1
|
Maurin M, Hennebique A, Brunet C, Pondérand L, Pelloux I, Boisset S, Caspar Y. Non-vaccinal prophylaxis of tularemia. Front Microbiol 2024; 15:1507469. [PMID: 39669787 PMCID: PMC11635305 DOI: 10.3389/fmicb.2024.1507469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Tularemia is a re-emerging zoonosis in many endemic countries. It is caused by Francisella tularensis, a gram-negative bacterium and biological threat agent. Humans are infected from the wild animal reservoir, the environmental reservoir or by the bite of arthropod vectors. This infection occurs through the cutaneous, conjunctival, digestive or respiratory routes. Tularemia generally manifests itself as an infection at the site of entry of the bacteria with regional lymphadenopathy, or as a systemic disease, particularly pulmonary. It is often a debilitating condition due to persistent symptoms and sometimes a life-threatening condition. There is effective antibiotic treatment for this disease but no vaccine is currently available for humans or animals. Due to the complexity of the F. tularensis life cycle and multiple modes of human infection, non-vaccine prophylaxis of tularemia is complex and poorly defined. In this review, we summarize the various individual prophylactic measures available against tularemia based on the different risk factors associated with the disease. We also discuss the currently underdeveloped possibilities for collective prophylaxis. Prophylactic measures must be adapted in each tularemia endemic area according to the predominant modes of human and animal infection. They requires a One Health approach to control both animal and environmental reservoirs of F. tularensis, as well as arthropod vectors, to slow the current expansion of endemic areas of this disease in a context of climate change.
Collapse
Affiliation(s)
- Max Maurin
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Recherche Translationnelle et Innovation en Médecine et Complexité (TIMC), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, Grenoble, France
| | - Aurélie Hennebique
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Recherche Translationnelle et Innovation en Médecine et Complexité (TIMC), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, Grenoble, France
| | - Camille Brunet
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
| | - Léa Pondérand
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Isabelle Pelloux
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
| | - Sandrine Boisset
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Yvan Caspar
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
2
|
Kossadoum RF, Baron A, Parizot M, Husain M, Poey N, Maurin M, Caspar Y, Caseris M, Bidet P, Bonacorsi S. Tularemia in Pediatric Patients: A Case Series and Review of the Literature. Pediatr Infect Dis J 2024:00006454-990000000-01024. [PMID: 39312633 DOI: 10.1097/inf.0000000000004554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND Unfamiliar to pediatricians, tularemia can lead to delays in diagnosis and hinder appropriate treatment, as its clinical presentation often shares similarities with other more prevalent causes of lymphadenopathy diseases in children. We conducted a comprehensive literature review to offer contemporary insights into the clinical manifestations and treatment strategies for tularemia infection in children. METHODS Three cases of glandular tularemia were diagnosed in the Pediatric Robert Debré Hospital (Paris) between October 2020 and February 2022. In addition, we conducted a literature search using PubMed in December 2023 of cases of tularemia in children published in English. RESULTS The 94 cases of the literature review highlight the large age range (from 6 weeks to 17 years) and multiple sources of infection, including diverse zoonotic transmission (86.7%) and contact with contaminated water (13.3%). Fever was a consistent symptom. Ulceroglandular (46.7%), glandular (17%) and oropharyngeal forms (18.1%) predominated. The most frequently used diagnostic method was serology (60.6%). The median time to diagnosis for tularemia was 23.5 days. Hospitalization was required in 63.2% of cases, with a median duration of 4 days. Targeted treatment was based on aminoglycosides (37.6%), fluoroquinolones (30.6%) or tetracyclines (12.9%), in accordance with WHO recommendations, with a mainly favorable outcome, although several cases of meningitis were observed. CONCLUSION Pediatricians should be aware of the etiology of this febrile lymphadenopathy, notably when experiencing beta-lactam treatment failure, even in young infants, which could help reduce the extra costs associated with inappropriate antibiotic use and hospitalization.
Collapse
Affiliation(s)
- Remadji Fiona Kossadoum
- From the Equipe Opérationnelle d'Infectiologie, Service de Pédiatrie Générale, Hôpital Robert Debré, AP-HP, Paris, France
| | - Audrey Baron
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP, Paris, France
| | - Marie Parizot
- From the Equipe Opérationnelle d'Infectiologie, Service de Pédiatrie Générale, Hôpital Robert Debré, AP-HP, Paris, France
| | - Maya Husain
- From the Equipe Opérationnelle d'Infectiologie, Service de Pédiatrie Générale, Hôpital Robert Debré, AP-HP, Paris, France
| | - Nora Poey
- From the Equipe Opérationnelle d'Infectiologie, Service de Pédiatrie Générale, Hôpital Robert Debré, AP-HP, Paris, France
| | - Max Maurin
- Centre National de Référence des Francisella, Laboratoire de Bactériologie-Hygiène Hospitalière, CHU Grenoble Alpes - Grenoble, France
- Université Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Yvan Caspar
- Centre National de Référence des Francisella, Laboratoire de Bactériologie-Hygiène Hospitalière, CHU Grenoble Alpes - Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Marion Caseris
- From the Equipe Opérationnelle d'Infectiologie, Service de Pédiatrie Générale, Hôpital Robert Debré, AP-HP, Paris, France
| | - Philippe Bidet
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP, Paris, France
- Université Paris Cité, IAME, UMR1137, INSERM, Paris, France
| | - Stephane Bonacorsi
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP, Paris, France
- Université Paris Cité, IAME, UMR1137, INSERM, Paris, France
| |
Collapse
|
3
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
4
|
Cantlay S, Garrison NL, Patterson R, Wagner K, Kirk Z, Fan J, Primerano DA, Sullivan MLG, Franks JM, Stolz DB, Horzempa J. Phenotypic and transcriptional characterization of F. tularensis LVS during transition into a viable but non-culturable state. Front Microbiol 2024; 15:1347488. [PMID: 38380104 PMCID: PMC10877056 DOI: 10.3389/fmicb.2024.1347488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Francisella tularensis is a gram-negative, intracellular pathogen which can cause serious, potentially fatal, illness in humans. Species of F. tularensis are found across the Northern Hemisphere and can infect a broad range of host species, including humans. Factors affecting the persistence of F. tularensis in the environment and its epidemiology are not well understood, however, the ability of F. tularensis to enter a viable but non-culturable state (VBNC) may be important. A broad range of bacteria, including many pathogens, have been observed to enter the VBNC state in response to stressful environmental conditions, such as nutrient limitation, osmotic or oxidative stress or low temperature. To investigate the transition into the VBNC state for F. tularensis, we analyzed the attenuated live vaccine strain, F. tularensis LVS grown under standard laboratory conditions. We found that F. tularensis LVS rapidly and spontaneously enters a VBNC state in broth culture at 37°C and that this transition coincides with morphological differentiation of the cells. The VBNC bacteria retained an ability to interact with both murine macrophages and human erythrocytes in in vitro assays and were insensitive to treatment with gentamicin. Finally, we present the first transcriptomic analysis of VBNC F. tularensis, which revealed clear differences in gene expression, and we identify sets of differentially regulated genes which are specific to the VBNC state. Identification of these VBNC specific genes will pave the way for future research aimed at dissecting the molecular mechanisms driving entry into the VBNC state.
Collapse
Affiliation(s)
- Stuart Cantlay
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Nicole L. Garrison
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Rachelle Patterson
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Kassey Wagner
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Zoei Kirk
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Donald A. Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Mara L. G. Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan M. Franks
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna B. Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Horzempa
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV, United States
| |
Collapse
|
5
|
Sharma R, Patil RD, Singh B, Chakraborty S, Chandran D, Dhama K, Gopinath D, Jairath G, Rialch A, Mal G, Singh P, Chaicumpa W, Saikumar G. Tularemia - a re-emerging disease with growing concern. Vet Q 2023; 43:1-16. [PMID: 37916743 PMCID: PMC10732219 DOI: 10.1080/01652176.2023.2277753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Tularemia caused by Gram-negative, coccobacillus bacterium, Francisella tularensis, is a highly infectious zoonotic disease. Human cases have been reported mainly from the United States, Nordic countries like Sweden and Finland, and some European and Asian countries. Naturally, the disease occurs in several vertebrates, particularly lagomorphs. Type A (subspecies tularensis) is more virulent and causes disease mainly in North America; type B (subspecies holarctica) is widespread, while subspecies mediasiatica is present in central Asia. F. tularensis is a possible bioweapon due to its lethality, low infectious dosage, and aerosol transmission. Small mammals like rabbits, hares, and muskrats are primary sources of human infections, but true reservoir of F. tularensis is unknown. Vector-borne tularemia primarily involves ticks and mosquitoes. The bacterial subspecies involved and mode of transmission determine the clinical picture. Early signs are flu-like illnesses that may evolve into different clinical forms of tularemia that may or may not include lymphadenopathy. Ulcero-glandular and glandular forms are acquired by arthropod bite or handling of infected animals, oculo-glandular form as a result of conjunctival infection, and oro-pharyngeal form by intake of contaminated food or water. Pulmonary form appears after inhalation of bacteria. Typhoidal form may occur after infection via different routes. Human-to-human transmission has not been known. Diagnosis can be achieved by serology, bacterial culture, and molecular methods. Treatment for tularemia typically entails use of quinolones, tetracyclines, or aminoglycosides. Preventive measures are necessary to avoid infection although difficult to implement. Research is underway for the development of effective live attenuated and subunit vaccines.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Rajendra Damu Patil
- Department of Veterinary Pathology, DGCN College of Veterinary and Animal Sciences, CSK HPKV, Palampur, Himachal Pradesh, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, India
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Devi Gopinath
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Gauri Jairath
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Ajayta Rialch
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Putan Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - G. Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
6
|
Abdugheni R, Li L, Yang ZN, Huang Y, Fang BZ, Shurigin V, Mohamad OAA, Liu YH, Li WJ. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023; 11:1897. [PMID: 37630456 PMCID: PMC10456746 DOI: 10.3390/microorganisms11081897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ni Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Schöbi N, Agyeman PKA, Duppenthaler A, Bartenstein A, Keller PM, Suter-Riniker F, Schmidt KM, Kopp MV, Aebi C. PEDIATRIC TULAREMIA– A CASE SERIES FROM A SINGLE CENTER IN SWITZERLAND. Open Forum Infect Dis 2022; 9:ofac292. [PMID: 35873298 PMCID: PMC9301579 DOI: 10.1093/ofid/ofac292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background The incidence of tularemia has recently increased throughout Europe. Pediatric tularemia typically presents with ulceroglandular or glandular disease and requires antimicrobial therapy not used in the empirical management of childhood acute lymphadenitis. We describe the clinical presentation and course in a case series comprising 20 patients. Methods This is a retrospective analysis of a single-center case series of microbiologically confirmed tularemia in patients <16 years of age diagnosed between 2010 and 2021. Results Nineteen patients (95%) presented with ulceroglandular (n = 14) or glandular disease (n = 5), respectively. A characteristic entry site lesion (eschar) was present in 14 (74%). Fever was present at illness onset in 15 patients (75%) and disappeared in all patients before targeted therapy was initiated. The diagnosis was confirmed by serology in 18 patients (90%). While immunochromatography was positive as early as on day 7, a microagglutination test titer 1:≥160 was found no earlier than on day 13. Sixteen patients (80%) were initially treated with an antimicrobial agent ineffective against F. tularensis. The median delay (range) from illness onset to initiation of targeted therapy was 12 (6–40) days. Surgical incision and drainage were ultimately performed in 12 patients (60%). Conclusions Pediatric tularemia in Switzerland usually presents with early, self-limiting fever and a characteristic entry site lesion with regional lymphadenopathy draining the scalp or legs. Particularly in association with a tick exposure history, this presentation may allow early first-line therapy with an agent specifically targeting F. tularensis, potentially obviating the need for surgical therapy.
Collapse
Affiliation(s)
- Nina Schöbi
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
| | - Philipp KA Agyeman
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
| | - Andrea Duppenthaler
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
| | - Andreas Bartenstein
- Department of Pediatric Surgery, Bern University Hospital, Inselspital, University of Bern , Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern , Switzerland
| | | | - Kristina M Schmidt
- Spiez Laboratory, Federal Office for Civil Protection and Swiss National Reference Center for Francisella tularensis (NANT) , Spiez , Switzerland
| | - Matthias V Kopp
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
- 17 Center North (ARCN), Member of the German Lung Research Center (DZL) , 18 University of Luebeck , Germany
| | - Christoph Aebi
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
| |
Collapse
|
8
|
Rijks JM, Tulen AD, Notermans DW, Reubsaet FAG, de Vries MC, Koene MGJ, Swaan CM, Maas M. Tularemia Transmission to Humans, the Netherlands, 2011–2021. Emerg Infect Dis 2022; 28:883-885. [PMID: 35318921 PMCID: PMC8962900 DOI: 10.3201/eid2804.211913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We used national registry data on human cases of Francisella tularensis subspecies holarctica infection to assess transmission modes among all 26 autochthonous cases in the Netherlands since 2011. The results indicate predominance of terrestrial over aquatic animal transmission sources. We recommend targeting disease-risk communication toward hunters, recreationists, and outdoor professionals.
Collapse
|
9
|
Aghamohammad S, Cohan HA, Ghasemi A, Mostafavi E, Rohani M. The monitoring of Francisella tularensis in surface water of East Azerbaijan province, Iran. Comp Immunol Microbiol Infect Dis 2022; 81:101744. [PMID: 35030532 DOI: 10.1016/j.cimid.2022.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Francisella tularensis could be disseminated through arthropod bites and exposure to infected animals, water, and aerosols. Water sources that are contaminated with rodent excrement could be a source of contamination; therefore, an analysis of water samples is an appropriate method to investigate the routes of dissemination. Since an outbreak occurred in one of the villages in East Azerbaijan. The current study aimed to investigate the Francisella isolation in the different water samples from East Azerbaijan, Iran. Sampling was carried out in East Azerbaijan province. Forty-six specimens of surface water were collected. Filtration, culture, and inoculation of the water sample into NMRI (Naval Medical Research Institute) inbreed mice were performed. DNA was extracted from filtered water samples, different organs of inoculated mice, and bacterial isolates and was tested by TaqMan real-time PCR by targeting ISFtu2 and fopA genes. Despite the unsuccessfulness in isolation of F. tularensis, molecular test results indicate the presence of bacteria in surface water. The highest rate of F. tularensis (ten from 46 water samples, 21.7%) was detected from injected mice based on molecular methods. Despite the high efforts of researchers to isolate Francisella spp. in Iran, in recent years, and also the evidence that shows the presence of this bacterium in different parts of the country, the culture was not successful again in this study and the molecular method still is recommended to identify the possible sources of Francisella spp.
Collapse
Affiliation(s)
| | - Hossein Ahangari Cohan
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar, Ahang, Hamadan, Iran; Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Ghasemi
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar, Ahang, Hamadan, Iran; Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Ehsan Mostafavi
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar, Ahang, Hamadan, Iran; Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Host Immunity and Francisella tularensis: A Review of Tularemia in Immunocompromised Patients. Microorganisms 2021; 9:microorganisms9122539. [PMID: 34946140 PMCID: PMC8707036 DOI: 10.3390/microorganisms9122539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/31/2023] Open
Abstract
Tularemia, caused by the bacterium Francisella tularensis, is an infrequent zoonotic infection, well known in immunocompetent (but poorly described in immunocompromised) patients. Although there is no clear literature data about the specific characteristics of this disease in immunocompromised patients, clinical reports seem to describe a different presentation of tularemia in these patients. Moreover, atypical clinical presentations added to the fastidiousness of pathogen identification seem to be responsible for a delayed diagnosis, leading to a” loss of chance” for immunocompromised patients. In this article, we first provide an overview of the host immune responses to Francisella infections and discuss how immunosuppressive therapies or diseases can lead to a higher susceptibility to tularemia. Then, we describe the particular clinical patterns of tularemia in immunocompromised patients from the literature. We also provide hints of an alternative diagnostic strategy regarding these patients. In conclusion, tularemia should be considered in immunocompromised patients presenting pulmonary symptoms or unexplained fever. Molecular techniques on pathological tissues might improve diagnosis with faster results.
Collapse
|
11
|
Hannah EE, Pandit SG, Hau D, DeMers HL, Robichaux K, Nualnoi T, Dissanayaka A, Arias-Umana J, Green HR, Thorkildson P, Pflughoeft KJ, Gates-Hollingsworth MA, Ozsurekci Y, AuCoin DP. Development of Immunoassays for Detection of Francisella tularensis Lipopolysaccharide in Tularemia Patient Samples. Pathogens 2021; 10:pathogens10080924. [PMID: 34451388 PMCID: PMC8401977 DOI: 10.3390/pathogens10080924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia, a zoonotic bacterial infection that is often fatal if not diagnosed and treated promptly. Natural infection in humans is relatively rare, yet persistence in animal reservoirs, arthropod vectors, and water sources combined with a low level of clinical recognition make tularemia a serious potential threat to public health in endemic areas. F. tularensis has also garnered attention as a potential bioterror threat, as widespread dissemination could have devastating consequences on a population. A low infectious dose combined with a wide range of symptoms and a short incubation period makes timely diagnosis of tularemia difficult. Current diagnostic techniques include bacterial culture of patient samples, PCR and serological assays; however, these techniques are time consuming and require technical expertise that may not be available at the point of care. In the event of an outbreak or exposure a more efficient diagnostic platform is needed. The lipopolysaccharide (LPS) component of the bacterial outer leaflet has been identified previously by our group as a potential diagnostic target. For this study, a library of ten monoclonal antibodies specific to F. tularensis LPS were produced and confirmed to be reactive with LPS from type A and type B strains. Antibody pairs were tested in an antigen-capture enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay format to select the most sensitive pairings. The antigen-capture ELISA was then used to detect and quantify LPS in serum samples from tularemia patients for the first time to determine the viability of this molecule as a diagnostic target. In parallel, prototype lateral flow immunoassays were developed, and reactivity was assessed, demonstrating the potential utility of this assay as a rapid point-of-care test for diagnosis of tularemia.
Collapse
Affiliation(s)
- Emily E. Hannah
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Sujata G. Pandit
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Derrick Hau
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Haley L. DeMers
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Kayleigh Robichaux
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Teerapat Nualnoi
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Anjana Dissanayaka
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Jose Arias-Umana
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Heather R. Green
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Peter Thorkildson
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Kathryn J. Pflughoeft
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | - Marcellene A. Gates-Hollingsworth
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
| | | | - David P. AuCoin
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV 89509, USA; (E.E.H.); (S.G.P.); (D.H.); (H.L.D.); (K.R.); (T.N.); (A.D.); (J.A.-U.); (H.R.G.); (P.T.); (K.J.P.); (M.A.G.-H.)
- Correspondence:
| |
Collapse
|
12
|
Brunet CD, Hennebique A, Peyroux J, Pelloux I, Caspar Y, Maurin M. Presence of Francisella tularensis subsp. holarctica DNA in the Aquatic Environment in France. Microorganisms 2021; 9:microorganisms9071398. [PMID: 34203503 PMCID: PMC8306966 DOI: 10.3390/microorganisms9071398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
In 2018, the incidence of tularemia increased twofold in the west of France, with many pneumonic forms, suggesting environmental sources of infection. We investigated the presence of Francisellatularensis subsp. holarctica and other Francisella species DNA in the natural aquatic environment of this geographic area. Two sampling campaigns, in July 2019 and January 2020, allowed the collection of 87 water samples. Using a combination of real-time PCR assays, we tested the presence of either Francisella sp., F. tularensis/F. novicida, and F. tularensis subsp. holarctica, the latter being the only tularemia agent in Europe. Among 57 water samples of the first campaign, 15 (26.3%) were positive for Francisella sp., nine (15.8%) for F. tularensis and/or F. novicida, and four (7.0%) for F. tularensis subsp. holarctica. Ratios were 25/30 (83.3%), 24/30 (80.0%), and 4/30 (13.3%) for the second campaign. Among the thirty sites sampled during the two campaigns, nine were positive both times for Francisella sp., seven for F. tularensis and/or F. novicida, and one for F. tularensis subsp. holarctica. Altogether, our study reveals a high prevalence of Francisella sp. DNA (including the tularemia agent) in the studied aquatic environment. This aquatic environment could therefore participate in the endemicity of tularemia in the west of France.
Collapse
Affiliation(s)
- Camille D. Brunet
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
| | - Aurélie Hennebique
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
- Centre National de Référence des Francisella, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France;
| | - Julien Peyroux
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
| | - Isabelle Pelloux
- Centre National de Référence des Francisella, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France;
| | - Yvan Caspar
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
- Centre National de Référence des Francisella, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France;
| | - Max Maurin
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
- Centre National de Référence des Francisella, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France;
- Correspondence:
| |
Collapse
|
13
|
The Important Role of Metal Ions for Survival of Francisella in Water within Amoeba Environment. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6673642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Francisella tularensis is a gram-negative facultative intracellular bacterium that resists harsh environments. Several outbreaks of tularemia are linked to the consumption and contact with spring water. The number of F. tularensis in some waters is high, while in others, this bacterium does not survive. Except organic compounds, metals could be important for the survival of F. tularensis in water. Some Francisella strains showed the association with amoeba, which may act as the environmental reservoir. This study was aimed at following the role of metal ions and/or amoeba in the existence and replication of F. novicida in spring waters by growth kinetics, acquisition of metals, and ultrastructural analyses of bacteria. The bacteria showed a longer survival in water with higher initial concentrations of Mn and Zn. Although Mn and Zn were necessary for the survival of F. novicida, the results also showed that the bacterium does not grow in water with high levels of Zn. In contrast, high levels of Mn did not have such a negative effect on the survival of this bacterium in water. In addition, while F. novicida benefits presence of amoeba in spring water, the number of amoebae is decreasing in a coculture model with F. novicida.
Collapse
|
14
|
Golovliov I, Bäckman S, Granberg M, Salomonsson E, Lundmark E, Näslund J, Busch JD, Birdsell D, Sahl JW, Wagner DM, Johansson A, Forsman M, Thelaus J. Long-Term Survival of Virulent Tularemia Pathogens outside a Host in Conditions That Mimic Natural Aquatic Environments. Appl Environ Microbiol 2021; 87:e02713-20. [PMID: 33397692 PMCID: PMC8104992 DOI: 10.1128/aem.02713-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
Francisella tularensis, the causative agent of the zoonotic disease tularemia, can cause seasonal outbreaks of acute febrile illness in humans with disease peaks in late summer to autumn. Interestingly, its mechanisms for environmental persistence between outbreaks are poorly understood. One hypothesis is that F. tularensis forms biofilms in aquatic environments. We utilized two fully virulent wild-type strains: FSC200 (Francisella tularensis subsp. holarctica) and Schu S4 (Francisella tularensis subsp. tularensis) and three control strains, the attenuated live vaccine strain (LVS; F. tularensis subsp. holarctica), a Schu S4 ΔwbtI mutant that is documented to form biofilms, and the low-virulence strain U112 of the closely related species Francisella novicida Strains were incubated in saline solution (0.9% NaCl) microcosms for 24 weeks at both 4°C and 20°C, whereupon viability and biofilm formation were measured. These temperatures were selected to approximate winter and summer temperatures of fresh water in Scandinavia, respectively. U112 and Schu S4 ΔwbtI formed biofilms, but F. tularensis strains FSC200 and Schu S4 and the LVS did not. All strains exhibited prolonged viability at 4°C compared to 20°C. U112 and FSC200 displayed remarkable long-term persistence at 4°C, with only 1- and 2-fold log reductions, respectively, of viable cells after 24 weeks. Schu S4 exhibited lower survival, yielding no viable cells by week 20. At 24 weeks, cells from FSC200, but not from Schu S4, were still fully virulent in mice. Taken together, these results demonstrate biofilm-independent, long-term survival of pathogenic F. tularensis subsp. holarctica in conditions that mimic overwinter survival in aquatic environments.IMPORTANCE Tularemia, a disease caused by the environmental bacterium Francisella tularensis, is characterized by acute febrile illness. F. tularensis is highly infectious: as few as 10 organisms can cause human disease. Tularemia is not known to be spread from person to person. Rather, all human infections are independently acquired from the environment via the bite of blood-feeding arthropods, ingestion of infected food or water, or inhalation of aerosolized bacteria. Despite the environmental origins of human disease events, the ecological factors governing the long-term persistence of F. tularensis in nature between seasonal human outbreaks are poorly understood. The significance of our research is in identifying conditions that promote long-term survival of fully virulent F. tularensis outside a mammalian host or insect vector. These conditions are similar to those found in natural aquatic environments in winter and provide important new insights on how F. tularensis may persist long-term in the environment.
Collapse
Affiliation(s)
- Igor Golovliov
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Stina Bäckman
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Malin Granberg
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Emelie Salomonsson
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Eva Lundmark
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Jonas Näslund
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Joseph D Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Dawn Birdsell
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - David M Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Mats Forsman
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| | - Johanna Thelaus
- Division of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden
| |
Collapse
|
15
|
Evaluation of the Biotoxis qPCR Detection Kit for Francisella tularensis Detection in Clinical and Environmental Samples. J Clin Microbiol 2020; 59:JCM.01434-20. [PMID: 33115844 DOI: 10.1128/jcm.01434-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022] Open
Abstract
Rapid and reliable detection and identification of Francisella tularensis (a tier 1 select agent) are of primary interest for both medical and biological threat surveillance purposes. The Biotoxis qPCR detection kit is a real-time quantitative PCR (qPCR) assay designed for the detection of Bacillus anthracis, Yersinia pestis, and F. tularensis in environmental or biological samples. Here, we evaluated its performance for detecting F. tularensis in comparison to previously validated qPCR assays. The Biotoxis qPCR was positive for 87/87 F. tularensis subsp. holarctica (type B) strains but also for F. tularensis subsp. novicida It was negative for Francisella philomiragia and 24/24 strains belonging to other bacterial species. For 31 tularemia clinical specimens, the Biotoxis qPCR displayed a sensitivity between 90.32% and 96.55%, compared to qPCR tests targeting ISFtu2 or a type B-specific DNA sequence, respectively. All 30 nontularemia clinical specimens were Biotoxis qPCR negative. For water samples, the Biotoxis qPCR limit of detection was 1,000 CFU/liter of F. tularensis For 57 environmental water samples collected in France, the Biotoxis qPCR was positive for 6/15 samples positive for ISFtu2 qPCR and 4/4 positive for type B qPCR. In conclusion, the Biotoxis qPCR detection kit demonstrated good performances for F. tularensis detection in various biological and environmental samples, although cross-amplification of F. tularensis subsp. novicida must be considered. This plate format assay could be useful to test a large number of clinical or environmental specimens, especially in the context of natural or intentional tularemia outbreaks.
Collapse
|
16
|
Genetic Traces of the Francisella tularensis Colonization of Spain, 1998-2020. Microorganisms 2020; 8:microorganisms8111784. [PMID: 33202547 PMCID: PMC7696290 DOI: 10.3390/microorganisms8111784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
More than 1000 humans have acquired the febrile disease tularemia in Spain since the first notification of human cases in 1997. We here aimed to study the recent molecular evolution of the causative bacterium Francisella tularensis during disease establishment in Spain. Single-nucleotide polymorphisms (SNPs) and variable-number tandem repeats (VNTRs) were analyzed in whole-genome sequences (WGS) of F. tularensis. Short-read WGS data for 20 F. tularensis strains from humans infected in the periods 2014-2015 and 2018-2020 in Spain were generated. These data were combined with WGS data of 25 Spanish strains from 1998 to 2008 and two reference strains. Capillary electrophoresis data of VNTR genetic regions were generated and compared with the WGS data for the 11 strains from 2014 to 2015. Evolutionary relationships among strains were analyzed by phylogenetic methods. We identified 117 informative SNPs in a 1,577,289-nucleotide WGS alignment of 47 F. tularensis genomes. Forty-five strains from Spain formed a star-like SNP phylogeny with six branches emerging from a basal common node. The most recently evolved genomes formed four additional star-like structures that were derived from four branches of the basal common node. VNTR copy number variation was detected in two out of 10 VNTR regions examined. Genetic clustering of strains by VNTRs agreed with the clustering by SNPs. The SNP data provided higher resolution among strains than the VNTRs data in all but one cases. There was an excellent correlation between VNTR marker sizing by capillary electrophoresis and prediction from WGS data. The genetic data strongly support that tularemia, indeed, emerged recently in Spain. Distinct genetic patterns of local F. tularensis population expansions imply that the pathogen has colonized a previously disease-free geographical area. We also found that genome-wide SNPs provide higher genetic resolution among F. tularensis genomes than the use of VNTRs, and that VNTR copy numbers can be accurately predicted using short-read WGS data.
Collapse
|
17
|
Koene M, Rijks J, Maas M, Ruuls R, Engelsma M, van Tulden P, Kik M, IJzer J, Notermans D, de Vries M, Fanoy E, Pijnacker R, Spierenburg M, Bavelaar H, Berkhout H, Sankatsing S, Diepersloot R, Myrtennas K, Granberg M, Forsman M, Roest HJ, Gröne A. Phylogeographic Distribution of Human and Hare Francisella Tularensis Subsp. Holarctica Strains in the Netherlands and Its Pathology in European Brown Hares (Lepus Europaeus). Front Cell Infect Microbiol 2019; 9:11. [PMID: 30805312 PMCID: PMC6378916 DOI: 10.3389/fcimb.2019.00011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/15/2019] [Indexed: 01/05/2023] Open
Abstract
Sequence-based typing of Francisella tularensis has led to insights in the evolutionary developments of tularemia. In Europe, two major basal clades of F. tularensis subsp. holarctica exist, with a distinct geographical distribution. Basal clade B.6 is primarily found in Western Europe, while basal clade B.12 occurs predominantly in the central and eastern parts of Europe. There are indications that tularemia is geographically expanding and that strains from the two clades might differ in pathogenicity, with basal clade B.6 strains being potentially more virulent than basal clade B.12. This study provides information on genotypes detected in the Netherlands during 2011–2017. Data are presented for seven autochthonous human cases and for 29 European brown hares (Lepus europaeus) with laboratory confirmed tularemia. Associated disease patterns are described for 25 European brown hares which underwent post-mortem examination. The basal clades B.6 and B.12 are present both in humans and in European brown hares in the Netherlands, with a patchy geographical distribution. For both genotypes the main pathological findings in hares associated with tularemia were severe (sub)acute necrotizing hepatitis and splenitis as well as necrotizing lesions and hemorrhages in several other organs. Pneumonia was significantly more common in the B.6 than in the B.12 cases. In conclusion, the two major basal clades present in different parts in Europe are both present in the Netherlands. In hares found dead, both genotypes were associated with severe acute disease affecting multiple organs. Hepatitis and splenitis were common pathological findings in hares infected with either genotype, but pneumonia occurred significantly more frequently in hares infected with the B.6 genotype compared to hares infected with the B.12 genotype.
Collapse
Affiliation(s)
- Miriam Koene
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Jolianne Rijks
- Faculty of Veterinary Medicine, Dutch Wildlife Health Centre, Utrecht University, Utrecht, Netherlands
| | - Miriam Maas
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Robin Ruuls
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Marc Engelsma
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Peter van Tulden
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Marja Kik
- Faculty of Veterinary Medicine, Dutch Wildlife Health Centre, Utrecht University, Utrecht, Netherlands
| | - Jooske IJzer
- Faculty of Veterinary Medicine, Dutch Wildlife Health Centre, Utrecht University, Utrecht, Netherlands
| | - Daan Notermans
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Maaike de Vries
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Ewout Fanoy
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,GGD Rotterdam Rijnmond, Rotterdam, Netherlands
| | - Roan Pijnacker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marcel Spierenburg
- Netherlands Food and Consumer Product Safety Authority, Utrecht, Netherlands
| | - Herjan Bavelaar
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Hanneke Berkhout
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Sanjay Sankatsing
- Department of Internal Medicine, Diakonessenhuis, Utrecht, Netherlands
| | - Rob Diepersloot
- Department of Medical Microbiology en Immunology, St. Antonius Hospital, Nieuwegein, Netherlands
| | | | | | | | - Hendrik-Jan Roest
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Andrea Gröne
- Faculty of Veterinary Medicine, Dutch Wildlife Health Centre, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Hennebique A, Boisset S, Maurin M. Tularemia as a waterborne disease: a review. Emerg Microbes Infect 2019; 8:1027-1042. [PMID: 31287787 PMCID: PMC6691783 DOI: 10.1080/22221751.2019.1638734] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Francisella tularensis is a Gram-negative, intracellular bacterium causing the zoonosis tularemia. This highly infectious microorganism is considered a potential biological threat agent. Humans are usually infected through direct contact with the animal reservoir and tick bites. However, tularemia cases also occur after contact with a contaminated hydro-telluric environment. Water-borne tularemia outbreaks and sporadic cases have occurred worldwide in the last decades, with specific clinical and epidemiological traits. These infections represent a major public health and military challenge. Human contaminations have occurred through consumption or use of F. tularensis-contaminated water, and various aquatic activities such as swimming, canyoning and fishing. In addition, in Sweden and Finland, mosquitoes are primary vectors of tularemia due to infection of mosquito larvae in contaminated aquatic environments. The mechanisms of F. tularensis survival in water may include the formation of biofilms, interactions with free-living amoebae, and the transition to a 'viable but nonculturable' state, but the relative contribution of these possible mechanisms remains unknown. Many new aquatic species of Francisella have been characterized in recent years. F. tularensis likely shares with these species an ability of long-term survival in the aquatic environment, which has to be considered in terms of tularemia surveillance and control.
Collapse
Affiliation(s)
- Aurélie Hennebique
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Sandrine Boisset
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| |
Collapse
|