage ϕ1. BMC Microbiol 2018; 18:208. [PMID: 30526475 PMCID: PMC6286511 DOI: 10.1186/s12866-018-1360-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Background The study describes the Salmonella Rissen phage ϕ1 isolated from the ϕ1-sensitive Salmonella Rissen strain RW. The same phage was then used to select the resistant strain RRϕ1+, which can harbour or not ϕ1. Results Following this approach, we found that ϕ1, upon excision from RW cells with mitomycin, behaves as a temperate phage: lyses host cells and generates phage particles; instead, upon spontaneous excision from RRϕ1+ cells, it does not generate phage particles; causes loss of phage resistance; switches the O-antigen from the smooth to the rough phenotype, and favors the transition of Salmonella Rissen from the planktonic to the biofilm growth. The RW and RRϕ1+ strains differ by 10 genes; of these, only two (phosphomannomutase_1 and phosphomannomutase_2; both involved in the mannose synthesis pathway) display significant differences at the expression levels. This result suggests that phage resistance is associated with these two genes. Conclusions Phage ϕ1 displays the unusual property of behaving as template as well as lytic phage. This feature was used by the phage to modulate several phases of Salmonella Rissen lifestyle. Electronic supplementary material The online version of this article (10.1186/s12866-018-1360-z) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Song Y, Cai Z, Lao Y, Jin H, Ying K, Lin G, Zhou J. Antibiofilm activity substances derived from coral symbiotic bacterial extract inhibit biofouling by the model strain Pseudomonas aeruginosa PAO1. Microb Biotechnol 2018; 11:1090-1105. [PMID: 30298548 PMCID: PMC6196393 DOI: 10.1111/1751-7915.13312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
The mitigation of biofouling has received significant research attention, with particular focus on non-toxic and sustainable strategies. Here, we investigated quorum sensing inhibitor (QSI) bacteria as a means of controlling biofouling in a laboratory-scale system. Approximately, 200 strains were isolated from coral (Pocillopora damicornis) and screened for their ability to inhibit quorum sensing (QS). Approximately, 15% of the isolates exhibited QSI activity, and a typical coral symbiotic bacterium, H12-Vibrio alginolyticus, was selected in order for us to investigate quorum sensing inhibitory activity further. Confocal microscopy revealed that V. alginolyticus extract inhibited biofilm formation from Pseudomonas aeruginosa PAO1. In addition, the secondary metabolites of V. alginolyticus inhibited PAO1 virulence phenotypes by downregulating motility ability, elastase activity and rhamnolipid production. NMR and MS spectrometry suggested that the potential bioactive compound involved was rhodamine isothiocyanate. Quantitative real-time PCR indicated that the bacterial extract induced a significant downregulation of QS regulatory genes (lasB, lasI, lasR, rhlI, rhlR) and virulence-related genes (pqsA, pqsR). The possible mechanism underlying the action of rhodamine isothiocyanate analogue involves the disruption of the las and/or rhl system of PAO1. Our results highlight coral microbes as a bioresource pool for developing QS inhibitors and identifying novel antifouling agents.
Collapse
Affiliation(s)
- Yu Song
- Department of Earth System ScienceTsinghua University of Education Key Laboratory for Earth System ModelingBeijing100084China
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Zhong‐Hua Cai
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Yong‐Min Lao
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Hui Jin
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Ke‐Zhen Ying
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| | - Guang‐Hui Lin
- Department of Earth System ScienceTsinghua University of Education Key Laboratory for Earth System ModelingBeijing100084China
| | - Jin Zhou
- Division of Ocean Science and TechnologyGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| |
Collapse
|
41
|
Ricciardelli A, Casillo A, Papa R, Monti DM, Imbimbo P, Vrenna G, Artini M, Selan L, Corsaro MM, Tutino ML, Parrilli E. Pentadecanal inspired molecules as new anti-biofilm agents against Staphylococcus epidermidis. BIOFOULING 2018; 34:1110-1120. [PMID: 30698031 DOI: 10.1080/08927014.2018.1544246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Staphylococcus epidermidis, a harmless human skin colonizer, is a significant nosocomial pathogen in predisposed hosts because of its capability to form a biofilm on indwelling medical devices. In a recent paper, the purification and identification of the pentadecanal produced by the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, able to impair S. epidermidis biofilm formation, were reported. Here the authors report on the chemical synthesis of pentadecanal derivatives, their anti-biofilm activity on S. epidermidis, and their action in combination with antibiotics. The results clearly indicate that the pentadecanal derivatives were able to prevent, to a different extent, biofilm formation and that pentadecanoic acid positively modulated the antimicrobial activity of the vancomycin. The cytotoxicity of these new anti-biofilm molecules was tested on two different immortalized eukaryotic cell lines in view of their potential applications.
Collapse
Affiliation(s)
| | - Angela Casillo
- a Chemical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Rosanna Papa
- b Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Daria Maria Monti
- a Chemical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Paola Imbimbo
- a Chemical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Gianluca Vrenna
- b Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Marco Artini
- b Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Laura Selan
- b Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | | | - Maria Luisa Tutino
- a Chemical Sciences , University of Naples "Federico II" , Naples , Italy
| | | |
Collapse
|
42
|
Peptide stabilized gold and silver nanoparticles derived from the mangrove isolate Pseudoalteromonas lipolytica mediate dye decolorization. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Balasubramanian S, Skaf J, Holzgrabe U, Bharti R, Förstner KU, Ziebuhr W, Humeida UH, Abdelmohsen UR, Oelschlaeger TA. A New Bioactive Compound From the Marine Sponge-Derived Streptomyces sp. SBT348 Inhibits Staphylococcal Growth and Biofilm Formation. Front Microbiol 2018; 9:1473. [PMID: 30050506 PMCID: PMC6050364 DOI: 10.3389/fmicb.2018.01473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 μg/ml) and biofilm formation (sub-MIC range: 1.95–<31.25 μg/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.
Collapse
Affiliation(s)
| | - Joseph Skaf
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Richa Bharti
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ute H Humeida
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Usama R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tobias A Oelschlaeger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
44
|
Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells. Sci Rep 2018; 8:1190. [PMID: 29352134 PMCID: PMC5775203 DOI: 10.1038/s41598-018-19536-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022] Open
Abstract
In order to exploit the rich reservoir of marine cold-adapted bacteria as a source of bioactive metabolites, ethyl acetate crude extracts of thirteen polar marine bacteria were tested for their antiproliferative activity on A549 lung epithelial cancer cells. The crude extract from Pseudoalteromonas haloplanktis TAC125 was the most active in inhibiting cell proliferation. Extensive bioassay-guided purification and mass spectrometric characterization allowed the identification of 4-hydroxybenzoic acid (4-HBA) as the molecule responsible for this bioactivity. We further demonstrate that 4-HBA inhibits A549 cancer cell proliferation with an IC50 value ≤ 1 μg ml-1, and that the effect is specific, since the other two HBA isomers (i.e. 2-HBA and 3-HBA) were unable to inhibit cell proliferation. The effect of 4-HBA is also selective since treatment of normal lung epithelial cells (WI-38) with 4-HBA did not affect cell viability. Finally, we show that 4-HBA is able to activate, at the gene and protein levels, a specific cell death signaling pathway named pyroptosis. Accordingly, the treatment of A549 cells with 4-HBA induces the transcription of (amongst others) caspase-1, IL1β, and IL18 encoding genes. Studies needed for the elucidation of mode of action of 4-HBA will be instrumental in depicting novel details of pyroptosis.
Collapse
|