1
|
Sun Y, Hao Y, Wu J, Qian S, Shen S, Yu Y. Analysis of miRNAs involved in mouse brain injury upon Coxsackievirus A6 infection. Front Cell Infect Microbiol 2024; 14:1405689. [PMID: 39239635 PMCID: PMC11374775 DOI: 10.3389/fcimb.2024.1405689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Coxsackievirus A6 (CV-A6) has emerged as the predominant epidemic strain responsible for hand, foot and mouth disease (HFMD). CV-A6 infection can result in severe clinical manifestations, including encephalitis, meningitis, and potentially life-threatening central nervous system disorders. Our previous research findings demonstrated that neonatal mice infected with CV-A6 exhibited limb weakness, paralysis, and ultimately succumbed to death. However, the underlying mechanism of CV-A6-induced nervous system injury remains elusive. Numerous reports have highlighted the pivotal role of miRNAs in various viral infections. Methods Separately established infection and control groups of mice were used to create miRNA profiles of the brain tissues before and after CV-A6 transfection, followed by experimental verification, prediction, and analysis of the results. Results At 2 days post-infection (dpi), 4 dpi, and 2dpi vs 4dpi, we identified 175, 198 and 78 significantly differentially expressed miRNAs respectively using qRT-PCR for validation purposes. Subsequently, we predicted target genes of these differentially expressed miRNAs and determined their potential targets through GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Finally, we verified the miRNA-mRNA pairing via double luciferase experiments while confirming functional enrichment of target genes through Western Blotting analyses. Discussion The results from this study suggest that transcriptional regulation, neuronal necrosis, pro-inflammatory cytokine release, and antiviral immunity are all implicated in the pathogenesis of central nervous system injury in mice infected with CV-A6. Brain injury resulting from CV-A6 infection may involve multiple pathways, including glial cell activation, neuronal necrosis, synaptic destruction, degenerative diseases of the nervous system. It can even encompass destruction of the blood-brain barrier, leading to central nervous system injury. The dysregulated miRNAs and signaling pathways discovered in this study provide valuable insights for further investigations into the pathogenesis of CV-A6.
Collapse
Affiliation(s)
- Yihao Sun
- Department of Biopharmacy, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Yilin Hao
- Department of Biopharmacy, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jie Wu
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Shasha Qian
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Shuo Shen
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Yuting Yu
- Department of Biopharmacy, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Jitobaom K, Boonarkart C, Thongon S, Sirihongthong T, Sornwong A, Auewarakul P, Suptawiwat O. In vitro synergistic antiviral activity of repurposed drugs against enterovirus 71. Arch Virol 2024; 169:169. [PMID: 39078431 DOI: 10.1007/s00705-024-06097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Enteroviruses cause viral diseases that are harmful to children. Hand, foot, and mouth disease (HFMD) with neurological complications is mainly caused by enterovirus 71 (EV71). Despite its clinical importance, there is no effective antiviral drug against EV71. However, several repurposed drugs have been shown to have antiviral activity against related viruses. Treatments with single drugs and two-drug combinations were performed in vitro to assess anti-EV71 activity. Three repurposed drug candidates with broad-spectrum antiviral activity were found to demonstrate potent anti-EV71 activity: prochlorperazine, niclosamide, and itraconazole. To improve antiviral activity, combinations of two drugs were tested. Niclosamide and itraconazole showed synergistic antiviral activity in Vero cells, whereas combinations of niclosamide-prochlorperazine and itraconazole-prochlorperazine showed only additive effects. Furthermore, the combination of itraconazole and prochlorperazine showed an additive effect in neuroblastoma cells. Itraconazole and prochlorperazine exert their antiviral activities by inhibiting Akt phosphorylation. Repurposing of drugs can provide a treatment solution for HFMD, and our data suggest that combining these drugs can enhance that efficacy.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Songkran Thongon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanyaporn Sirihongthong
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Arpakorn Sornwong
- Department of Central instrument and Research Laboratory, Virology and Immunology Laboratory, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ornpreya Suptawiwat
- Department of Central instrument and Research Laboratory, Virology and Immunology Laboratory, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| |
Collapse
|
3
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
4
|
Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses 2022; 14:v14102190. [PMID: 36298746 PMCID: PMC9609926 DOI: 10.3390/v14102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroviruses are members of the Picornaviridae family consisting of human enterovirus groups A, B, C, and D as well as nonhuman enteroviruses. Human enterovirus type 71 (EV71) has emerged as a major cause of viral encephalitis, known as hand, foot, and mouth disease (HFMD), in children worldwide, especially in the Asia-Pacific region. EV71 and coxsackievirus A16 are the two viruses responsible for HFMD which are members of group A enteroviruses. The identified EV71 receptors provide useful information for understanding viral replication and tissue tropism. Host factors interact with the internal ribosome entry site (IRES) of EV71 to regulate viral translation. However, the specific molecular features of the respective viral genome that determine virulence remain unclear. Although a vaccine is currently approved, there is no effective therapy for treating EV71-infected patients. Therefore, understanding the host-pathogen interaction could provide knowledge in viral pathogenesis and further benefits to anti-viral therapy development. The aim of this study was to investigate the latest findings about the interaction of viral ligands with the host receptors as well as the activation of immunerelated signaling pathways for innate immunity and the involvement of different cytokines and chemokines during host-pathogen interaction. The study also examined the roles of viral proteins, mainly 2A and 3C protease, interferons production and their inhibitory effects.
Collapse
|
5
|
Hu Y, Wang L, Zhong M, Zhao W, Wang Y, Song J, Zhang Y. Comprehensive profiling and characterization of cellular microRNAs in response to coxsackievirus A10 infection in bronchial epithelial cells. Virol J 2022; 19:120. [PMID: 35864512 PMCID: PMC9302563 DOI: 10.1186/s12985-022-01852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Coxsackievirus A10 (CV-A10), the causative agent of hand, foot, and mouth disease (HFMD), caused a series of outbreaks in recent years and often leads to neurological impairment, but a clear understanding of the disease pathogenesis and host response remains elusive. Cellular microRNAs (miRNAs), a large family of non-coding RNA molecules, have been reported to be key regulators in viral pathogenesis and virus-host interactions. However, the role of host cellular miRNAs defensing against CV-A10 infection is still obscure. To address this issue, we systematically analyzed miRNA expression profiles in CV-A10-infected 16HBE cells by high-throughput sequencing methods in this study. It allowed us to successfully identify 312 and 278 miRNAs with differential expression at 12 h and 24 h post-CV-A10 infection, respectively. Among these, 4 miRNAs and their target genes were analyzed by RT-qPCR, which confirmed the sequencing data. Gene target prediction and enrichment analysis revealed that the predicted targets of these miRNAs were significantly enriched in numerous cellular processes, especially in regulation of basic physical process, host immune response and neurological impairment. And the integrated network was built to further indicate the regulatory roles of miRNAs in host-CV-A10 interactions. Consequently, our findings could provide a beneficial basis for further studies on the regulatory roles of miRNAs relevant to the host immune responses and neuropathogenesis caused by CV-A10 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lan Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Mingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yujue Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China. .,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Chen W, Li J, Li J, Zhang J, Zhang J. Roles of Non-Coding RNAs in Virus-Host Interaction About Pathogenesis of Hand-Foot-Mouth Disease. Curr Microbiol 2022; 79:247. [PMID: 35834056 PMCID: PMC9281230 DOI: 10.1007/s00284-022-02928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Noncoding RNAs (ncRNAs) represent the largest and main transcriptome products and play various roles in the biological activity of cells and pathological processes. Accumulating evidence shows that microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) are important ncRNAs that play vital regulatory roles during viral infection. Hand-foot-mouth disease (HFMD) virus causes hand-foot-mouth disease, and is also associated with various serious complications and high mortality. However, there is currently no effective treatment. In this review, we focus on advances in the understanding of the modulatory role of ncRNAs during HFMD virus infection. Specifically, we discuss the generation, classification, and regulatory mechanisms of miRNA, lncRNA, and circRNA in the interaction between virus and host, with a particular focus on their influence with viral replication and infection. Analysis of these underlying mechanisms can help provide a foundation for the development of ncRNA-based antiviral therapies.
Collapse
Affiliation(s)
- Wei Chen
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Jinwei Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jing Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jiayu Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| |
Collapse
|
7
|
Yang F, Zhang N, Chen Y, Yin J, Xu M, Cheng X, Ma R, Meng J, Du Y. Role of Non-Coding RNA in Neurological Complications Associated With Enterovirus 71. Front Cell Infect Microbiol 2022; 12:873304. [PMID: 35548469 PMCID: PMC9081983 DOI: 10.3389/fcimb.2022.873304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth disease (HFMD). Studies have reported that EV71-induced infections including aseptic meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress to severe neurological complications in infants, young children, and the immunosuppressed population. However, the mechanisms through which EV71 causes neurological diseases have not been fully explored. Non-coding RNAs (ncRNAs), are RNAs that do not code for proteins, play a key role in biological processes and disease development associated with EV71. In this review, we summarized recent advances concerning the impacts of ncRNAs on neurological diseases caused by interaction between EV71 and host, revealing the potential role of ncRNAs in pathogenesis, diagnosis and treatment of EV71-induced neurological complications.
Collapse
Affiliation(s)
- Feixiang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiancai Yin
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Muchen Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Cheng
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ruyi Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| |
Collapse
|
8
|
Ali S, Wani JA, Amir S, Tabassum S, Majid S, Eachkoti R, Ali S, Rashid N. Covid-19: a novel challenge to human immune genetic machinery. CLINICAL APPLICATIONS OF IMMUNOGENETICS 2022. [PMCID: PMC8988284 DOI: 10.1016/b978-0-323-90250-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
COVID-19 also called corona virus emerged in China in December 2019. This turned into a global pandemic in a short period of time. Covid-19 is a novel strain of corona virus that was not seen earlier in human beings. It is important to study the molecular structure of Covid-19 so as to aid in the development of therapeutic measures. Existing Covid-19 pandemic poses an extraordinary risk to health and healthcare systems worldwide. Corona viruses are made of single stranded RNA present within the coat proteins. The virus has a diameter of nearly 80–120 nm. Usually, Covid-19 presents with the signs and symptoms of respiratory illness. Cough commonly dry cough, fever, associated with myalgias and sometimes breathing difficulties due to decrease in oxygen saturation rates are also present in these patients. Some people show fever with body aches, while some are relatively asymptomatic. Corona virus is primarily transmitted in humans through respiratory route and is highly contagious. Mostly old people and those having comorbid illnesses suffer most. After invading into the human body, the virus may lead to a sequence of processes such as viral invasion, replication, and programmed cell death, that is, apoptosis. To control and prevent this viral infection, we need to study the molecular aspects of Covid-19 in detail so as to design therapeutic agents as well as for vaccine formation. The micro-RNA is defined as the single-stranded noncoding RNA molecule. They have a length of about 22 nucleotides approximately and help in the post transcriptional regulation of gene expression. Micro RNAs regulate many types of cancers in addition to Covid-19 and other infections. Viral micro RNA is a newer type of mi-RNA and controls the host cell expression and viral target genes. This was completed by inducing micro-RNA cleavage, breakdown, translation, inhibition, or other mechanisms. The micro-RNAs of Covid-19 are explained to give an authoritative means to study this novel coronavirus. These control the host cell expression and also viral target genes by inducing micro-RNA cleavage, breakdown, translation, inhibition, and also other mechanisms.
Collapse
|
9
|
Yang Z, Zhuo Q, Qin W, Wang J, Wang L, Tien P. MicroRNAs miR-18a and miR-452 regulate the replication of enterovirus 71 by targeting the gene encoding VP3. Virus Genes 2021; 57:318-326. [PMID: 34002325 DOI: 10.1007/s11262-021-01842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are crucial in the process of host-pathogen interaction. In this study, we established a screening system for miRNAs of target genes to detect the effect of miRNAs on Enterovirus 71 (EV71) replication in rhabdomyosarcoma (RD) cells. A 3'-untranslated region (UTR) dual-luciferase assay was performed to confirm putative miRNA targets in EV71 genome. Firstly, 13 fragments of EV71 genome were inserted into the vector pMIR, and luciferase activities were analyzed to identify the putative miRNAs of target genes. The expression of the reporter protein was significantly downregulated in cells transfected with the vector containing gene VP3. Then we screened for miRNAs that might target to VP3 through online analysis software. In addition, Western blot, real-time PCR, virus titration, and morphological changes were considered to examine the effects of miRNAs on virus replication. The results suggested that miR-18a and miR-452 repress the reproduction of EV71 virus by binding to VP3. Moreover, EV71 infection also affected the expression of endogenous miR-18a and miR-452. In addition, no significant cytotoxic effects were observed. The results from this study suggest that the intracellular miRNAs may play vital roles in the host-virus interaction.
Collapse
Affiliation(s)
- Zhuo Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Qin Zhuo
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wen Qin
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Jingbo Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Liyuan Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Po Tien
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Shao C, Huang Y, Fu B, Pan S, Zhao X, Zhang N, Wang W, Zhang Z, Qiu Y, Wang R, Jin M, Kong D. Targeting c-Jun in A549 Cancer Cells Exhibits Antiangiogenic Activity In Vitro and In Vivo Through Exosome/miRNA-494-3p/PTEN Signal Pathway. Front Oncol 2021; 11:663183. [PMID: 33898323 PMCID: PMC8062808 DOI: 10.3389/fonc.2021.663183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 01/08/2023] Open
Abstract
The oncogene c-Jun is activated by Jun N-terminal kinase (JNK). Exosomes are nanometer-sized membrane vesicles released from a variety of cell types, and are essential for cell-to-cell communication. By using specific JNK inhibitor SP600125 or CRISPR/Cas9 to delete c-Jun, we found that exosomes from SP600125-treated A549 cancer cells (Exo-SP) or from c-Jun-KO-A549 cells (Exo-c-Jun-KO) dramatically inhibited tube formation of HUVECs. And the miR-494 levels in SP600125 treated or c-Jun-KO A549 cells, Exo-SP or Exo-c-Jun-KO, and HUVECs treated with Exo-SP or Exo-c-Jun-KO were significantly decreased. Meanwhile, Exo-SP and Exo-c-Jun-KO enhanced expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Addition of miR-494 agomir in Exo-c-Jun-KO treated HUVECs inhibited PTEN expression and promoted tube formation, suggesting the target of miR-494 might be PTEN in HUVECs. Moreover, A549 tumor xenograft model and Matrigel plug assay demonstrated that Exo-c-Jun-KO attenuated tumor growth and angiogenesis through reducing miR-494. Taken together, inhibition of c-Jun in A549 cancer cells exhibited antiangiogenic activity in vitro and in vivo through exosome/miRNA-494-3p/PTEN signal pathway.
Collapse
Affiliation(s)
- Chen Shao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Bingjie Fu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shunli Pan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiaoxia Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ning Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, China
| |
Collapse
|
11
|
Zhu P, Chen S, Zhang W, Duan G, Jin Y. Essential Role of Non-Coding RNAs in Enterovirus Infection: From Basic Mechanisms to Clinical Prospects. Int J Mol Sci 2021; 22:ijms22062904. [PMID: 33809362 PMCID: PMC7999384 DOI: 10.3390/ijms22062904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Correspondence: ; Tel.: +86-0371-67781453
| |
Collapse
|
12
|
Li C, Hu X, Li L, Li JH. Differential microRNA expression in the peripheral blood from human patients with COVID-19. J Clin Lab Anal 2020; 34:e23590. [PMID: 32960473 PMCID: PMC7536972 DOI: 10.1002/jcla.23590] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION The coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which play important roles in regulating gene expression and are also considered as essential modulators during viral infection. The aim of this study was to elucidate the differential expression of miRNAs in COVID-19. METHODS The total RNA was extracted and purified from the peripheral blood of ten patients with COVID-19 and four healthy donors. The expression levels of various miRNAs were detected by high-throughput sequencing, and correlation analysis was performed on the target genes that are primed by miRNAs. KEY FINDINGS Compared with the healthy controls, 35 miRNAs were upregulated and 38 miRNAs were downregulated in the human patients with COVID-19. The top 10 genes were listed below: hsa-miR-16-2-3P,hsa-miR-5695,hsa-miR-10399-3P,hsa-miR-6501-5P,hsa-miR-361-3P,hsa-miR-361-3p, hsa-miR-4659a-3p, hsa-miR-142-5p, hsa-miR-4685-3p, hsa-miR-454-5p, and hsa-miR-30c-5p. The 10 genes with the greatest reduction were listed below: hsa-miR-183-5p, hsa-miR-627-5p, hsa-miR-941, hsa-miR-21-5p, hsa-miR-20a-5p, hsa-miR-146b-5p, hsa-miR-454-3p, hsa-miR-18a-5p, hsa-miR-340-5p, and hsa-miR-17-5p. Remarkably, miR-16-2-3p was the most upregulated miRNA, with a 1.6-fold change compared to that of the controls. Moreover, the expression of miR-6501-5p and miR-618 was 1.5-fold higher in the COVID-19 patients than in the healthy donors. Meanwhile, miR-627-5p was the most downregulated miRNA, with a 2.3-fold change compared to that of the controls. The expression of other miRNAs (miR-183-5p, miR-627-5p, and miR-144-3p) was reduced by more than 1.3-fold compared to that of the healthy donors. Cluster analysis revealed that all of the differentially expressed miRNA target genes were clustered by their regulation of cellular components, molecular functions, and biological processes. Importantly, peptidases, protein kinases, and the ubiquitin system were shown to be the highest enrichment categories by enrichment analysis. CONCLUSIONS The differential miRNA expression found in COVID-19 patients may regulate the immune responses and viral replication during viral infection.
Collapse
Affiliation(s)
- Caixia Li
- Department of General practice, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China.,Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Hu
- Department of Laboratory Medicine, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Leilei Li
- Department of Operating Room, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Jin-Hui Li
- Department of Rehabilitation Medicine, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China.,Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Ou Y, Zhu L, Wei X, Bai S, Chen M, Chen H, Zhang J. Circular RNA circ_0111277 attenuates human trophoblast cell invasion and migration by regulating miR-494/HTRA1/Notch-1 signal pathway in pre-eclampsia. Cell Death Dis 2020; 11:479. [PMID: 32587240 PMCID: PMC7316814 DOI: 10.1038/s41419-020-2679-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
Mounting evidence has revealed that impaired spiral artery remodeling, placental dysfunction, and inadequate trophoblast invasion are closely correlated with the etiology and pathogenesis of pre-eclampsia (PE). Moreover, defective trophoblast invasion may trigger poor maternal-fetal circulation and placental hypoxia, leading to PE. However, the detailed molecular pathology of PE remains unclear. Although circRNAs, as a new type of stable and abundant endogenous noncoding RNA, have been proven to be essential to the pathogenesis of various diseases, their role in PE requires further verification. In this context, it is necessary to unveil the roles of circRNAs in regulating the migration and invasion of extravillous trophoblasts. In this study, using quantitative real-time PCR, we confirmed that hsa_circ_0111277 was upregulated in PE placentas relative to the level in normal pregnancy placentas. In addition, positive correlations between hsa_circ_0111277 expression and PE-related factors (proteinuria level at 24 h and placental weight) were identified by Pearson's analysis based on the clinical data of 25 PE patients. Moreover, fluorescence in situ hybridization analysis illustrated that circ_0111277 was preferentially localized within the cytoplasm. Mechanistically, circ_0111277 sponged hsa-miR-494-3p in trophoblast cells to attenuate the latter's repression by regulating HTRA1/Notch-1 expression. In conclusion, trophoblast cell migration and invasion were shown to be promoted and modulated by the hsa_circ_0111277/miR-494-3p/HTRA1/Notch-1 axis, which provides useful insight for exploring a new therapeutic approach for PE.
Collapse
Affiliation(s)
- Yuhua Ou
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Xiangcai Wei
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Shiyu Bai
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Manqi Chen
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
14
|
Lai Y, Wang M, Cheng A, Mao S, Ou X, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Regulation of Apoptosis by Enteroviruses. Front Microbiol 2020; 11:1145. [PMID: 32582091 PMCID: PMC7283464 DOI: 10.3389/fmicb.2020.01145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
Enterovirus infection can cause a variety of diseases and severely impair the health of humans, animals, poultry, and other organisms. To resist viral infection, host organisms clear infected cells and viruses via apoptosis. However, throughout their long-term competition with host cells, enteroviruses have evolved a series of mechanisms to regulate the balance of apoptosis in order to replicate and proliferate. In the early stage of infection, enteroviruses mainly inhibit apoptosis by regulating the PI3K/Akt pathway and the autophagy pathway and by impairing cell sensors, thereby delaying viral replication. In the late stage of infection, enteroviruses mainly regulate apoptotic pathways and the host translation process via various viral proteins, ultimately inducing apoptosis. This paper discusses the means by which these two phenomena are balanced in enteroviruses to produce virus-favoring conditions – in a temporal sequence or through competition with each other. This information is important for further elucidation of the relevant mechanisms of acute infection by enteroviruses and other members of the picornavirus family.
Collapse
Affiliation(s)
- Yalan Lai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
MicroRNA-628-5p Facilitates Enterovirus 71 Infection by Suppressing TRAF3 Signaling. Cell Mol Immunol 2020; 18:1320-1322. [PMID: 32398803 DOI: 10.1038/s41423-020-0453-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
|
16
|
Yang D, Wang X, Gao H, Chen B, Si C, Wang S. Downregulation of miR-155-5p facilitates enterovirus 71 replication through suppression of type I IFN response by targeting FOXO3/IRF7 pathway. Cell Cycle 2019; 19:179-192. [PMID: 31856677 DOI: 10.1080/15384101.2019.1704512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enterovirus 71 (EV71), the major cause of hand-foot-and-mouth disease (HFMD), has evolved diverse strategies to counter the type I interferon (IFN-I) response during infection. Recently, microRNAs have regulatory roles in host innate immune responses to viral infections; however, whether EV71 escapes the IFN-I antiviral response through regulation of miRNAs remains unclear. Using a microarray assay, microRNA-155-5p (miR-155-5p) was found to be significantly up-regulated in serum from patients with EV71 infection and the increased expression of miR-155-5p was further confirmed in vivo and in vitro in response to EV71 infection. miR-155-5p overexpression suppressed EV71 titers and VP1 protein level, while miR-155-5p inhibition had an opposite result. Moreover, we found that miR-155-5p overexpression enhanced EV71 triggered IFN I production and the expressions of IFN-stimulated genes (ISGs), while inhibition of miR-155-5p suppressed these processes. Furthermore, bioinformatics analysis and luciferase reporter assay demonstrated that miR-155-5p directly targeted forkhead box protein O3 (FOXO3) and negatively regulated FOXO3/IRF7 axis, an important regulatory pathway for type I IFN production during EV71 infection. Inhibition of FOXO3 reversed the effects of miR-155-5p inhibitor on EV71 replication and the type I IFN production. Importantly, in EV71 infection mice, agomir-155-5p injection resulted in a significant reduction of viral VP1 protein expressions in brain and lung tissues, increased IFN-α/β production and increased mice survival rate. In contrast, antagomir-155-5p enhanced EV71 induced these effects. Collectively, our study indicates that weaken miR-155-5p facilitates EV71 replication through suppression of type I IFN response by FOXO3/IRF7 pathway, thereby suggesting a novel strategy for developing effective antiviral therapy.
Collapse
Affiliation(s)
- Daokun Yang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xinwei Wang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Haili Gao
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baoxin Chen
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Changyun Si
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Shasha Wang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
17
|
Sun Y, Feng L, Li J, Xu H, Mei X, Feng L, Sun H, Gao J, Zhang X. miR-545 promoted enterovirus 71 replication via directly targeting phosphatase and tensin homolog and tumor necrosis factor receptor-associated factor 6. J Cell Physiol 2019; 234:15686-15697. [PMID: 30697739 DOI: 10.1002/jcp.28222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Enterovirus 71 (EV71) is a small, nonenveloped icosahedral RNA virus and is the predominant causative pathogen of hand-foot-and-mouth disease. Recently, microRNAs (miRNAs) are reported to play important roles in the pathogenesis of EV71 replication. This study investigated the role of miR-545 in the EV71 replication and explored the underlying molecular mechanisms. We showed that miR-545 was upregulated in the EV71-infected human embryonic kidney (HEK) 293 cells and rhabdomyosarcoma (RD) cells. Overexpression of miR-545 promoted the viral replication of EV71 and attenuated the inhibitory effects of EV71 on cell viability in HEK293 and RD cells; while knockdown of miR-545 significantly suppressed the EV71 replication in these two cell lines. Bioinformatics analysis and luciferase reporter assay showed that miR-545 directly targeted the 3'untranslated region of phosphatase and tensin homolog (PTEN) and tumor necrosis factor receptor-associated factor 6 (TRAF6) in HEK293 cells. Furthermore, miR-545 negatively regulated the messenger RNA (mRNA) and protein expression of PTEN and TRAF6. The mRNA and protein expression of PTEN and TRAF6 was also suppressed by EV71 infection, which was attenuated by miR-545 knockdown in HEK293 cells. Overexpression of PTEN and TRAF6 both suppressed the EV71 replication in HKE293 cells, and also attenuated the enhanced effects of miR-545 overexpression on the EV71 replication in HEK293 cells. Collectively, our study for the first time showed that miR-545 had an enhanced effect on the EV71 replication in HEK293 and RD cells. Further mechanistic results indicated that miR-545 promoted EV71 replication at least partly via targeting PTEN and TRAF6.
Collapse
Affiliation(s)
- Ying Sun
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Long Feng
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Huaming Xu
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xue Mei
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lingyan Feng
- Medical College, Jianghan University, Wuhan, Hubei, China
| | - Huijuan Sun
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jianfeng Gao
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoli Zhang
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|