1
|
Gu L, Ai T, Ye Q, Wang Y, Wang H, Xu D. Development and validation of a clinical-radiomics nomogram for the early prediction of Klebsiella pneumoniae liver abscess. Ann Med 2024; 56:2413923. [PMID: 39392039 PMCID: PMC11485847 DOI: 10.1080/07853890.2024.2413923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND AIM Pyogenic liver abscess (PLA) is a devastating and potentially life-threatening disease globally, with Klebsiella pneumoniae liver abscess (KPLA) being the most prevalent in Asia. This study aims to develop an effective and comprehensive nomogram combining clinical and radiomics features for early prediction of KPLA. METHODS 255 patients with PLA from 2013 to 2023 were enrolled and randomly divided into the training and validation cohorts at a 7:3 ratio. The differences between the two cohorts of patients were assessed via univariate analysis. The radiomics features were extracted from imaging data from enhanced CT of liver abscesses. The optimal radiomics features were filtered using the independent sample t-test and least absolute shrinkage and selection operator, and a radiomics score (Rad-score) was calculated by weighting their respective coefficients. Clinically independent predictors were identified from the clinical data and combined with the Rad-score to develop a nomogram by multivariate logistic regression. The predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC), calibration curve, and clinical decision curve. RESULTS The nomogram incorporated four clinical features of diabetes mellitus, cryptogenic liver abscess, C-reactive protein level, and splenomegaly, and the Rad-score that was constructed based on seven optimal radiomics features. It had an AUC of 0.929 (95% CI, 0.894-0.964) and 0.923 (95% CI, 0.864-0.981) in the training and validation cohorts, respectively. The calibration and decision curves showed that the nomogram had good agreement and clinical applicability. CONCLUSIONS The clinical-radiomics nomogram performed well in predicting KPLA, hopefully serving as a reference for early diagnosis of KPLA.
Collapse
Affiliation(s)
- Li Gu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Ye
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yihang Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dong Xu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Douradinha B. Computational strategies in Klebsiella pneumoniae vaccine design: navigating the landscape of in silico insights. Biotechnol Adv 2024; 76:108437. [PMID: 39216613 DOI: 10.1016/j.biotechadv.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae poses a grave threat to global public health, necessitating urgent strategies for vaccine development. In this context, computational tools have emerged as indispensable assets, offering unprecedented insights into klebsiellal biology and facilitating the design of effective vaccines. Here, a review of the application of computational methods in the development of K. pneumoniae vaccines is presented, elucidating the transformative impact of in silico approaches. Through a systematic exploration of bioinformatics, structural biology, and immunoinformatics techniques, the complex landscape of K. pneumoniae pathogenesis and antigenicity was unravelled. Key insights into virulence factors, antigen discovery, and immune response mechanisms are discussed, highlighting the pivotal role of computational tools in accelerating vaccine development efforts. Advancements in epitope prediction, antigen selection, and vaccine design optimisation are examined, highlighting the potential of in silico approaches to update vaccine development pipelines. Furthermore, challenges and future directions in leveraging computational tools to combat K. pneumoniae are discussed, emphasizing the importance of multidisciplinary collaboration and data integration. This review provides a comprehensive overview of the current state of computational contributions to K. pneumoniae vaccine development, offering insights into innovative strategies for addressing this urgent global health challenge.
Collapse
|
3
|
Niu CY, Yao BT, Tao HY, Peng XG, Zhang QH, Chen Y, Liu L. Leukopenia-a rare complication secondary to invasive liver abscess syndrome in a patient with diabetes mellitus: A case report. World J Gastrointest Surg 2024; 16:3343-3349. [DOI: 10.4240/wjgs.v16.i10.3343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Thrombocytopenia is a common complication of invasive liver abscess syndrome (ILAS) by Klebsiella pneumoniae (K. pneumoniae) infection, which indicates severe infection and a poor prognosis. However, the presence of leukopenia is rare. There are rare reports on leukopenia and its clinical significance for ILAS, and there is currently no recognized treatment plan. Early and broad-spectrum antimicrobial therapy may be an effective therapy for treating ILAS and improving its prognosis.
CASE SUMMARY A 55-year-old male patient who developed fever, chills, and abdominal distension without an obvious cause presented to the hospital for treatment. Laboratory tests revealed thrombocytopenia, leukopenia, and multiple organ dysfunction. Imaging examinations revealed an abscess in the right lobe of the liver and thrombophlebitis, and K. pneumoniae was detected in the blood cultures. Since the patient was diabetic and had multi-system involvement, he was diagnosed with ILAS accompanied by leukopenia and thrombocytopenia. After antibiotic treatment and systemic supportive therapy, the symptoms disappeared, and the patient’s condition almost completely resolved.
CONCLUSION Leukopenia is a rare complication of ILAS, which serves as an indicator of adverse prognostic outcomes and the severity of infection.
Collapse
Affiliation(s)
- Chun-Yan Niu
- Department of Gastroenterology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| | - Bang-Tao Yao
- Department of Ophthalmology, Nanjing Lishui People’s Hospital, Nanjing 211200, Jiangsu Province, China
| | - Hua-Yi Tao
- Department of Gastroenterology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| | - Xin-Gui Peng
- Department of Medical Imaging, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Qing-Hua Zhang
- Department of Medical Imaging, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yue Chen
- Department of Gastroenterology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| | - Lu Liu
- Department of Gastroenterology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| |
Collapse
|
4
|
Jiang YL, Lyu YY, Liu LL, Li ZP, Liu D, Tai JH, Hu XQ, Zhang WH, Chu WW, Zhao X, Huang W, Wu YL. Carbapenem-resistant Klebsiella oxytoca transmission linked to preoperative shaving in emergency neurosurgery, tracked by rapid detection via chromogenic medium and whole genome sequencing. Front Cell Infect Microbiol 2024; 14:1464411. [PMID: 39483120 PMCID: PMC11525008 DOI: 10.3389/fcimb.2024.1464411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Objectives This study describes the detection and tracking of emergency neurosurgical cross-transmission infections with carbapenem-resistant Klebsiella oxytoca (CRKO). Methods We conducted an epidemiological investigation and a rapid screening of 66 surveillance samples using the chromogenic selective medium. Two CRKO isolates from infected patients and three from the preoperative shaving razors had similar resistance profiles identified by the clinical laboratory. Results The whole genome sequencing (WGS) results identified all isolates as Klebsiella michiganensis (a species in the K. oxytoca complex) with sequence type 29 (ST29) and carrying resistance genes bla KPC-2 and bla OXY-5, as well as IncF plasmids. The pairwise average nucleotide identity values of 5 isolates ranged from 99.993% to 99.999%. Moreover, these isolates displayed a maximum genetic difference of 3 among 5,229 targets in the core genome multilocus sequence typing scheme, and the razors were confirmed as the contamination source. After the implementation of controls and standardized shaving procedures, no new CRKO infections occurred. Conclusion Contaminated razors can be sources of neurosurgical site infections with CRKO, and standard shaving procedures need to be established. Chromogenic selective medium can help rapidly identify targeted pathogens, and WGS technologies are effective mean in tracking the transmission source in an epidemic or outbreak investigation. Our findings increase the understanding of microbial transmission in surgery to improve patient care quality.
Collapse
Affiliation(s)
- Yun-Lan Jiang
- Department of Hospital Infection Prevention and Control, Anqing First People’s Hospital of Anhui Medical University, Anqing, Anhui, China
| | - Yi-Yu Lyu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Li Liu
- Department of Hospital Infection Prevention and Control, Anqing First People’s Hospital of Anhui Medical University, Anqing, Anhui, China
| | - Zhi-Ping Li
- Department of Hospital Infection Prevention and Control, Anqing First People’s Hospital of Anhui Medical University, Anqing, Anhui, China
| | - Dan Liu
- Department of Hospital Infection Prevention and Control, Anqing First People’s Hospital of Anhui Medical University, Anqing, Anhui, China
| | - Jie-Hao Tai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Qian Hu
- Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Hui Zhang
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Wen Chu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue Zhao
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Huang
- Department of Laboratory Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yi-Le Wu
- Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Huang J, Zhuang J, Wan L, Liu Y, Du Y, Zhou L, Hu R, Shen L. Genomic Analysis and Virulence Assessment of Hypervirulent Klebsiella pneumoniae K16-ST660 in Severe Cervical Necrotizing Fasciitis. Int J Med Microbiol 2024; 317:151635. [PMID: 39427393 DOI: 10.1016/j.ijmm.2024.151635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE To investigate the source of infection in a patient with recurrent severe neck infections caused by Klebsiella pneumoniae and to analyze the virulence of isolates obtained from different sites of the patient. METHODS We collected preoperative neck abscess puncture fluid, intraoperative neck drainage fluid, sputum, intestinal fecal specimens, and blood samples from a patient who visited Wuxi Second People's Hospital twice between 2017 and 2018. We conducted isolation, identification, drug sensitivity tests, and string tests on the isolates. Capsule serotyping and virulence gene analysis were performed using PCR. The genetic relationship of different isolates was assessed by Multilocus Sequence Typing and virulence was evaluated using the Galleria mellonella infection model. Additionally, whole-genome sequencing was used to analyze the chromosomal and plasmid genes of one isolate. RESULTS Klebsiella pneumoniae was detected in the sputum and fecal specimens from both hospitalizations, as well as the preoperative ultrasound-guided puncture fluid and intraoperative drainage fluid from the first hospitalization, resulting in six isolates. These isolates were all K16 serotype, positive in the string test, and identified as ST660 by Multilocus Sequence Typing, indicating they belonged to the same clone. Virulence gene analysis showed that wcaG, iucB, iroNB, rmpA, rmpA2, Aer, kfuBC, ureA, fimH, mrkD, uge, and peg344 were positive, while allS, cf29a, and Wzy_K1 were negative. In the Galleria mellonella virulence assay, the lethality of different isolates was dose-dependent. The K16 group showed significantly higher larval mortality compared to other control groups (including K1, K2, K5, K20, and K57 groups). Genome sequencing revealed that plasmid p17388 carried numerous virulence genes and insertion sequences, particularly ISKPN74, and showed high homology with other Klebsiella plasmids. CONCLUSION This study is the first to report severe cervical necrotizing fasciitis caused by the K16-ST660 Klebsiella pneumoniae Isolate. The high virulence of these isolates was confirmed by the Galleria mellonella virulence assay and the detection of numerous virulence genes. In-depth analysis of plasmid p17388 suggests that ISKPN74 may enhance stable integration of the plasmid into the bacterial chromosome through recombinases and transposases, thereby reducing the likelihood of plasmid loss and increasing bacterial virulence. Additionally, IS5 family insertion sequences may carry extra promoters or enhancers that, when inserted upstream of mucoviscosity-associated genes such as rmpA, may increase the transcription levels of downstream genes. This ISKPN74-mediated integration or insertion reveals a complex genetic mechanism that may contribute to the severity of infections caused by ST660 isolates. Our findings offer new insights into the virulence and structure of ST660-K16 Klebsiella pneumoniae, suggesting that further investigation into the specific mechanisms by which these insertion sequences enhance virulence could aid in developing novel infection management strategies.
Collapse
Affiliation(s)
- Jun Huang
- Department of Laboratory Medicine, Center for Disease Control and Prevention, Xishan District, Wuxi, Jiangsu 214105, PR China
| | - Jiaru Zhuang
- Department of Laboratory Medicine, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu 214000, PR China
| | - Lin Wan
- Department of Laboratory Medicine, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu 214000, PR China
| | - Yutong Liu
- Department of Laboratory Medicine, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu 214000, PR China
| | - Yiran Du
- Department of Laboratory Medicine, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu 214000, PR China
| | - Lu Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210008, PR China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu 214000, PR China.
| | - Lanfeng Shen
- Department of Laboratory Medicine, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu 214000, PR China.
| |
Collapse
|
6
|
Zhao Y, Zhao Q, Liu D, Xie H, Zhang J, Zheng Y, Xu X, Wu H, Hu Z. Antibiotic resistomes and ecological risk elimination in field-scale constructed wetland revealed by integrated metagenomics and metatranscriptomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136045. [PMID: 39368357 DOI: 10.1016/j.jhazmat.2024.136045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Constructed wetlands (CWs) are identified as significant ecological systems for the potential control of antibiotic resistance genes (ARGs) in the environment. However, the precise mechanisms governing removal, persistence, expression, and associated risks of ARGs during wetland treatment remain poorly understood. In this study, the distribution, mobility, expression, and hosts of ARGs in water, sediments, and plants of a field-scale CW and its parallel natural river were systematically investigated through metagenomic and metatranscriptomic approaches. Results showed that both the abundance and diversity of ARGs in water gradually decreased along the way of CW, reaching a final abundance removal rate of 72.28 % in the effluent. Source tracking analysis indicted that the reduction of ARGs in water was mainly achieved by the dynamic accumulation of ARGs in sediments and plants of the CW. Proteobacteria were identified as primary hosts for ARGs, particularly in sediments and plants during CW treatment. Moreover, although ESKAPE pathogens carrying multiple ARGs persisted in all media throughout the CW treatment, ARG expression levels and risk of water were also significantly decreased after CW treatment. Collectively, our comprehensive multi-omics study would enhance the understanding of ARG removal by CWs, offering insights for controlling antimicrobial resistance in wastewater treatment system.
Collapse
Affiliation(s)
- Yanhui Zhao
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Qian Zhao
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Daoxing Liu
- Shandong Innovation and Entrepreneurship Community of Green Industry and Environmental Security, Jinan 250199, PR China; Shandong Academy of Environmental Science Co., LTD., Jinan 250199, PR China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China; Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China.
| | - Yu Zheng
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Xinyi Xu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
7
|
Zhou Y, Mu Y. Clinical Characteristics and Molecular Insights of Carbapenem-Resistant Klebsiella pneumoniae Isolates from Patients in Intensive Care Units. Surg Infect (Larchmt) 2024; 25:606-611. [PMID: 38990705 DOI: 10.1089/sur.2024.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP), a significant worldwide public health threat, is common in patients in intensive care units. Methods: A retrospective study was conducted over a period of 22 months to assess the risk factors associated with infection caused by CRKP isolates. Strain identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and antimicrobial sensitivity was assessed using the micro broth dilution method and Kirby-Bauer test. The genes blaKPC, blaOXA-48, blaNDM, blaVIM, and blaGES were amplified using polymerase chain reaction (PCR), followed by sequencing of the PCR products. The polymerase hypermucoviscosity phenotype was determined using the string test. Capsular serotypes (K1, K2) and presence of the virulence gene (rmpA) in positive isolates were investigated using phenotypic tests followed by PCR. Results: Length of hospitalization and use of carbapenems were associated with CRKP infection. CRKP isolates exhibited extensive drug resistance, but retained sensitivity to colistin and ceftazidime-avibactam (CZA). The main gene detected in 35 CRKP isolates was blaKPC-2. In addition, 11 strains were positive in the string test, and two of these strains carried rmpA. Conclusions: Prolonged hospitalization and carbapenem exposure increased the risk of CRKP infection in intensive care unit (ICU) patients. The prevalence of CRKP carrying the blaKPC-2 gene was high, and suspected hypervirulent carbapenem-resistant K. pneumoniae isolates were scattered.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315040, China
| | - Yinyu Mu
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315040, China
| |
Collapse
|
8
|
Behera B, Swain PP, Rout B, Panigrahy R, Sahoo RK. Genotypic characterization of hypervirulent Klebsiella pneumoniae (hvKp) in a tertiary care Indian hospital. Int Microbiol 2024; 27:1373-1382. [PMID: 38252202 DOI: 10.1007/s10123-024-00480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is an emerging pathogen and causes endophthalmitis, liver abscess, osteomyelitis, meningitis, and necrotizing soft tissue infections in both immunodeficient and healthy people. The acquisition of the antibiotic resistance genes of hvKp has become an emerging concern throughout the globe. In this study, a total of 74 K. pneumoniae isolates were collected and identified by VITEK2 and blaSHV gene amplification. Out of these, 18.91% (14/74) isolates were identified as hvKp by both phenotypic string test and genotypic iucA PCR amplification. The antibiotic susceptibility revealed that 57.14% (8/14) isolates were multidrug-resistant (MDR) and 35.71% (5/14) isolates were extremely drug-resistant (XDR). All the isolates were resistant to β-lactam, β-lactamase + inhibitor groups of antibiotics, and the least resistance to colistin. Of 14 hvKp isolates, all isolates are positive for iroB (100%), followed by iutA (92.85%), peg344 (85.71%), rmpA (57.14%), and magA (21.42%) genes. Among serotypes, K1 was the most prevalent serotype 21.4% (3/14), followed by K5 14.3% (2/14). The most common carbapenemase gene was blaOXA-48 (78.57%) followed by blaNDM (14.28%) and blaKPC (14.28%) which co-carried multiple resistance genes such as blaSHV (100%), blaCTX-M (92.85%), and blaTEM (78.57%). About 92.85% (13/14) of hvKp isolates were strong biofilm producers, while one isolate (hvKp 10) was the only moderate biofilm producer. The (GTG)5-PCR molecular typing method revealed high diversity among the hvKp isolates in the tertiary care hospital. Our findings suggest that MDR-hvKp is an emerging pathogen and a challenge for clinical practice. In order to avoid hvKp strain outbreaks in hospital settings, robust infection control and effective surveillance should be implemented.
Collapse
Affiliation(s)
- Birasen Behera
- Department of Microbiology, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India
| | - Pragyan Paramita Swain
- Centre For Biotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India
| | - Bidyutprava Rout
- Department of Microbiology, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India
| | - Rajashree Panigrahy
- Department of Microbiology, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India.
| | - Rajesh Kumar Sahoo
- Centre For Biotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751029, India.
| |
Collapse
|
9
|
Douradinha B. Exploring the journey: A comprehensive review of vaccine development against Klebsiella pneumoniae. Microbiol Res 2024; 287:127837. [PMID: 39059097 DOI: 10.1016/j.micres.2024.127837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Klebsiella pneumoniae, a prominent nosocomial pathogen, poses a critical global health threat due to its multidrug-resistant (MDR) and hypervirulent strains. This comprehensive review focuses into the complex approaches undertaken in the development of vaccines against K. pneumoniae. Traditional methods, such as whole-cell and ribosomal-based vaccines, are compared with modern strategies, including DNA and mRNA vaccines, and extracellular vesicles (EVs), among others. Each method presents unique advantages and challenges, emphasising the complexity of developing an effective vaccine against this pathogen. Significant advancements in computational tools and artificial intelligence (AI) have revolutionised antigen identification and vaccine design, enhancing the precision and efficiency of developing multiepitope-based vaccines. The review also highlights the potential of glycomics and immunoinformatics in identifying key antigenic components and elucidating immune evasion mechanisms employed by K. pneumoniae. Despite progress, challenges remain in ensuring the safety, efficacy, and manufacturability of these vaccines. Notably, EVs demonstrate promise due to their intrinsic adjuvant properties and ability to elicit robust immune responses, although concerns regarding inflammation and antigen variability persist. This review provides a critical overview of the current landscape of K. pneumoniae vaccine development, stressing the need for continued innovation and interdisciplinary collaboration to address this pressing public health issue. The integration of advanced computational methods and AI holds the potential to accelerate the development of effective immunotherapies, paving the way for novel vaccines against MDR K. pneumoniae.
Collapse
|
10
|
Pristas I, Ujevic J, Bodulić K, Andrijasevic N, Bedenic B, Payerl-Pal M, Susic E, Dobrovic K, De Koster S, Malhotra-Kumar S, Tambic Andrasevic A. The Association between Resistance and Virulence of Klebsiella pneumoniae in High-Risk Clonal Lineages ST86 and ST101. Microorganisms 2024; 12:1997. [PMID: 39458306 PMCID: PMC11509769 DOI: 10.3390/microorganisms12101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen known for two main pathotypes: classical K. pneumoniae (cKp), often multidrug-resistant and common in hospitals, and hypervirulent K. pneumoniae (hvKp), associated with severe community-acquired infections. The recent emergence of strains combining hypervirulence and resistance is alarming. This study investigates the distribution of sequence types (STs), resistance, and virulence factors in K. pneumoniae strains causing bloodstream and urinary tract infections in Croatia. In 2022, 200 consecutive K. pneumoniae isolates were collected from blood and urine samples across several Croatian hospitals. Whole genome sequencing was performed on 194 isolates. Within the analyzed K. pneumoniae population, the distribution of sequence types was determined with multi-locus sequence typing (MLST) and capsule loci, resistance, and virulence determinants were assessed with the bioinformatics tool Kleborate. The analysis identified 77 different STs, with ST101 (24.6%) being the most prevalent, predominantly linked to the K17 capsular type (CT), invasive device usage, high antimicrobial resistance, and low virulence scores. The highest virulence scores were recorded in ST86 isolates, which were predominantly linked to the K2 CT and included some strains with medium resistance scores. String tests were positive in 19 strains, but only four of those harbored hypermucoviscous genetic determinants. The most prevalent ST101 clone in Croatia demonstrated a diverging association between resistance and virulence. An alarming co-existence of resistance and virulence was recorded in the ST86 strains.
Collapse
Affiliation(s)
- Irina Pristas
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (J.U.); (K.B.); (N.A.); (A.T.A.)
- Dental School of Medicine, 10000 Zagreb, Croatia
| | - Josip Ujevic
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (J.U.); (K.B.); (N.A.); (A.T.A.)
| | - Kristian Bodulić
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (J.U.); (K.B.); (N.A.); (A.T.A.)
| | - Natasa Andrijasevic
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (J.U.); (K.B.); (N.A.); (A.T.A.)
| | - Branka Bedenic
- Medical Microbiology Department, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- BIMIS-Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Marina Payerl-Pal
- Public Health Institute of Medimurje County, 40000 Cakovec, Croatia;
| | - Edita Susic
- Public Health Institute of Šibenik and Knin County, 22000 Šibenik, Croatia;
| | | | - Sien De Koster
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium; (S.D.K.); (S.M.-K.)
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium; (S.D.K.); (S.M.-K.)
| | - Arjana Tambic Andrasevic
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (J.U.); (K.B.); (N.A.); (A.T.A.)
- Dental School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Tajuelo A, Gato E, Oteo-Iglesias J, Pérez-Vázquez M, McConnell MJ, Martín-Galiano AJ, Pérez A. Deep Intraclonal Analysis for the Development of Vaccines against Drug-Resistant Klebsiella pneumoniae Lineages. Int J Mol Sci 2024; 25:9837. [PMID: 39337325 PMCID: PMC11431857 DOI: 10.3390/ijms25189837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Despite its medical relevance, there is no commercial vaccine that protects the population at risk from multidrug-resistant (MDR) Klebsiella pneumoniae infections. The availability of massive omic data and novel algorithms may improve antigen selection to develop effective prophylactic strategies. Up to 133 exposed proteins in the core proteomes, between 516 and 8666 genome samples, of the six most relevant MDR clonal groups (CGs) carried conserved B-cell epitopes, suggesting minimized future evasion if utilized for vaccination. Antigens showed a range of epitopicity, functional constraints, and potential side effects. Eleven antigens, including three sugar porins, were represented in all MDR-CGs, constitutively expressed, and showed limited reactivity with gut microbiota. Some of these antigens had important interactomic interactions and may elicit adhesion-neutralizing antibodies. Synergistic bivalent to pentavalent combinations that address expression conditions, interactome location, virulence activities, and clone-specific proteins may overcome the limiting protection of univalent vaccines. The combination of five central antigens accounted for 41% of all non-redundant interacting partners of the antigen dataset. Specific antigen mixtures represented in a few or just one MDR-CG further reduced the chance of microbiota interference. Rational antigen selection schemes facilitate the design of high-coverage and "magic bullet" multivalent vaccines against recalcitrant K. pneumoniae lineages.
Collapse
Affiliation(s)
- Ana Tajuelo
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), 28015 Madrid, Spain
| | - Eva Gato
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Jesús Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María Pérez-Vázquez
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Michael J McConnell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Antonio J Martín-Galiano
- Core Scientific and Technical Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Astrid Pérez
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
12
|
Wang C, Wang S, Jing S, Zeng Y, Yang L, Mu Y, Ding Z, Song Y, Sun Y, Zhang G, Wei D, Li M, Ma Y, Zhou H, Wu L, Feng J. Data-Driven Engineering of Phages with Tunable Capsule Tropism for Klebsiella pneumoniae. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309972. [PMID: 38937990 PMCID: PMC11434222 DOI: 10.1002/advs.202309972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Klebsiella pneumoniae, a major clinical pathogen known for causing severe infections, is attracting heightened attention due to its escalating antibiotic resistance. Phages are emerging as a promising alternative to antibiotics; however, their specificity to particular hosts often restricts their use. In this study, a collection of 114 phages is obtained and subjected to analysis against 238 clinical K. pneumoniae strains, revealing a spectrum of lytic behaviors. A correlation between putative tail protein clusters and lysis patterns leads to the discovery of six receptor-binding protein (RBP) clusters that determine host capsule tropism. Significantly, RBPs with cross-capsular lysis capabilities are identified. The newly-identified RBPs provide a toolbox for customizing phages to target diverse capsular types. Building on the toolbox, the engineered phages with altered RBPs successfully shifted and broadened their host capsule tropism, setting the stage for tunable phage that offer a precise and flexible solution to combat K. pneumoniae infections.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest UniversityXi'an710069China
| | - Shisong Jing
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuan Zeng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
| | - Lili Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
- Shandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Yongqi Mu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zixuan Ding
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
- Shandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest UniversityXi'an710069China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
| | - Dawei Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
| | - Yingfei Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen518000China
| | - Haijian Zhou
- State Key Laboratory for Infectious Diseases Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing102206China
| | - Linhuan Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing100101China
| |
Collapse
|
13
|
Beig M, Aghamohammad S, Majidzadeh N, Asforooshani MK, Rezaie N, Abed S, Khiavi EHG, Sholeh M. Antibiotic resistance rates in hypervirulent Klebsiella pneumoniae strains: A systematic review and meta-analysis. J Glob Antimicrob Resist 2024; 38:376-388. [PMID: 39069234 DOI: 10.1016/j.jgar.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES In response to the growing global concerns regarding antibiotic resistance, we conducted a meta-analysis to assess the prevalence of antibiotic resistance in hypervirulent Klebsiella pneumoniae (hvKp) strains. METHODS We conducted a meta-analysis of antibiotic resistance in the hvKp strains. Eligible studies published in English until April 10, 2023, were identified through a systematic search of various databases. After removing duplicates, two authors independently assessed and analysed the relevant publications, and a third author resolved any discrepancies. Data extraction included publication details and key information on antibiotic resistance. Data synthesis employed a random-effects model to account for heterogeneity, and various statistical analyses were conducted using R and the metafor package. RESULTS This meta-analysis of 77 studies from 17 countries revealed the prevalence of antibiotic resistance in hvKp strains. A high resistance rates have been observed against various classes of antibiotics. Ampicillin-sulbactam faced 45.3% resistance, respectively, rendering them largely ineffective. The first-generation cephalosporin cefazolin exhibited a resistance rate of 38.1%, whereas second-generation cefuroxime displayed 26.7% resistance. Third-generation cephalosporins, cefotaxime (65.8%) and ceftazidime (57.1%), and fourth-generation cephalosporins, cefepime (51.3%), showed substantial resistance. The last resort carbapenems, imipenem (45.7%), meropenem (51.0%) and ertapenem (40.6%), were not spared. CONCLUSION This study emphasizes the growing issue of antibiotic resistance in hvKp strains, with notable resistance to both older and newer antibiotics, increasing resistance over time, regional disparities and methodological variations. Effective responses should involve international cooperation, standardized testing and tailored regional interventions.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nahal Majidzadeh
- Departments of Biological and Biomedical Sciences, Cancer Biomedical Center, Tehran, Iran
| | - Mahshid Khazani Asforooshani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | | | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Cardoso Almeida AP, de Moraes MA, da Silva AKF, Oliveira-Silva M, Nakamura-Silva R, de Almeida FM, Pappas Junior GJ, Pitondo-Silva A, de Campos TA. Long-term occurrence of multiple antimicrobial drug resistant Klebsiella pneumoniae isolates harboring virulent potential in a tertiary hospital from Brazil. Braz J Microbiol 2024; 55:2313-2320. [PMID: 38743244 PMCID: PMC11405615 DOI: 10.1007/s42770-024-01358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Klebsiella pneumoniae strains are globally associated with a plethora of opportunistic and severe human infections and are known to spread genes conferring antimicrobial resistance. Some strains harbor virulence determinants that enable them to cause serious disease in any patient, both in the hospital and in the community. The aim of this study was to determine the frequency of antimicrobial resistance and virulence traits (by gene detection and string test) among 83 K. pneumoniae isolates obtained from patient cultures of a scholar tertiary hospital in the Midwestern Brazil (Brasília, DF). Antimicrobial susceptibility analysis showed that 94% (78/83) of the isolates presented one of the following resistance profiles: resistant (R, 39), multidrug-resistant (MDR, 29), or extensively drug-resistant (XDR, 10). Several MDR and XDR strains harbored multiple virulence genes and displayed hypermucoviscous phenotype. These characteristics were observed among isolates obtained throughout all the sample collection period (2013 - 2017). The K2 serotype gene, a molecular marker of hypervirulence, was detected in three isolates, one of which classified as XDR. Sequence typing revealed the occurrence of isolates belonged to high-risk (ST13) and multiple resistance-spreading clones (ST105). Thus, our findings showed the occurrence of virulent potential isolates that also presented MDR/XDR phenotypes from 2013 to 2015. This study also indicates the probable convergence of virulence and resistance since at least 2013 in Brazil.
Collapse
Affiliation(s)
- Ana Paula Cardoso Almeida
- Programa de Pós-Graduação Em Biologia Microbiana, Universidade de Brasília, Brasília, Distrito Federal, Brasil
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia, DF, CEP70910-900, Brazil
| | - Miguel Augusto de Moraes
- Faculdade de Ciências Farmacêuticas, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
- Programa de Pós-Graduação Em Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
| | - Amanda Kamyla Ferreira da Silva
- Faculdade de Ciências Farmacêuticas, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
- Programa de Pós-Graduação Em Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
| | - Mariana Oliveira-Silva
- Programa de Pós-Graduação Em Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
| | - Rafael Nakamura-Silva
- Programa de Pós-Graduação Em Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
| | | | - Georgios Joannis Pappas Junior
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia, DF, CEP70910-900, Brazil
- Programa de Pós-Graduação Em Biologia Molecular, Universidade de Brasília, Brasília, DF, Brasil
| | - André Pitondo-Silva
- Faculdade de Ciências Farmacêuticas, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
- Programa de Pós-Graduação Em Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
- Programa de Pós-Graduação Em Odontologia, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
| | - Tatiana Amabile de Campos
- Programa de Pós-Graduação Em Biologia Microbiana, Universidade de Brasília, Brasília, Distrito Federal, Brasil.
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia, DF, CEP70910-900, Brazil.
| |
Collapse
|
15
|
Braun HG, Perera SR, Tremblay YD, Thomassin JL. Antimicrobial resistance in Klebsiella pneumoniae: an overview of common mechanisms and a current Canadian perspective. Can J Microbiol 2024. [PMID: 39213659 DOI: 10.1139/cjm-2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Klebsiella pneumoniae is a ubiquitous opportunistic pathogen of the family Enterobacteriaceae. K. pneumoniae is a member of the ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), a group of bacteria that cause nosocomial infections and are able to resist killing by commonly relied upon antimicrobial agents. The acquisition of antimicrobial resistance (AMR) genes is increasing among community and clinical isolates of K. pneumoniae, making K. pneumoniae a rising threat to human health. In addition to the increase in AMR, K. pneumoniae is also thought to disseminate AMR genes to other bacterial species. In this review, the known mechanisms of K. pneumoniae AMR will be described and the current state of AMR K. pneumoniae within Canada will be discussed, including the impact of the coronavirus disease-2019 pandemic, current perspectives, and outlook for the future.
Collapse
Affiliation(s)
- Hannah G Braun
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sumudu R Perera
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yannick Dn Tremblay
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenny-Lee Thomassin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Liao Q, Zhang W, Deng J, Wu S, Liu Y, Xiao Y, Kang M. Relationship between virulence and carbapenem resistance phenotype of Klebsiella pneumoniae from blood infection: identification of a carbapenem-resistant and hypervirulent strain. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:490-497. [PMID: 39183061 PMCID: PMC11375489 DOI: 10.3724/zdxbyxb-2024-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To investigate the relationship between the virulence and the carbapenem resistance phenotype of Klebsiella pneumoniae from blood infection, and to identify carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-HVKP)strains. METHODS A total of 192 Klebsiella pneumoniae strains were isolated from blood culture of patients with bloodstream infections from 2016 to 2019, of which 96 isolates were carbapenem-resistant Klebsiella pneumoniae (CRKP) and 96 were carbapenem-sensitive Klebsiella pneumoniae (CSKP). The drug susceptibility was detected by VITEK-2 automatic microbial analyzer; carbapenemase genes, virulence genes and capsule typing were detected by polymerase chain reaction; the high viscosity phenotype of strains was detected by string test, and the genome characteristics of CR-HVKP were detected by whole genome sequencing. Serum killing and biofilm formation test were used to further verify the virulence of CR-HVKP. RESULTS There were significant differences in drug resistance to common antibiotics, except for minocycline between CSKP and CRKP isolates (all P<0.05). 92 out of 96 CRKP isolates carried carbapenemase genes, mainly blaKPC-2. The string tests were positive in 4 isolates of CRKP and 36 isolates of CSKP (P<0.05). The detection rates of virulence genes Kfu, aerobictin, iutA, ybtS, rmpA, magA, allS, and capsule antigen K1 and K2 in CSKP group were significantly higher than those in CRKP group (all P<0.05). One HVKP strain was detected in the CRKP group (CR-HVKP) and 36 HVKP was detected in the CSKP group (P<0.05). The CR-HVKP strain belonged to the MLST412, serotype K57, expressed iutA, entB, mrkD, fimH, and rmpA virulence genes, and showed strong biofilm formation and significantly increased serum resistance. Whole genome sequencing results showed that this CR-HVKP isolate carried blaSHV-145, blaTEM-1, blaCTX-M-3, fosA6, oqxA5, oqxB26, and aac(3)-IId resistance genes, accompanied by abnormalities in outer membrane protein K (OmpK) 35 and OmpK36. CONCLUSIONS The drug resistance of CRKP is significantly higher than that of CSKP, while CRKP carrying fewer virulence genes in both number and types compared to CSKP. A new MLST type of carbapenem-resistant and hypervirulent Klebsiella pneumoniae strain has been detected, which requires clinical awareness and epidemiological monitoring.
Collapse
Affiliation(s)
- Quanfeng Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Weili Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siying Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ya Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Iqbal MZ, He P, He P, Wu Y, Munir S, He Y. The Response of Murine Gut Microbiome in the Presence of Altered rpoS Gene of Klebsiella pneumoniae. Int J Mol Sci 2024; 25:9222. [PMID: 39273171 PMCID: PMC11395600 DOI: 10.3390/ijms25179222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The murine model is invaluable for studying intricate interactions among gut microbes; hosts; and diseases. However; the impact of genetic variations in the murine microbiome; especially in disease contexts such as Klebsiella pneumoniae (Kp) infection; still needs to be explored. Kp; an opportunistic global pathogen; is becoming increasingly prevalent in regions like Asia; especially China. This study explored the role of the gut microbiota during Kp infection using mouse model; including wild-type and rpoS mutants of Kp138; KpC4; and KpE4 from human; maize; and ditch water; respectively. Under stress conditions; RpoS reconfigures global gene expression in bacteria; shifting the cells from active growth to survival mode. Our study examined notable differences in microbiome composition; finding that Lactobacillus and Klebsiella (particularly in WKp138) were the most abundant genera in mice guts at the genus level in all wild-type treated mice. In contrast; Firmicutes were predominant in the healthy control mice. Furthermore; Clostridium was the dominant genus in all mutants; mainly in ∆KpC4; and was absent in wild-type treated mice. Differential abundance analysis identified that these candidate taxa potentially influence disease progression and pathogen virulence. Functional prediction analysis showed that most bacterial groups were functionally involved in biosynthesis; precursor metabolites; degradation; energy generation; and metabolic cluster formation. These findings challenge the conventional understanding and highlight the need for nuanced interpretations in murine studies. Additionally; this study sheds light on microbiome-immune interactions in K. pneumoniae infection and proposes new potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
18
|
Sokhanvari S, Bagheri A, Badmasti F, Solgi H. Molecular characterization of NDM and OXA-48-like-producing Klebsiella pneumoniae ST16 and hypervirulent ST337 clone among two patients; a case report. BMC Infect Dis 2024; 24:850. [PMID: 39169288 PMCID: PMC11340172 DOI: 10.1186/s12879-024-09762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a major public health problem, requiring the use of last-resort antibiotics such as colistin. However, there is concern regarding the emergence of isolates resistant to this agent. The report describes two patients with urinary tract infection (UTI) and ventilator-associated pneumonia (VAP) infection caused by CRKP strains. The first case was a 23-year-old male with UTI caused by a strain of ST16 co-harboring blaCTX-M, blaTEM, blaSHV, blaNDM, blaOXA-48-like genes. The second case was a 39-year-old woman with VAP due to hypervirulent ST337-K2 co-harboring blaSHV, blaNDM, blaOXA-48-like, iucA, rmpA2 and rmpA. The patients' general condition improved after combination therapy with colistin (plus meropenem and rifampin, respectively) and both of them recovered and were discharged from the hospital. This study highlights the necessary prevention and control steps to prevent the further spread of CRKP strains should be a priority in our hospital.
Collapse
Affiliation(s)
- Sarvenaz Sokhanvari
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atiyeh Bagheri
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Amin Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Tu Y, Gao H, Zhao R, Yan J, Wu X. Molecular characteristics and pathogenic mechanisms of KPC-3 producing hypervirulent carbapenem-resistant Klebsiella pneumoniae (ST23-K1). Front Cell Infect Microbiol 2024; 14:1407219. [PMID: 39211794 PMCID: PMC11358127 DOI: 10.3389/fcimb.2024.1407219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aimed to comprehensively investigate hypervirulent carbapenem-resistant Klebsiella pneumoniae (CR-hvKP) in the Ningbo region. Importantly, we sought to elucidate its molecular characteristics and pathogenic mechanisms. This information will provide evidence-based insights for preventing and controlling nosocomial infections and facilitate improved clinical diagnosis and treatment in this region. Methods 96 carbapenem-resistant Klebsiella pneumoniae strains were collected from the Ningbo region between January 2021 and December 2022. Whole genome sequencing and bioinformatic methods were employed to identify and characterize CR-hvKP strains at the molecular level. The minimum inhibitory concentrations (MICs) of common clinical antibiotics were determined using the VITEK-2 Compact automatic microbiological analyzer. Plasmid conjugation experiments evaluated the transferability of resistance plasmids. Finally, mouse virulence assays were conducted to explore the pathogenic mechanisms. Results Among the 96 strains, a single CR-hvKP strain, designated CR-hvKP57, was identified, with an isolation frequency of 1.04%. Whole-genome sequencing revealed the strain to be ST23 serotype with a K1 capsule. This strain harbored three plasmids. Plasmid 1, a pLVPK-like virulence plasmid, carried multiple virulence genes, including rmpA, rmpA2, iroB, iucA, and terB. Plasmid 2 contained transposable element sequences such as IS15 and IS26. Plasmid 3, classified as a resistance plasmid, harbored the bla KPC-3 carbapenem resistance gene. Mouse virulence assays demonstrated a high mortality rate associated with CR-hvKP57 infection. Additionally, there was a significant increase in IL-1β, IL-6, and TNF-α levels in response to CR-hvKP57 infection, indicating varying degrees of inflammatory response. Western blot experiments further suggested that the pathogenic mechanism involves activation of the NF-κB signaling pathway. Conclusion This study confirms the emergence of hypervirulent CR-hvKP in the Ningbo region, which likely resulted from the acquisition of a pLVPK-like virulence plasmid and a bla KPC-3 resistance plasmid by the ST23-K1 type Klebsiella pneumoniae. Our findings highlight the urgent need for more judicious use of antibiotics to limit the emergence of resistance. Additionally, strengthening infection prevention and control measures is crucial to minimize the spread of virulence and resistance plasmids.
Collapse
|
20
|
Yang L, Wang C, Zeng Y, Song Y, Zhang G, Wei D, Li Y, Feng J. Characterization of a novel phage against multidrug-resistant Klebsiella pneumoniae. Arch Microbiol 2024; 206:379. [PMID: 39143367 DOI: 10.1007/s00203-024-04106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant challenge in global healthcare, underscoring the urgency for innovative therapeutic approaches. Phage therapy emerges as a promising strategy amidst rising antibiotic resistance, emphasizing the crucial need to identify and characterize effective phage resources for clinical use. In this study, we introduce a novel lytic phage, RCIP0100, distinguished by its classification into the Chaoyangvirus genus and Fjlabviridae family based on International Committee on Taxonomy of Viruses (ICTV) criteria due to low genetic similarity to known phage families. Our findings demonstrate that RCIP0100 exhibits broad lytic activity against 15 out of 27 tested MDR-KP strains, including diverse profiles such as carbapenem-resistant K. pneumoniae (CR-KP). This positions phage RCIP0100 as a promising candidate for phage therapy. Strains resistant to RCIP0100 also showed increased susceptibility to various antibiotics, implying the potential for synergistic use of RCIP0100 and antibiotics as a strategic countermeasure against MDR-KP.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Qilu Medical University, Zibo, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Zeng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yalin Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Sun N, Yang Y, Wang G, Guo L, Liu L, San Z, Zhao C, Zhao L, Tong M, Cheng Y, Chen Q. Whole-genome sequencing of multidrug-resistant Klebsiella pneumoniae with capsular serotype K2 isolates from mink in China. BMC Vet Res 2024; 20:356. [PMID: 39127663 DOI: 10.1186/s12917-024-04222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a zoonotic opportunistic pathogen, and also one of the common pathogenic bacteria causing mink pneumonia. The aim of this study was to get a better understanding of the whole-genome of multi-drug resistant Klebsiella pneumoniae with K2 serotype in China. This study for the first time to analyze Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, resistance and virulence genes of Klebsiella pneumoniae in mink. RESULTS The isolate was Klebsiella pneumoniae with serotype K2 and ST6189 by PCR method. The string test was positive and showed high mucus phenotype. There was one plasmid with IncFIB replicons in the genome. The virulence factors including capsule, lipopolysaccharide, adhesin, iron uptake system, urease, secretory system, regulatory gene (rcsA, rcsB), determinants of pili adhesion, enolase and magnesium ion absorption related genes. The strain was multi-drug resistant. A total of 26 resistance genes, including beta-lactam, aminoglycosides, tetracycline, fluoroquinolones, sulfonamides, amide alcohols, macrolides, rifampicin, fosfomycin, vancomycin, diaminopyrimidines and polymyxin. Multidrug-resistant efflux protein AcrA, AcrB, TolC, were predicted in the strain. CONCLUSION It was the first to identify that serotype K2 K. pneumonia with ST6189 isolated from mink in China. The finding indicated that hypervirulent and multi-drug resistant K. pneumoniae was exist in Chinese mink. The whole-genome of K. pneumoniae isolates have importance in mink farming practice.
Collapse
Affiliation(s)
- Na Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, China
| | - Li Guo
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhihao San
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Lifeng Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yuening Cheng
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiang Chen
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China.
| |
Collapse
|
22
|
Zhang Y, Liu M, Zhang J, Wu J, Hong L, Zhu L, Long J. Large-scale comparative analysis reveals phylogenomic preference of bla NDM-1 and bla KPC-2 transmission among Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107225. [PMID: 38810941 DOI: 10.1016/j.ijantimicag.2024.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
blaNDM-1 and blaKPC-2 are responsible for the global increase in carbapenem-resistant Klebsiella pneumoniae, posing a great challenge to public health. However, the impact of phylogenetic factors on the dissemination of blaNDM-1 and blaKPC-2 is not yet fully understood. This study established a global dataset of 4051 blaNDM-1+ and 10,223 blaKPC-2+ K. pneumoniae genomes, and compared their transmission modes on a global scale. The results showed that blaNDM-1+ K. pneumoniae genomes exhibited a broader geographical distribution and higher sequence type (ST) richness than blaKPC-2+ genomes, indicating higher transmissibility of the blaNDM-1 gene. Furthermore, blaNDM-1+ genomes displayed significant differences in ST lineage, antibiotic resistance gene composition, virulence gene composition and genetic environments compared with blaKPC-2+ genomes, suggesting distinct dissemination mechanisms. blaNDM-1+ genomes were predominantly associated with ST147 and ST16, whereas blaKPC-2+ genomes were mainly found in ST11 and ST258. Significantly different accessory genes were identified between blaNDM-1+ and blaKPC-2+ genomes. The preference for blaKPC-2 distribution across certain countries, ST lineages and genetic environments underscores vertical spread as the primary mechanism driving the expansion of blaKPC-2. In contrast, blaNDM-1+ genomes did not display such a strong preference, confirming that the dissemination of blaNDM-1 mainly depends on horizontal gene transfer. Overall, this study demonstrates different phylogenetic drivers for the dissemination of blaNDM-1 and blaKPC-2, providing new insights into their global transmission dynamics.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyue Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangfeng Zhang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jie Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lijuan Hong
- Department Hospital-Acquired Infection Control, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - LiQiang Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
Cui J, Zhang Y, Li X, Ding Z, Kong Y, Yu Z, Li Z, Tong J, Liu Z, Yuan J. Antimicrobial resistance profiles and genome characteristics of Klebsiella isolated from the faeces of neonates in the neonatal intensive care unit. J Med Microbiol 2024; 73. [PMID: 39150452 PMCID: PMC11329266 DOI: 10.1099/jmm.0.001862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Introduction. Klebsiella spp. are important bacteria that colonize the human intestine, especially in preterm infants; they can induce local and systemic disease under specific circumstances, including inflammatory bowel disease, necrotizing enterocolitis and colorectal cancer.Hypothesis. Klebsiella spp. colonized in the intestine of the neonates in the neonatal intensive care unit (NICU) may be associated with disease and antibiotic resistance, which will be hazardous to the children.Aim. Our aim was to know about the prevalence, antimicrobial resistance and genome characteristics of Klebsiella spp. in neonate carriers.Methodology. Genome sequencing and analysis, and antimicrobial susceptibility testing were mainly performed in this study.Results. The isolation rates of Klebsiella spp. strains were 3.7% (16/436) in 2014 and 4.3% (18/420) in 2021. Cases with intestinal-colonized Klebsiella spp. were mainly infants with low birth weights or those with pneumonia or hyperbilirubinemia. According to the core-pan genomic analysis, 34 stains showed gene polymorphism and a sequence type (ST) of an emerging high-risk clone (ST11). Eight strains (23.5%) were found to be resistant to 2 or more antibiotics, and 46 genes/gene families along with nine plasmids were identified that conferred resistance to antibiotics. In particular, the two strains were multidrug-resistant. Strain A1256 that is related to Klebsiella quasipneumoniae subsp. similipneumoniae was uncommon, carrying two plasmids similar to IncFII and IncX3 that included five antibiotic resistance genes.Conclusion. The prevention and control of neonatal Klebsiella spp. colonization in the NICU should be strengthened by paying increased attention to preventing antimicrobial resistance in neonates.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Yanan Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Xiaoran Li
- 155th Hospital of Kaifeng, Kaifeng, Henan Province, 475003, PR China
| | - Zanbo Ding
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Yiming Kong
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Zihui Yu
- Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Zhaona Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Jingjing Tong
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Zunjie Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University & Beijing Maternal and Child Health Care Hospital, Beijing 100026, PR China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing 100020, PR China
| |
Collapse
|
24
|
Jing J, Wei Y, Dong X, Li D, Zhang C, Fang Z, Wang J, Wan X. Characteristics and Clinical Prognosis of Septic Patients With Persistent Lymphopenia. J Intensive Care Med 2024; 39:733-741. [PMID: 38225173 DOI: 10.1177/08850666241226877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Background: Septic patients with persistent lymphopenia may be in an immunosuppressed state. Therefore, we evaluated and compared the clinical characteristics and outcomes of septic patients with persistent lymphopenia (≥2d) and those with nonpersistent lymphopenia. Methods: A retrospective cohort study was designed. A total of 1306 patients with sepsis who were attended to the First Affiliated Hospital of Dalian Medical University from March 2016 to August 2022 were included. The primary clinical outcome was 90d mortality. The secondary clinical outcomes were the length of stay, hospital mortality, 28d mortality, the incidence of secondary infection, and differences in clinical characteristics. Results: Among 1306 patients with sepsis, 913 (69.9%) patients developed persistent lymphopenia. Compared with patients with nonpersistent lymphopenia, patients with persistent lymphocytopenia were admitted to intensive care unit (75.7% vs 52.7%, P < .05), treated with mechanical ventilation (67.6% vs 39.2%, P < .05), positive rate of microbial culture pathogens (86.7% vs 71.2%, P < .05), SOFA [8.0 (6.0-10.0) vs 6.0 (4.0-8.0), P < .05], length of stay [17.0d (12.0-27.0) vs 13.0d (10.0-21.0), P < .05], hospital mortality (37.7% vs 24.2%, P < .05), 28d mortality (38.0% vs 22.9%, P < .05), and 90d mortality (51.2% vs 31.3%, P < .05) were higher. As the duration of lymphocytopenia increased, so did the mortality rate in hospital. In addition, the onset time of persistent lymphopenia was not associated with SOFA. But we found that the frequency of persistent lymphopenia during hospitalization was positively associated with SOFA. Conclusion: Septic patients with persistent lymphopenia have higher mortality, worse conditions, increased risk of secondary infection, and poor prognosis regardless of shock.
Collapse
Affiliation(s)
- Juanjuan Jing
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yushan Wei
- Department of Scientific Research, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xue Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dandan Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhiyao Fang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Muner JJ, de Oliveira PAA, Baboghlian J, Moura SC, de Andrade AG, de Oliveira MM, Campos YFD, Mançano ASF, Siqueira NMG, Pacheco T, Ferraz LFC. The transcriptional regulator Fur modulates the expression of uge, a gene essential for the core lipopolysaccharide biosynthesis in Klebsiella pneumoniae. BMC Microbiol 2024; 24:279. [PMID: 39061004 PMCID: PMC11282780 DOI: 10.1186/s12866-024-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.
Collapse
Affiliation(s)
- José Júlio Muner
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Paloma Aparecida Alves de Oliveira
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
- Central Multiusuária de Análises Genômica e Transcriptômica (CmAGT), Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Juliana Baboghlian
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Stefany Casarin Moura
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | | | | | - Yasmin Ferreira de Campos
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | | | | | - Thaisy Pacheco
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil.
- Central Multiusuária de Análises Genômica e Transcriptômica (CmAGT), Universidade São Francisco, Bragança Paulista, SP, Brazil.
| |
Collapse
|
26
|
Liang Q, Chen N, Wang W, Zhang B, Luo J, Zhong Y, Zhang F, Zhang Z, Martín–Rodríguez AJ, Wang Y, Xiang L, Xiong X, Hu R, Zhou Y. Co-occurrence of ST412 Klebsiella pneumoniae isolates with hypermucoviscous and non-mucoviscous phenotypes in a short-term hospitalized patient. mSystems 2024; 9:e0026224. [PMID: 38904378 PMCID: PMC11265266 DOI: 10.1128/msystems.00262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Hypermucoviscosity (HMV) is a phenotype that is commonly associated with hypervirulence in Klebsiella pneumoniae. The factors that contribute to the emergence of HMV subpopulations remain unclear. In this study, eight K. pneumoniae strains were recovered from an inpatient who had been hospitalized for 20 days. Three of the isolates exhibited a non-HMV phenotype, which was concomitant with higher biofilm formation than the other five HMV isolates. All eight isolates were highly susceptible to serum killing, albeit HMV strains were remarkably more infective than non-HMV counterparts in a mouse model of infection. Whole genome sequencing (WGS) showed that the eight isolates belonged to the K57-ST412 lineage. Average nucleotide identity (FastANIb) analysis indicated that eight isolates share 99.96% to 99.99% similarity and were confirmed to be the same clone. Through comparative genomics analysis, 12 non-synonymous mutations were found among these isolates, eight of which in the non-HMV variants, including rmpA (c.285delG) and wbaP (c.1305T > A), which are assumed to be associated with the non-HMV phenotype. Mutations in manB (c.1318G > A), dmsB (c.577C > T) and tkt (c.1928C > A) occurred in HMV isolates only. RNA-Seq revealed transcripts of genes involved in energy metabolism, carbohydrate metabolism and membrane transport, including cysP, cydA, narK, tktA, pduQ, aceB, metN, and lsrA, to be significantly dysregulated in the non-HMV strains, suggesting a contribution to HMV phenotype development. This study suggests that co-occurrence of HMV and non-HMV phenotypes in the same clonal population may be mediated by mutational mechanisms as well as by certain genes involved in membrane transport and central metabolism. IMPORTANCE K. pneumoniae with a hypermucoviscosity (HMV) phenotype is a community-acquired pathogen that is associated with increased invasiveness and pathogenicity, and underlying diseases are the most common comorbid risk factors inducing metastatic complications. HMV was earlier attributed to the overproduction of capsular polysaccharide, and more data point to the possibility of several causes contributing to this bacterial phenotype. Here, we describe a unique event in which the same clonal population showed both HMV and non-HMV characteristics. Studies have demonstrated that this process is influenced by mutational processes and genes related to transport and central metabolism. These findings provide fresh insight into the mechanisms behind co-occurrence of HMV and non-HMV phenotypes in monoclonal populations as well as potentially being critical in developing strategies to control the further spread of HMV K. pneumoniae.
Collapse
Affiliation(s)
- Qinghua Liang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Yilong County People’s Hospital, Nanchong, China
| | - Nan Chen
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Biying Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Jinjing Luo
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Ying Zhong
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Alberto J. Martín–Rodríguez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital,Southwest Medical University, Luzhou, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medicine University, Luzhou, China
| |
Collapse
|
27
|
Kale DS, Karande GS, Kale KD, Patil SR, Datkhile KD. Genetic Characterization of Extended-Spectrum Beta-Lactamase (ESBL) and Metallo-Beta-Lactamase (MBL) Producing Klebsiella pneumoniae from Diabetic Foot Ulcer (DFU). JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S2524-S2526. [PMID: 39346272 PMCID: PMC11426622 DOI: 10.4103/jpbs.jpbs_349_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 10/01/2024] Open
Abstract
Background Antibiotic resistance in common pathogenic bacteria is linked with the genetic makeup. The genetic basis of antibiotic resistance may vary in different species or pathophysiological conditions. Objectives We studied the antibiotic resistance in Klebsiella pneumonia isolates from DFU in the western Indian population. We also studied the presence of ESBL and MBL mechanisms of antibiotic resistance along with the prevalence of the genes involved in ESBL (TEM ESBL , SHV ESBL , and CTX-M ESBL ) and MBL (NDM-1 bla , KPC bla , OXA-48 bla , and VIM bla ) production. Results A total of 161 K. pneumoniae isolates were analyzed; among which 50.93% were positive for ESBL and 45.96% were positive for MBL production. Most of the isolates were resistant to antibiotics used in the present study and partially resistant to Imipenem and Amikacin. There was no relation between the antibiotic resistance of the isolates and the production of ESBL or MBL mechanism of antibiotic resistance. Further, TEM ESBL was the most prevalent gene in K. pneumoniae isolates followed by CTX-M ESBL , NDM-1 bla , SHV ESBL , and KPC bla . VIM bla was the least prevalent gene found in K. pneumoniae isolates. There was no difference in the prevalence of the genes with respect to the presence or absence of ESBL and MBL mechanism of resistance. Further, there was no relation between the prevalence of the genes and antibiotic resistance in K. pneumoniae isolates. Conclusion These results along with the literature review suggest that the prevalence of the genes involved in antibiotic resistance mechanisms are widespread in India and their distribution varies in different studies.
Collapse
Affiliation(s)
- Dipak S Kale
- Department of Microbiology, Krishna Vishwa Vidyapeeth "Deemed to be University", Dist-Satara, Maharashtra, India
| | - Geeta S Karande
- Department of Microbiology, Krishna Vishwa Vidyapeeth "Deemed to be University", Dist-Satara, Maharashtra, India
| | - Kalpana D Kale
- Department of Pathology, Kale Pathology Laboratory, Dist-Satara, Maharashtra, India
| | - Satish R Patil
- Department of Microbiology, Krishna Vishwa Vidyapeeth "Deemed to be University", Dist-Satara, Maharashtra, India
| | - Kailas D Datkhile
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth, "Deemed to be University", Karad, Maharashtra, India
| |
Collapse
|
28
|
Dimartino V, Venditti C, Messina F, D’Arezzo S, Selleri M, Butera O, Nisii C, Marani A, Arcangeli A, Gaziano R, Cosio T, Scanzano P, Fontana C. Screening of Klebsiella pneumoniae subsp. pneumoniae Strains with Multi-Drug Resistance and Virulence Profiles Isolated from an Italian Hospital between 2020 and 2023. Antibiotics (Basel) 2024; 13:561. [PMID: 38927227 PMCID: PMC11200418 DOI: 10.3390/antibiotics13060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Klebsiella pneumoniae strains that are resistant to multiple drugs (KPMDRs), which are often acquired in hospital settings and lead to healthcare-associated infections, pose a serious public health threat, as does hypervirulent K. pneumoniae (hvKp), which can also cause serious infections in otherwise healthy individuals. The widespread and often unnecessary use of antibiotics seen during the recent COVID-19 pandemic has exacerbated the challenges posed by antibiotic resistance in clinical settings. There is growing concern that hypervirulent (hvKp) strains may acquire genes that confer antimicrobial resistance, thus combining an MDR profile with their increased ability to spread to multiple body sites, causing difficult-to-treat infections. This study aimed to compare resistance and virulence profiles in KPC-3-producing K. pneumoniae isolates collected over four years (2020-2023). A genome-based surveillance of all MDR CRE-K. pneumoniae was used to identify genetic differences and to characterize the virulence and resistance profiles. Our results provide a picture of the evolution of resistance and virulence genes and contribute to avoiding the possible spread of isolates with characteristics of multi-drug resistance and increased virulence, which are thought to be one of the main global challenges to public health, within our hospital.
Collapse
Affiliation(s)
- Valentina Dimartino
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (V.D.); (C.V.); (F.M.); (S.D.); (M.S.); (O.B.); (C.F.)
| | - Carolina Venditti
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (V.D.); (C.V.); (F.M.); (S.D.); (M.S.); (O.B.); (C.F.)
| | - Francesco Messina
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (V.D.); (C.V.); (F.M.); (S.D.); (M.S.); (O.B.); (C.F.)
| | - Silvia D’Arezzo
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (V.D.); (C.V.); (F.M.); (S.D.); (M.S.); (O.B.); (C.F.)
| | - Marina Selleri
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (V.D.); (C.V.); (F.M.); (S.D.); (M.S.); (O.B.); (C.F.)
| | - Ornella Butera
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (V.D.); (C.V.); (F.M.); (S.D.); (M.S.); (O.B.); (C.F.)
| | - Carla Nisii
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (V.D.); (C.V.); (F.M.); (S.D.); (M.S.); (O.B.); (C.F.)
| | - Alessandra Marani
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (A.A.); (P.S.)
| | - Alessia Arcangeli
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (A.A.); (P.S.)
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Pietro Scanzano
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (A.M.); (A.A.); (P.S.)
| | - Carla Fontana
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (V.D.); (C.V.); (F.M.); (S.D.); (M.S.); (O.B.); (C.F.)
| |
Collapse
|
29
|
Kadkhoda H, Gholizadeh P, Ghotaslou R, Pirzadeh T, Ahangarzadeh Rezaee M, Nabizadeh E, Feizi H, Samadi Kafil H, Aghazadeh M. Prevalence of the CRISPR-cas system and its association with antibiotic resistance in clinical Klebsiella pneumoniae isolates. BMC Infect Dis 2024; 24:554. [PMID: 38831286 PMCID: PMC11149351 DOI: 10.1186/s12879-024-09451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVE(S) CRISPR-Cas is a prokaryotic adaptive immune system that protects bacteria and archaea against mobile genetic elements (MGEs) such as bacteriophages plasmids, and transposons. In this study, we aimed to assess the prevalence of the CRISPR-Cas systems and their association with antibiotic resistance in one of the most challenging bacterial pathogens, Klebsiella pneumoniae. MATERIALS AND METHODS A total of 105 K. pneumoniae isolates were collected from various clinical infections. Extended-spectrum β-lactamases (ESBLs) phenotypically were detected and the presence of ESBL, aminoglycoside-modifying enzymes (AME), and CRISPR-Cas system subtype genes were identified using PCR. Moreover, the diversity of the isolates was determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. RESULTS Phenotypically, 41.9% (44/105) of the isolates were found to be ESBL producers. A significant inverse correlation existed between the subtype I-E CRISPR-Cas system's presence and ESBL production in K. pneumoniae isolates. Additionally, the frequency of the ESBL genes blaCTX-M1 (3%), blaCTX-M9 (12.1%), blaSHV (51.5%), and blaTEM (33.3%), as well as some AME genes such as aac(3)-Iva (21.2%) and ant(2'')-Ia (3%) was significantly lower in the isolates with the subtype I-E CRISPR-Cas system in comparison to CRISPR-negative isolates. There was a significant inverse correlation between the presence of ESBL and some AME genes with subtype I-E CRISPR-Cas system. CONCLUSION The presence of the subtype I-E CRISPR-Cas system was correlated with the antibiotic-resistant gene (ARGs). The isolates with subtype I-E CRISPR-Cas system had a lower frequency of ESBL genes and some AME genes than CRISPR-negative isolates.
Collapse
Affiliation(s)
- Hiva Kadkhoda
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Edris Nabizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Di Marcantonio S, Perilli M, Alloggia G, Segatore B, Miconi G, Bruno G, Frascaria P, Piccirilli A. Coexistence of bla NDM-5, bla CTX-M-15, bla OXA-232, bla SHV-182 genes in multidrug-resistant K. pneumoniae ST437-carrying OmpK36 and OmpK37 porin mutations: First report in Italy. J Glob Antimicrob Resist 2024; 37:24-27. [PMID: 38408564 DOI: 10.1016/j.jgar.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVES K. pneumoniae is a common cause of severe hospital-acquired infections. In the present study, we have characterised the whole-genome of two K. pneumoniae ST437 belonging to the clonal complex CC258. METHODS The whole-genome sequencing was performed by MiSeq Illumina, with a 2 × 300bp paired-end run. ResFinder 4.4.2 was used to detect acquired antimicrobial resistance genes (ARGs) and chromosomal mutations. Mobile genetic elements (plasmids and ISs) were identified by MobileElementFinder v1.0.3. The genome was also assigned to ST using MLST 2.0.9. Virulence factors were detected using the Virulence Factor Database (VFDB). RESULTS K. pneumoniae KPNAQ_1/23 and KPNAQ_2/23 strains, isolated from urine samples of hospitalised patients, showed resistance to most antibiotics, including ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam combinations. Both strains were susceptible only to cefiderocol. Multiple mechanisms of resistance were identified. Resistance to β-lactams was due to the presence of NDM-5, OXA-232, CTX-M-15, SHV-182 β-lactamases, and OmpK36 and OmpK37 porin mutations. Resistance to fluoroquinolones was mediated by chromosomal mutations in acrR, oqxAB efflux pumps, and the bifunctional gene aac(6')-Ib-cr. CONCLUSION The presence of different virulence genes makes these KPNAQ_1/23 and KPNAQ_2/23 high-risk clones.
Collapse
Affiliation(s)
- Sascia Di Marcantonio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giovanni Alloggia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy; Medicine Laboratory, San Salvatore Hospital, L'Aquila, Italy
| | - Bernardetta Segatore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | | | | | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
31
|
Ntshonga P, Gobe I, Koto G, Strysko J, Paganotti GM. Biocide resistance in Klebsiella pneumoniae: a narrative review. Infect Prev Pract 2024; 6:100360. [PMID: 38571564 PMCID: PMC10988060 DOI: 10.1016/j.infpip.2024.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Klebsiella pneumoniae is among the World Health Organization's list of priority pathogens, notorious for its role in causing healthcare-associated infections and neonatal sepsis globally. Containment of K. pneumoniae transmission depends on the continued effectiveness of antimicrobials and of biocides used for topical antisepsis and surface disinfection. Klebsiella pneumoniae is known to disseminate antimicrobial resistance (AMR) through a large auxiliary genome made up of plasmids, transposons and integrons, enabling it to evade antimicrobial killing through the use of efflux systems and biofilm development. Because AMR mechanisms are also known to impart tolerance to biocides, AMR is frequently linked with biocide resistance (BR). However, despite extensive research on AMR, there is a gap in knowledge about BR and the extent to which AMR and BR mechanisms overlap remains debatable. The aim of this paper is to review and summarise the current knowledge on the determinants of BR in K. pneumoniae and highlight content areas that require further inquiry.
Collapse
Affiliation(s)
- Pearl Ntshonga
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Irene Gobe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Garesego Koto
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Jonathan Strysko
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Department of Paediatric and Adolescent Health, Princess Marina Hospital, Gaborone, Botswana
- Department of Global Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, University of Botswana, Gaborone, Botswana
| |
Collapse
|
32
|
Sun N, Luo Y, Zhao Y, Wang G, Guo L, Liu L, San Z, Zhao C, Cheng Y, Chen Q. Draft genome sequence analysis of a mcr-1-producing Klebsiella pneumoniae ST661 isolated from a mink in China. J Glob Antimicrob Resist 2024; 37:72-74. [PMID: 38417739 DOI: 10.1016/j.jgar.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024] Open
Abstract
OBJECTIVES Klebsiella pneumoniae is a major opportunistic pathogen that is a member of the Enterobacteriaceae. Klebsiella pneumoniae causes pneumonia in mink and has become the primary infectious disease that limits mink farming. In this study, we report the draft genome sequence of a multidrug-resistant (MDR) strain of K. pneumoniae that harbours the mcr-1 gene isolated from a mink in China. METHODS The agar microdilution method was used to determine the minimum inhibitory concentration of the strain. The entire genomic DNA was sequenced using an Illumina MiSeq platform. A multilocus sequence type (MLST) and a core genome SNP phylogenetic tree analysis with a heatmap of the resistance genes and virulence genes were performed. RESULTS The size of the genome was 5451.826 kb, and it included one chromosome and one plasmid. The draft genome of K. pneumoniae indicated that the isolate was a member of MLST 661. Four types of virulence genes were detected. The results of antimicrobial susceptibility testing showed multiple drug resistance, and 17 resistance genes were identified. CONCLUSION The genome sequence reported in this study will help to reveal the key role of antibiotic resistance and pathogenic mechanisms. It will provide useful information for the role of mobile genetic elements in the adaptive translocation and spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Na Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin China
| | - Yilin Luo
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin China
| | - Yaru Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, China
| | - Li Guo
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin China
| | - Zhihao San
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin China
| | - Yuening Cheng
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiang Chen
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin China.
| |
Collapse
|
33
|
Farajzadeh Sheikh A, Abdi M, Farshadzadeh Z. Molecular detection of Class 1, 2, and 3 integrons in hypervirulent and classic Klebsiella pneumoniae isolates: A cross-sectional study. Health Sci Rep 2024; 7:e1962. [PMID: 38698788 PMCID: PMC11063457 DOI: 10.1002/hsr2.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/28/2023] [Accepted: 02/20/2024] [Indexed: 05/05/2024] Open
Abstract
Background and Aims The "hypervirulent" variant of Klebsiella pneumoniae (hvKp) is an emerging pathogen that cause life-threatening infection. The present study was conducted to identify the prevalence of hvKp and to investigate the presence class 1, 2, and 3 integrons in these isolates. Methods A cross-sectional study was conducted at three teaching hospitals, Ahvaz, South-west of Iran, from January 1, 2019 to December 31, 2020. Samples were collected from inpatients and included only the first samples collected from each patient. K. pneumoniae strains were isolated from different specimens using biochemical test and confirmed by targeting 16S-23S rDNA internal transcribed spacer. HvKp isolates were recovered using string test and were further characterized by detection virulence-associated genes (rmpA, iucA, and magA). Antibiotic susceptibility patterns of isolates were determined using the disc diffusion method. Isolates were screened for presence the integron genes (intI, intII, and intIII) and repetitive element sequence-based polymerase chain reaction (PCR) performed to determine strain relatedness. SPSS version 22 was used for the data analysis. Results Seventy-one (77%) of isolates showed multidrug-resistant (MDR) phenotype. HvKP accounted for 14% (13/92) of cKp isolated from blood (46%) and urinary tract infection (38%), and the great majority of them (61.5%; 8/13) exhibited MDR phenotype. Using the PCR assay, 29 of 92 isolates (31.5%) were found to have positive results for the presence of IntI. Three of the IntI-positive strains were hvKP. Class 2 integron was present in 8/92 cKp isolates. Integron Class 2 was found to coexist with Class 1 integron in 3/8 isolates. All integron-positive isolates (IntI and/or IntII) were resistant to at least three different classes of antibiotics and showed MDR phenotype. No Class 3 integrons were detected among the isolates. Conclusion The results of our study revealed that considering the role of integrons in facilitating the acquisition and dissemination of resistance genes among bacteria, monitoring the emergence of hvKp, emphasizing on the mechanism of antimicrobial resistance, can prevent from the spread of carbapenemase-producing hvKp strains.
Collapse
Affiliation(s)
- Ahmad Farajzadeh Sheikh
- Department of Microbiology, Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Marjan Abdi
- Department of Microbiology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Zahra Farshadzadeh
- Department of Microbiology, Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
34
|
Rahmat Ullah S, Irum S, Mahnoor I, Ismatullah H, Mumtaz M, Andleeb S, Rahman A, Jamal M. Exploring the resistome, virulome, and mobilome of multidrug-resistant Klebsiella pneumoniae isolates: deciphering the molecular basis of carbapenem resistance. BMC Genomics 2024; 25:408. [PMID: 38664636 PMCID: PMC11044325 DOI: 10.1186/s12864-024-10139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/19/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, blaNDM, and blaOXA, respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.
Collapse
Affiliation(s)
- Sidra Rahmat Ullah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Sidra Irum
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Iqra Mahnoor
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Humaira Ismatullah
- Research Centre for Modelling & Simulation (RCMS), National University of Sciences and Technology, Islamabad, Pakistan
| | - Mariam Mumtaz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan.
| | - Abdur Rahman
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
35
|
Sohrabi M, Pirbonyeh N, Alizade Naini M, Rasekhi A, Ayoub A, Hashemizadeh Z, Shahcheraghi F. A challenging case of carbapenem resistant Klebsiella pneumoniae-related pyogenic liver abscess with capsular polysaccharide hyperproduction: a case report. BMC Infect Dis 2024; 24:433. [PMID: 38654215 PMCID: PMC11040961 DOI: 10.1186/s12879-024-09314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a major public health problem, necessitating the administration of polymyxin E (colistin) as a last-line antibiotic. Meanwhile, the mortality rate associated with colistin-resistant K. pneumoniae infections is seriously increasing. On the other hand, importance of administration of carbapenems in promoting colistin resistance in K. pneumoniae is unknown. CASE PRESENTATION We report a case of K. pneumoniae-related pyogenic liver abscess in which susceptible K. pneumoniae transformed into carbapenem- and colistin-resistant K. pneumoniae during treatment with imipenem. The case of pyogenic liver abscess was a 50-year-old man with diabetes and liver transplant who was admitted to Abu Ali Sina Hospital in Shiraz. The K. pneumoniae isolate responsible for community-acquired pyogenic liver abscess was isolated and identified. The K. pneumoniae isolate was sensitive to all tested antibiotics except ampicillin in the antimicrobial susceptibility test and was identified as a non-K1/K2 classical K. pneumoniae (cKp) strain. Multilocus sequence typing (MLST) identified the isolate as sequence type 54 (ST54). Based on the patient's request, he was discharged to continue treatment at another center. After two months, he was readmitted due to fever and progressive constitutional symptoms. During treatment with imipenem, the strain acquired blaOXA-48 and showed resistance to carbapenems and was identified as a multidrug resistant (MDR) strain. The minimum inhibitory concentration (MIC) test for colistin was performed by broth microdilution method and the strain was sensitive to colistin (MIC < 2 µg/mL). Meanwhile, on blood agar, the colonies had a sticky consistency and adhered to the culture medium (sticky mucoviscous colonies). Quantitative real-time PCR and biofilm formation assay revealed that the CRKP strain increased capsule wzi gene expression and produced slime in response to imipenem. Finally, K. pneumoniae-related pyogenic liver abscess with resistance to a wide range of antibiotics, including the last-line antibiotics colistin and tigecycline, led to sepsis and death. CONCLUSIONS Based on this information, can we have a theoretical hypothesis that imipenem is a promoter of resistance to carbapenems and colistin in K. pneumoniae? This needs more attention.
Collapse
Affiliation(s)
- Maryam Sohrabi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Neda Pirbonyeh
- Department of Microbiology, Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash Alizade Naini
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rasekhi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ayoub
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
36
|
Hyun M, Lee JY, Kim HA. Clinical and Microbiologic Analysis of Klebsiella pneumoniae Infection: Hypermucoviscosity, Virulence Factor, Genotype, and Antimicrobial Susceptibility. Diagnostics (Basel) 2024; 14:792. [PMID: 38667438 PMCID: PMC11048833 DOI: 10.3390/diagnostics14080792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (KP) is defined according to hypermucoviscosity or various virulence factors and is clinically associated with community-acquired liver abscess (CLA). In this study, we investigated the clinical and microbiological characteristics of KP and significant factors associated with hypervirulence. The clinical characteristics, antimicrobial susceptibility, hypermucoviscosity, serotypes, hypervirulence-related genes, and biofilm formation of 414 KP isolates collected from the Keimyung University Dongsan Hospital between December 2013 and November 2015 were analyzed according to CLA. Significant risk factors for hypervirulent KP (HvKP) associated with CLA were investigated using logistic regression analysis. Notably, 155 (37.4%) isolates were hypermucoviscous, and 170 (41.1%) harbored aerobactin. CLA was present in 34 cases (8.2%). Epidemiology and treatment outcomes did not differ significantly between the CLA and non-CLA groups. The CLA group had significantly higher antibiotic susceptibility, K1/K2, rmpA, magA, allS, kfu, iutA, string test-positive result, and biofilm mass. Multivariate logistic regression revealed rmpA (OR, 5.67; 95% CI, 2.09-15.33; p = 0.001), magA (OR, 2.34; 95% CI, 1.01-5.40; p = 0.047), and biofilm mass >0.80 (OR, 2.13; 95% CI, 1.00-4.56; p = 0.050) as significant risk factors for CLA. rmpA was identified as the most significant risk factor for CLA among KP strains, implying that it is an important factor associated with HvKP.
Collapse
Affiliation(s)
| | | | - Hyun Ah Kim
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine and Institute for Medical Science, Keimyung University, Daegu 42601, Republic of Korea; (M.H.); (J.Y.L.)
| |
Collapse
|
37
|
Kain MJW, Reece NL, Parry CM, Rajahram GS, Paterson DL, Woolley SD. The Rapid Emergence of Hypervirulent Klebsiella Species and Burkholderia pseudomallei as Major Health Threats in Southeast Asia: The Urgent Need for Recognition as Neglected Tropical Diseases. Trop Med Infect Dis 2024; 9:80. [PMID: 38668541 PMCID: PMC11054678 DOI: 10.3390/tropicalmed9040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
The World Health Organization (WHO)'s list of neglected tropical diseases (NTDs) highlights conditions that are responsible for devastating health, social and economic consequences, and yet, they are overlooked and poorly resourced. The NTD list does not include conditions caused by Gram-negative bacilli (GNB). Infections due to GNB cause significant morbidity and mortality and are prevalent worldwide. Southeast Asia is a WHO region of low- and middle-income countries carrying the largest burden of NTDs. Two significant health threats in Southeast Asia are Burkholderia pseudomallei (causing melioidosis) and hypervirulent Klebsiella pneumoniae (HvKp). Both diseases have high mortality and increasing prevalence, yet both suffer from a lack of awareness, significant under-resourcing, incomplete epidemiological data, limited diagnostics, and a lack of evidence-based treatment. Emerging evidence shows that both melioidosis and HvKp are spreading globally, including in high-income countries, highlighting the potential future global threat they pose. In this article, we review both conditions, identifying current trends and challenges in Southeast Asia and areas for future research. We also argue that melioidosis and HvKp merit inclusion as NTDs, and that mandatory global surveillance and reporting systems should be established, and we make an urgent call for research to better understand, detect, and treat these neglected diseases.
Collapse
Affiliation(s)
| | | | - Christopher M. Parry
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Giri Shan Rajahram
- Department of Medicine, Queen Elizabeth II Hospital, Kota Kinabalu 88300, Malaysia
- Infectious Diseases Society, Kota Kinabalu Sabah-Menzies School of Health Research, Clinical Research Unit, Kota Kinabalu 88994, Malaysia
| | - David L. Paterson
- ADVANCE-ID Network, Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Stephen D. Woolley
- Institute of Naval Medicine, Alverstoke, Hampshire PO12 2DL, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals Foundation NHS Trust, Liverpool L7 8YE, UK
| |
Collapse
|
38
|
Kalangi H, Yancovitz SR, Camins B. A unique case of hypervirulent Klebsiella pneumoniae acute cholecystitis complicated by portal vein thrombophlebitis: A case report and literature review. IDCases 2024; 36:e01935. [PMID: 38601433 PMCID: PMC11004864 DOI: 10.1016/j.idcr.2024.e01935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae remains a significant global public health concern, characterized by a unique syndrome involving monomicrobial primary pyogenic liver abscesses, often leading to metastatic complications such as endophthalmitis, meningitis, and other infections. These infections are frequently observed in immunocompetent hosts or diabetic patients, particularly those of Asian ethnicity. In this report, we present the case of a 66-year-old Burmese female, currently residing in the United States, who presented with severe swelling, pain, discharge, and vision loss in her left eye, along with abdominal pain. Subsequent investigation revealed monomicrobial Klebsiella pneumoniae acute cholecystitis with an adjacent liver abscess, complicated by bacteremia, endogenous endophthalmitis, and portal vein thrombosis. Treatment with ceftriaxone proved successful in addressing her intra-abdominal infections, while anticoagulation therapy was initiated following multidisciplinary discussions among all involved subspecialties. Early diagnosis and the timely administration of appropriate treatment are crucial in reducing mortality and preventing further complications.
Collapse
Affiliation(s)
- Harika Kalangi
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - Stanley R. Yancovitz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - Bernard Camins
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| |
Collapse
|
39
|
廖 全, 袁 余, 张 为, 邓 劲, 康 梅. [Carbapenemase Genes, Virulence Genes, and Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Derived From Bloodstream Infections]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:391-396. [PMID: 38645859 PMCID: PMC11026891 DOI: 10.12182/20240360202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 04/23/2024]
Abstract
Objective To investigate the clinical characteristics and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from patients with bloodstream infections in a large tertiary-care general hospital in Southwest China. Methods A total of 131 strains of non-repeating CRKP were collected from the blood cultures of patients who had bloodstream infections in 2015-2019. The strains were identified by VITEK-2, a fully automated microbial analyzer, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The minimum inhibitory concentration (MIC) was determined by microbroth dilution method. The common carbapenemase resistant genes and virulence factors were identified by PCR. Homology analysis was performed by multilocus sequencing typing. Whole genome sequencing was performed to analyze the genomic characteristics of CRKP without carbapenemase. Results The 131 strains of CRKP showed resistance to common antibiotics, except for polymyxin B (1.6% resistance rate) and tigacycline (8.0% resistance rate). A total of 105 (80.2%) CRKP strains carried the Klebsiella pneumoniae carbapenemase (KPC) resistance gene, 15 (11.4%) strains carried the New Delhi Metallo-β-lactamase (NDM) gene, and 4 (3.1%) isolates carried both KPC and NDM genes. Sequence typing (ST) 11 (74.0%) was the dominant sequence type. High detection rates for mrkD (96.2%), fimH (98.5%), entB (100%), and other virulence genes were reported. One hypervirulent CRKP strain was detected. The seven strains of CRKP that did not produce carbapenemase were shown to carry ESBL or AmpC genes and had anomalies in membrane porins OMPK35 and OMPK36, according to whole genome sequencing. Conclusion In a large-scale tertiary-care general hospital, CRKP mainly carries the KPC gene, has a high drug resistance rate to a variety of antibiotics, and possesses multiple virulence genes. Attention should be paid to CRKP strains with high virulence.
Collapse
Affiliation(s)
- 全凤 廖
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 余 袁
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 为利 张
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 劲 邓
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 梅 康
- 四川大学华西医院 实验医学科 (成都 610041)Department of Experimental Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Ilboudo AK, Cissé A, Milucky J, Tialla D, Mirza SA, Diallo AO, Bicaba BW, Charlemagne KJ, Diagbouga PS, Owusu D, Waller JL, Talla-Nzussouo N, Charles MD, Whitney CG, Tarnagda Z. Predictors of severity and prolonged hospital stay of viral acute respiratory infections (ARI) among children under five years in Burkina Faso, 2016-2019. BMC Infect Dis 2024; 24:331. [PMID: 38509462 PMCID: PMC10953152 DOI: 10.1186/s12879-024-09219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Viruses are the leading etiology of acute respiratory infections (ARI) in children. However, there is limited knowledge on drivers of severe acute respiratory infection (SARI) cases involving viruses. We aimed to identify factors associated with severity and prolonged hospitalization of viral SARI among children < 5 years in Burkina Faso. METHODS Data were collected from four SARI sentinel surveillance sites during October 2016 through April 2019. A SARI case was a child < 5 years with an acute respiratory infection with history of fever or measured fever ≥ 38 °C and cough with onset within the last ten days, requiring hospitalization. Very severe ARI cases required intensive care or had at least one danger sign. Oropharyngeal/nasopharyngeal specimens were collected and analyzed by multiplex real-time reverse-transcription polymerase chain reaction (rRT-PCR) using FTD-33 Kit. For this analysis, we included only SARI cases with rRT-PCR positive test results for at least one respiratory virus. We used simple and multilevel logistic regression models to assess factors associated with very severe viral ARI and viral SARI with prolonged hospitalization. RESULTS Overall, 1159 viral SARI cases were included in the analysis after excluding exclusively bacterial SARI cases (n = 273)very severe viral ARI cases were common among children living in urban areas (AdjOR = 1.3; 95% CI: 1.1-1.6), those < 3 months old (AdjOR = 1.5; 95% CI: 1.1-2.3), and those coinfected with Klebsiella pneumoniae (AdjOR = 1.9; 95% CI: 1.2-2.2). Malnutrition (AdjOR = 2.2; 95% CI: 1.1-4.2), hospitalization during the rainy season (AdjOR = 1.71; 95% CI: 1.2-2.5), and infection with human CoronavirusOC43 (AdjOR = 3; 95% CI: 1.2-8) were significantly associated with prolonged length of hospital stay (> 7 days). CONCLUSION Younger age, malnutrition, codetection of Klebsiella pneumoniae, and illness during the rainy season were associated with very severe cases and prolonged hospitalization of SARI involving viruses in children under five years. These findings emphasize the need for preventive actions targeting these factors in young children.
Collapse
Affiliation(s)
- Abdoul Kader Ilboudo
- Laboratoire National de Référence-Grippes (LNR-G), Institut de Recherche en Sciences de la Santé (IRSS), Ouagadougou, Burkina Faso.
| | - Assana Cissé
- Laboratoire National de Référence-Grippes (LNR-G), Institut de Recherche en Sciences de la Santé (IRSS), Ouagadougou, Burkina Faso
| | - Jennifer Milucky
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dieudonné Tialla
- Laboratoire National de Référence-Grippes (LNR-G), Institut de Recherche en Sciences de la Santé (IRSS), Ouagadougou, Burkina Faso
| | - Sara A Mirza
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alpha Oumar Diallo
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brice W Bicaba
- Direction de la Protection de la Santé de la Population, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Kondombo Jean Charlemagne
- Direction de la Protection de la Santé de la Population, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Potiandi Serge Diagbouga
- Laboratoire National de Référence-Grippes (LNR-G), Institut de Recherche en Sciences de la Santé (IRSS), Ouagadougou, Burkina Faso
| | - Daniel Owusu
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica L Waller
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ndahwouh Talla-Nzussouo
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Noguchi Memorial Institute for Medical Research, Legon, Accra, Ghana
- Dexis Professional Services, 1331 Pennsylvania Avenue NW Suite 300, Washington, DC, 20004, USA
| | - Myrna D Charles
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cynthia G Whitney
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Zekiba Tarnagda
- Laboratoire National de Référence-Grippes (LNR-G), Institut de Recherche en Sciences de la Santé (IRSS), Ouagadougou, Burkina Faso
| |
Collapse
|
41
|
Sid Ahmed MA, Hamid JM, Hassan AMM, Abu Jarir S, Bashir Ibrahim E, Abdel Hadi H. Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar. Antibiotics (Basel) 2024; 13:275. [PMID: 38534710 DOI: 10.3390/antibiotics13030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
In secondary healthcare, carbapenem-resistant Enterobacterales (CREs), such as those observed in Klebsiella pneumoniae, are a global public health priority with significant clinical outcomes. In this study, we described the clinical, phenotypic, and genotypic characteristics of three pan-drug-resistant (PDR) isolates that demonstrated extended resistance to conventional and novel antimicrobials. All patients had risk factors for the acquisition of multidrug-resistant organisms, while microbiological susceptibility testing showed resistance to all conventional antimicrobials. Advanced susceptibility testing demonstrated resistance to broad agents, such as ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam. Nevertheless, all isolates were susceptible to cefiderocol, suggested as one of the novel antimicrobials that demonstrated potent in vitro activity against resistant Gram-negative bacteria, including CREs, pointing toward its potential therapeutic role for PDR pathogens. Expanded genomic studies revealed multiple antimicrobial-resistant genes (ARGs), including blaNMD-5 and blaOXA derivative types, as well as a mutated outer membrane porin protein (OmpK37).
Collapse
Affiliation(s)
- Mazen A Sid Ahmed
- Laboratory Services, Department of Public Health, Philadelphia, PA 19146, USA
| | - Jemal M Hamid
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Ahmed M M Hassan
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Sulieman Abu Jarir
- Division of Infectious Diseases, Communicable Diseases Centre, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Emad Bashir Ibrahim
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hamad Abdel Hadi
- Division of Infectious Diseases, Communicable Diseases Centre, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| |
Collapse
|
42
|
Ye TJ, Fung KM, Lee IM, Ko TP, Lin CY, Wong CL, Tu IF, Huang TY, Yang FL, Chang YP, Wang JT, Lin TL, Huang KF, Wu SH. Klebsiella pneumoniae K2 capsular polysaccharide degradation by a bacteriophage depolymerase does not require trimer formation. mBio 2024; 15:e0351923. [PMID: 38349137 PMCID: PMC10936425 DOI: 10.1128/mbio.03519-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
K2-capsular Klebsiella pneumoniae is a hypervirulent pathogen that causes fatal infections. Here, we describe a phage tailspike protein, named K2-2, that specifically depolymerizes the K2 capsular polysaccharide (CPS) of K. pneumoniae into tetrasaccharide repeating units. Nearly half of the products contained O-acetylation, which was thought crucial to the immunogenicity of CPS. The product-bound structures of this trimeric enzyme revealed intersubunit carbohydrate-binding grooves, each accommodating three tetrasaccharide units of K2 CPS. The catalytic residues and the key interactions responsible for K2 CPS recognition were identified and verified by site-directed mutagenesis. Further biophysical and functional characterization, along with the structure of a tetrameric form of K2-2, demonstrated that the formation of intersubunit catalytic center does not require trimerization, which could be nearly completely disrupted by a single-residue mutation in the C-terminal domain. Our findings regarding the assembly and catalysis of K2-2 provide cues for the development of glycoconjugate vaccines against K. pneumoniae infection. IMPORTANCE Generating fragments of capsular polysaccharides from pathogenic bacteria with crucial antigenic determinants for vaccine development continues to pose challenges. The significance of the C-terminal region of phage tailspike protein (TSP) in relation to its folding and trimer formation remains largely unexplored. The polysaccharide depolymerase described here demonstrates the ability to depolymerize the K2 CPS of K. pneumoniae into tetrasaccharide fragments while retaining the vital O-acetylation modification crucial for immunogenicity. By carefully characterizing the enzyme, elucidating its three-dimensional structures, conducting site-directed mutagenesis, and assessing the antimicrobial efficacy of the mutant enzymes against K2 K. pneumoniae, we offer valuable insights into the mechanism by which this enzyme recognizes and depolymerizes the K2 CPS. Our findings, particularly the discovery that trimer formation is not required for depolymerizing activity, challenge the current understanding of trimer-dependent TSP activity and highlight the catalytic mechanism of the TSP with an intersubunit catalytic center.
Collapse
Affiliation(s)
- Ting-Juan Ye
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kit-Man Fung
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - I-Ming Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Yi Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Ling Wong
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Yin Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Pei Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
43
|
Calvo M, Stefani S, Migliorisi G. Bacterial Infections in Intensive Care Units: Epidemiological and Microbiological Aspects. Antibiotics (Basel) 2024; 13:238. [PMID: 38534673 DOI: 10.3390/antibiotics13030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Intensive care units constitute a critical setting for the management of infections. The patients' fragilities and spread of multidrug-resistant microorganisms lead to relevant difficulties in the patients' care. Recent epidemiological surveys documented the Gram-negative bacteria supremacy among intensive care unit (ICU) infection aetiologies, accounting for numerous multidrug-resistant isolates. Regarding this specific setting, clinical microbiology support holds a crucial role in the definition of diagnostic algorithms. Eventually, the complete patient evaluation requires integrating local epidemiological knowledge into the best practice and the standardization of antimicrobial stewardship programs. Clinical laboratories usually receive respiratory tract and blood samples from ICU patients, which express a significant predisposition to severe infections. Therefore, conventional or rapid diagnostic workflows should be modified depending on patients' urgency and preliminary colonization data. Additionally, it is essential to complete each microbiological report with rapid phenotypic minimum inhibitory concentration (MIC) values and information about resistance markers. Microbiologists also help in the eventual integration of ultimate genome analysis techniques into complicated diagnostic workflows. Herein, we want to emphasize the role of the microbiologist in the decisional process of critical patient management.
Collapse
Affiliation(s)
- Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-San Marco", Via S. Sofia 78, 95123 Catania, Italy
| | - Stefania Stefani
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-San Marco", Via S. Sofia 78, 95123 Catania, Italy
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O. "G.F. Ingrassia", Corso Calatafimi 1002, 90131 Palermo, Italy
| |
Collapse
|
44
|
Ofosu-Appiah F, Acquah EE, Mohammed J, Sakyi Addo C, Agbodzi B, Ofosu DAS, Myers CJ, Mohktar Q, Ampomah OW, Ablordey A, Amissah NA. Klebsiella pneumoniae ST147 harboring blaNDM-1, multidrug resistance and hypervirulence plasmids. Microbiol Spectr 2024; 12:e0301723. [PMID: 38315028 PMCID: PMC10913492 DOI: 10.1128/spectrum.03017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024] Open
Abstract
The spread of hypervirulent (hv) and carbapenem-/multidrug-resistant Klebsiella pneumoniae is an emerging problem in healthcare settings. The New Delhi metallo-β-lactamase-1 (blaNDM-1) is found in Enterobacteriaceae including K. pneumoniae. The blaNDM-1 is capable of hydrolyzing β-lactam antibiotics which are used for treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. This is associated with the unacceptably high mortality rate in immunocompromised burn injury patients. This study reports on the characterization of blaNDM-1 gene and virulence factors in hv carbapenem-/multidrug-resistant K. pneumoniae ST147 in the burns unit of a tertiary teaching hospital during routine surveillance. Two K. pneumoniae strains were obtained from wounds of burn-infected patients from May 2020 to July 2021. The hypervirulence genes and genetic context of the blaNDM-1 gene and mobile genetic elements potentially involved in the transposition of the gene were analyzed. We identified a conserved genetic background and an IS26 and open reading frame flanking the blaNDM-1 gene that could suggest its involvement in the mobilization of the gene. The plasmid harbored additional antibiotic resistance predicted regions that were responsible for resistance to almost all the routinely used antibiotics. To ensure the identification of potential outbreak strains during routine surveillance, investigations on resistance genes and their environment in relation to evolution are necessary for molecular epidemiology.IMPORTANCEData obtained from this study will aid in the prompt identification of disease outbreaks including evolving resistance and virulence of the outbreak bacteria. This will help establish and implement antimicrobial stewardship programs and infection prevention protocols in fragile health systems in countries with limited resources. Integration of molecular surveillance and translation of whole-genome sequencing in routine diagnosis will provide valuable data for control of infection. This study reports for the first time a high-risk clone K. pneumoniae ST147 with hypervirulence and multidrug-resistance features in Ghana.
Collapse
Affiliation(s)
- Frederick Ofosu-Appiah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ezra E. Acquah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Jibril Mohammed
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Comfort Sakyi Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bright Agbodzi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas A. S. Ofosu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Charles J. Myers
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Quaneeta Mohktar
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Opoku-Ware Ampomah
- The Burns Unit, Reconstructive Plastic Surgery and Burns Unit, Korle Bu Teaching Hospital, Accra, Ghana
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nana Ama Amissah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
45
|
Wahl A, Fischer MA, Klaper K, Müller A, Borgmann S, Friesen J, Hunfeld KP, Ilmberger A, Kolbe-Busch S, Kresken M, Lippmann N, Lübbert C, Marschner M, Neumann B, Pfennigwerth N, Probst-Kepper M, Rödel J, Schulze MH, Zautner AE, Werner G, Pfeifer Y. Presence of hypervirulence-associated determinants in Klebsiella pneumoniae from hospitalised patients in Germany. Int J Med Microbiol 2024; 314:151601. [PMID: 38359735 DOI: 10.1016/j.ijmm.2024.151601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Klebsiella (K.) pneumoniae is a ubiquitous Gram-negative bacterium and a common coloniser of animals and humans. Today, K. pneumoniae is one of the most persistent nosocomial pathogens worldwide and poses a severe threat/burden to public health by causing urinary tract infections, pneumonia and bloodstream infections. Infections mainly affect immunocompromised individuals and hospitalised patients. In recent years, a new type of K. pneumoniae has emerged associated with community-acquired infections such as pyogenic liver abscess in otherwise healthy individuals and is therefore termed hypervirulent K. pneumoniae (hvKp). The aim of this study was the characterisation of K. pneumoniae isolates with properties of hypervirulence from Germany. METHODS A set of 62 potentially hypervirulent K. pneumoniae isolates from human patients was compiled. Inclusion criteria were the presence of at least one determinant that has been previously associated with hypervirulence: (I) clinical manifestation, (II) a positive string test as a marker for hypermucoviscosity, and (III) presence of virulence associated genes rmpA and/or rmpA2 and/or magA. Phenotypic characterisation of the isolates included antimicrobial resistance testing by broth microdilution. Whole genome sequencing (WGS) was performed using Illumina® MiSeq/NextSeq to investigate the genetic repertoire such as multi-locus sequence types (ST), capsule types (K), further virulence associated genes and resistance genes of the collected isolates. For selected isolates long-read sequencing was applied and plasmid sequences with resistance and virulence determinants were compared. RESULTS WGS analyses confirmed presence of several signature genes for hvKp. Among them, the most prevalent were the siderophore loci iuc and ybt and the capsule regulator genes rmpA and rmpA2. The most dominant ST among the hvKp isolates were ST395 capsule type K2 and ST395 capsule type K5; both have been described previously and were confirmed by our data as multidrug-resistant (MDR) isolates. ST23 capsule type K1 was the second most abundant ST in this study; this ST has been described as commonly associated with hypervirulence. In general, resistance to beta-lactams caused by the production of extended-spectrum beta-lactamases (ESBL) and carbapenemases was observed frequently in our isolates, confirming the threatening rise of MDR-hvKp strains. CONCLUSIONS Our study results show that K. pneumoniae strains that carry several determinants of hypervirulence are present for many years in Germany. The detection of carbapenemase genes and hypervirulence associated genes on the same plasmid is highly problematic and requires intensified screening and molecular surveillance. However, the non-uniform definition of hvKp complicates their detection. Testing for hypermucoviscosity alone is not specific enough to identify hvKp. Thus, we suggest that the classification of hvKp should be applied to isolates that not only fulfil phenotypical criteria (severe clinical manifestations, hypermucoviscosity) but also (I) the presence of at least two virulence loci e.g. iuc and ybt, and (II) the presence of rmpA and/or rmpA2.
Collapse
Affiliation(s)
- Anika Wahl
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Martin A Fischer
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Kathleen Klaper
- Robert Koch Institute, Department of Sexually transmitted bacterial Pathogens (STI) and HIV, Berlin, Germany
| | - Annelie Müller
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Stefan Borgmann
- Klinikum Ingolstadt, Department of Infectious Diseases and Infection Control, Ingolstadt, Germany
| | | | - Klaus-Peter Hunfeld
- Institute for Laboratory Medicine, Microbiology & Infection Control, Northwest Medical Centre, Medical Faculty, Goethe University, Frankfurt am Main, Germany
| | | | - Susanne Kolbe-Busch
- Institute of Hygiene, Hospital Epidemiology and Environmental Medicine, Leipzig University Medical Center, Leipzig, Germany; Interdisciplinary Center for Infectious Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Michael Kresken
- Paul-Ehrlich-Gesellschaft für Infektionstherapie e. V., Cologne, Germany
| | - Norman Lippmann
- Institute for Medical Microbiology and Virology, University Hospital of Leipzig, Leipzig, Germany
| | - Christoph Lübbert
- Interdisciplinary Center for Infectious Diseases, Leipzig University Medical Center, Leipzig, Germany; Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Leipzig University Medical Center, Leipzig, Germany
| | | | - Bernd Neumann
- Institute of Clinical Microbiology, Infectious Diseases and Infection Control, Paracelsus Medical University, Nuremberg General Hospital, Nuremberg, Germany
| | - Niels Pfennigwerth
- German National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Marco H Schulze
- Department for Infection Control and Infectious Diseases, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas E Zautner
- Institute of Medical Microbiology and Hospital Hygiene, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Guido Werner
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Yvonne Pfeifer
- Robert Koch Institute, Division of Infectious Diseases, Department of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany.
| |
Collapse
|
46
|
Xu C, Jiang H, Feng LJ, Jiang MZ, Wang YL, Liu SJ. Christensenella minuta interacts with multiple gut bacteria. Front Microbiol 2024; 15:1301073. [PMID: 38440147 PMCID: PMC10910051 DOI: 10.3389/fmicb.2024.1301073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Gut microbes form complex networks that significantly influence host health and disease treatment. Interventions with the probiotic bacteria on the gut microbiota have been demonstrated to improve host well-being. As a representative of next-generation probiotics, Christensenella minuta (C. minuta) plays a critical role in regulating energy balance and metabolic homeostasis in human bodies, showing potential in treating metabolic disorders and reducing inflammation. However, interactions of C. minuta with the members of the networked gut microbiota have rarely been explored. Methods In this study, we investigated the impact of C. minuta on fecal microbiota via metagenomic sequencing, focusing on retrieving bacterial strains and coculture assays of C. minuta with associated microbial partners. Results Our results showed that C. minuta intervention significantly reduced the diversity of fecal microorganisms, but specifically enhanced some groups of bacteria, such as Lactobacillaceae. C. minuta selectively enriched bacterial pathways that compensated for its metabolic defects on vitamin B1, B12, serine, and glutamate synthesis. Meanwhile, C. minuta cross-feeds Faecalibacterium prausnitzii and other bacteria via the production of arginine, branched-chain amino acids, fumaric acids and short-chain fatty acids (SCFAs), such as acetic. Both metagenomic data analysis and culture experiments revealed that C. minuta negatively correlated with Klebsiella pneumoniae and 14 other bacterial taxa, while positively correlated with F. prausnitzii. Our results advance our comprehension of C. minuta's in modulating the gut microbial network. Conclusions C. minuta disrupts the composition of the fecal microbiota. This disturbance is manifested through cross-feeding, nutritional competition, and supplementation of its own metabolic deficiencies, resulting in the specific enrichment or inhibition of the growth of certain bacteria. This study will shed light on the application of C. minuta as a probiotic for effective interventions on gut microbiomes and improvement of host health.
Collapse
Affiliation(s)
- Chang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li-Juan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Teo TH, Ayuni NN, Yin M, Liew JH, Chen JQ, Kurepina N, Rajarethinam R, Kreiswirth BN, Chen L, Bifani P. Differential mucosal tropism and dissemination of classical and hypervirulent Klebsiella pneumoniae infection. iScience 2024; 27:108875. [PMID: 38313058 PMCID: PMC10835444 DOI: 10.1016/j.isci.2024.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Klebsiella pneumoniae (Kp) infection is an important healthcare concern. The ST258 classical (c)Kp strain is dominant in hospital-acquired infections in North America and Europe, while ST23 hypervirulent (hv)Kp prevails in community-acquired infections in Asia. This study aimed to develop symptomatic mucosal infection models in mice that mirror natural infections in humans to gain a deeper understanding of Kp mucosal pathogenesis. We showed that cKp replicates in the nasal cavity instead of the lungs, and this early infection event is crucial for the establishment of chronic colonization in the cecum and colon. In contrast, hvKp replicates directly in the lungs to lethal bacterial load, and early infection of esophagus supported downstream transient colonization in the ileum and cecum. Here, we have developed an in vivo model that illuminates how differences in Kp tropism are responsible for virulence and disease phenotype in cKp and hvKp, providing the basis for further mechanistic study.
Collapse
Affiliation(s)
- Teck-Hui Teo
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
| | - Nurul N. Ayuni
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Michelle Yin
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
| | - Jun Hao Liew
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Jason Q. Chen
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
| | - Natalia Kurepina
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Barry N. Kreiswirth
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Pablo Bifani
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E7HT, UK
| |
Collapse
|
48
|
AL-Busaidi B, AL-Muzahmi M, AL-Shabibi Z, Rizvi M, AL-Rashdi A, AL-Jardani A, Farzand R, AL-Jabri Z. Hypervirulent Capsular Serotypes K1 and K2 Klebsiella pneumoniae Strains Demonstrate Resistance to Serum Bactericidal Activity and Galleria mellonella Lethality. Int J Mol Sci 2024; 25:1944. [PMID: 38339222 PMCID: PMC10855873 DOI: 10.3390/ijms25031944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a variant that has been increasingly linked to severe, life-threatening infections including pyogenic liver abscess and bloodstream infections. HvKps belonging to the capsular serotypes K1 and K2 have been reported worldwide, however, very scarce studies are available on their genomics and virulence. In the current study, we report four hypermucoviscous extended-spectrum β-lactamase-producing hvKp clinical strains of capsular serotype K1 and K2 isolated from pus and urine of critically ill patients in tertiary care hospitals in Oman. These strains belong to diverse sequence types (STs), namely ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2). To study their virulence, a Galleria mellonella model and resistance to human serum killing were used. The G. mellonella model revealed that the K1/ST-23 isolate was the most virulent, as 50% of the larvae died in the first day, followed by isolate K2/ST-231 and K2/ST-14, for which 75% and 50% of the larvae died in the second day, respectively. Resistance to human serum killing showed there was complete inhibition of bacterial growth of all four isolates by the end of the first hour and up to the third hour. Whole genome sequencing (WGS) revealed that hvKp strains display a unique genetic arrangement of k-loci. Whole-genome single-nucleotide polymorphism-based phylogenetic analysis revealed that these hvKp isolates were phylogenetically distinct, belonging to diverse clades, and belonged to different STs in comparison to global isolates. For ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2), there was a gradual decrease in the number of colonies up to the second to third hour, which indicates neutralization of bacterial cells by the serum components. However, this was followed by a sudden increase of bacterial growth, indicating possible resistance of bacteria against human serum bactericidal activity. This is the first report from Oman detailing the WGS of hvKp clinical isolates and assessing their resistance and virulence genomics, which reinforce our understanding of their epidemiology and dissemination in clinical settings.
Collapse
Affiliation(s)
- Basaier AL-Busaidi
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman;
| | | | - Zahra AL-Shabibi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat 123, Oman;
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Azza AL-Rashdi
- Central Public Health Laboratory, Department of Medical Microbiology, Ministry of Health, Muscat 100, Oman; (A.A.-R.); (A.A.-J.)
| | - Amina AL-Jardani
- Central Public Health Laboratory, Department of Medical Microbiology, Ministry of Health, Muscat 100, Oman; (A.A.-R.); (A.A.-J.)
| | - Robeena Farzand
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK;
| | - Zaaima AL-Jabri
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat 123, Oman;
| |
Collapse
|
49
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
50
|
Fang J, Wang G, Kang X, Pan Z, Mei Y, Chen H, Liu Y, Xiang T. Analysis of the hypovirulent Klebsiella pneumoniae with the NDM-5 gene on IncN plasmids. Microbiol Spectr 2024; 12:e0344323. [PMID: 38019003 PMCID: PMC10783101 DOI: 10.1128/spectrum.03443-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE It is crucial to strengthen the ongoing clinical surveillance of non-highly virulent, multi-resistant Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Jianhua Fang
- Department of Infectious disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Infectious disease, Nanchang University, Nanchang, China
| | - Guoyu Wang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuhua Kang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhui Pan
- Department of Pediatrics, Nanchang University, Nanchang, China
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanfang Mei
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huade Chen
- Department of Infectious disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Infectious disease, Nanchang University, Nanchang, China
| | - Yang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, China
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|