1
|
Naouar I, Kammoun Rebai W, Ben Salah A, Bouguerra H, Toumi A, Hamida NB, Louzir H, Meddeb-Garnaoui A. A Prospective cohort study of zoonotic cutaneous leishmaniasis in tunisia: Clinical and Immunological features and immune correlates of protection. PLoS Negl Trop Dis 2023; 17:e0011784. [PMID: 38064516 PMCID: PMC10732404 DOI: 10.1371/journal.pntd.0011784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 12/20/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND This study aimed to define immunological markers of exposure to L. major parasites and identify correlates of protection against infection. METHODS We analyzed a cohort of 790 individuals at risk of developing ZCL living in endemic areas with varying L. major infection prevalence. One area had a high infection prevalence indicated by high proportions of leishmanin skin test (LST) positive subjects, while the other areas were recent foci with lower infection prevalence. Blood samples were collected before the transmission season to measure Interferon gamma (IFN-γ), Interleukin 10 (IL-10), and Granzyme B (GrB) levels in response to parasite stimulation in peripheral blood mononuclear cells. A one-year follow-up period involved active detection of new ZCL cases to estimate disease incidence after a transmission season and identify immune correlates of protection. RESULTS The study population showed heterogeneity in parasite contact, evident from specific scars and/or positive LST results, significantly higher in the old focus compared to recent foci. IFN-γ and GrB were markers of parasite exposure and reliable indicators of immunity to L. major. Positive correlations were observed between IFN-γ/IL-10 and GrB/IL-10 ratios and LST results. Unexpectedly, only 29 new ZCL cases (4%) appeared after a transmission season, with 27 cases reported in recent foci and 2 in the oldest focus. Our findings indicate that individuals in L. major endemic areas are likely to develop ZCL regardless of their LST status. We showed that high pre-transmission season levels of IFN-γ and GrB produced by PBMC, along with a high IFN-γ/IL-10 ratio, were associated with protection. CONCLUSION This study on a large cohort at risk of ZCL confirmed IFN-γ and GrB as protective factors against the disease. A high IFN-γ/IL-10 ratio, but not GrB/IL-10 ratio was associated with resistance. These results are valuable for developing and evaluating of a vaccine against human leishmaniasis.
Collapse
Affiliation(s)
- Ikbel Naouar
- Laboratory of Transmission Control and Immunobiology of Infection, Pasteur Institute of Tunis, Tunis, Tunisia
- Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Wafa Kammoun Rebai
- Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Medical Parasitology, Biotechnology and Biomolecular, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Afif Ben Salah
- Laboratory of Transmission Control and Immunobiology of Infection, Pasteur Institute of Tunis, Tunis, Tunisia
- Department of Family and Community Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Hind Bouguerra
- National Observatory of New and Emerging Diseases, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amine Toumi
- Health Information and Intelligence Section, Ministry of Public Health, Doha, Qatar
| | - Nabil Belhadj Hamida
- Laboratory of Transmission Control and Immunobiology of Infection, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Hechmi Louzir
- Laboratory of Transmission Control and Immunobiology of Infection, Pasteur Institute of Tunis, Tunis, Tunisia
- National Observatory of New and Emerging Diseases, Tunis, Tunisia
| | - Amel Meddeb-Garnaoui
- Laboratory of Medical Parasitology, Biotechnology and Biomolecular, Pasteur Institute of Tunis, Tunis, Tunisia
| |
Collapse
|
2
|
Saidi N, Blaizot R, Prévot G, Aoun K, Demar M, Cazenave PA, Bouratbine A, Pied S. Clinical and immunological spectra of human cutaneous leishmaniasis in North Africa and French Guiana. Front Immunol 2023; 14:1134020. [PMID: 37575260 PMCID: PMC10421664 DOI: 10.3389/fimmu.2023.1134020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/10/2023] [Indexed: 08/15/2023] Open
Abstract
Cutaneous leishmaniasis (CL) caused by infection with the parasite Leishmania exhibits a large spectrum of clinical manifestations ranging from single healing to severe chronic lesions with the manifestation of resistance or not to treatment. Depending on the specie and multiple environmental parameters, the evolution of lesions is determined by a complex interaction between parasite factors and the early immune responses triggered, including innate and adaptive mechanisms. Moreover, lesion resolution requires parasite control as well as modulation of the pathologic local inflammation responses and the initiation of wound healing responses. Here, we have summarized recent advances in understanding the in situ immune response to cutaneous leishmaniasis: i) in North Africa caused by Leishmania (L.) major, L. tropica, and L. infantum, which caused in most cases localized autoresolutives forms, and ii) in French Guiana resulting from L. guyanensis and L. braziliensis, two of the most prevalent strains that may induce potentially mucosal forms of the disease. This review will allow a better understanding of local immune parameters, including cellular and cytokines release in the lesion, that controls infection and/or protect against the pathogenesis in new world compared to old world CL.
Collapse
Affiliation(s)
- Nasreddine Saidi
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
- Laboratoire de Recherche, LR 16-IPT-06, Parasitoses Médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, Tunis, Tunisia
| | - Romain Blaizot
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
- Centre National de Référence des Leishmanioses, Laboratoire Associé, Hôpital Andrée Rosemon, Cayenne, French Guiana, France
- Service de Dermatologie, Hôpital de Cayenne, Cayenne, French Guiana, France
| | - Ghislaine Prévot
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
| | - Karim Aoun
- Laboratoire de Recherche, LR 16-IPT-06, Parasitoses Médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, Tunis, Tunisia
- Service de Parasitologie-Mycologie, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Magalie Demar
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
- Centre National de Référence des Leishmanioses, Laboratoire Associé, Hôpital Andrée Rosemon, Cayenne, French Guiana, France
- Service de Dermatologie, Hôpital de Cayenne, Cayenne, French Guiana, France
| | - Pierre André Cazenave
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
| | - Aida Bouratbine
- Laboratoire de Recherche, LR 16-IPT-06, Parasitoses Médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, Tunis, Tunisia
- Service de Parasitologie-Mycologie, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sylviane Pied
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
3
|
Soares MF, Costa SF, de Freitas JH, Rebech GT, Dos Santos MO, de Lima VMF. MiR-150 regulates the Leishmania infantum parasitic load and granzyme B levels in peripheral blood mononuclear cells of dogs with canine visceral leishmaniosis. Vet Parasitol 2023; 320:109958. [PMID: 37269731 DOI: 10.1016/j.vetpar.2023.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Leishmania infantum causes visceral leishmaniosis, a neglected tropical disease that can modulate the host immune response by altering the expression of small non-coding RNAs called microRNAs (miRNAs). Some miRNAs are differentially expressed in peripheral blood mononuclear cells (PBMCs) of dogs with canine visceral leishmaniosis (CanL), like the down-regulated miR-150. Even though miR-150 is negatively correlated with L. infantum parasitic load, it is unclear if miR-150 directly affects L. infantum parasitic load and (if so) how this miRNA would contribute to infection. Here, we isolated PBMCs from 14 naturally infected dogs (CanL group) and six healthy dogs (Control group) and treated them in vitro with miR-150 mimic or inhibitor. We measured L. infantum parasitic load using qPCR and compared treatments. We also measured miR-150 in silico predicted target protein levels (STAT1, TNF-α, HDAC8, and GZMB) using flow cytometry or enzyme-linked immunosorbent assays. Increasing miR-150 activity diminished L. infantum parasitic load in CanL PBMCs. We also found that inhibition of miR-150 reduced GZMB (granzyme B) levels. These findings demonstrate that miR-150 plays an important role in L. infantum infection in canine PBMCs, and they merit further studies aiming at drug development.
Collapse
Affiliation(s)
- Matheus Fujimura Soares
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Sidnei Ferro Costa
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Jéssica Henrique de Freitas
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Gabriela Torres Rebech
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Marilene Oliveira Dos Santos
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil.
| |
Collapse
|
4
|
Ismail N, Karmakar S, Bhattacharya P, Sepahpour T, Takeda K, Hamano S, Matlashewski G, Satoskar AR, Gannavaram S, Dey R, Nakhasi HL. Leishmania Major Centrin Gene-Deleted Parasites Generate Skin Resident Memory T-Cell Immune Response Analogous to Leishmanization. Front Immunol 2022; 13:864031. [PMID: 35419001 PMCID: PMC8996177 DOI: 10.3389/fimmu.2022.864031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease transmitted through the bite of a sand fly with no available vaccine for humans. Recently, we have developed a live attenuated Leishmania major centrin gene-deleted parasite strain (LmCen-/- ) that induced protection against homologous and heterologous challenges. We demonstrated that the protection is mediated by IFN (Interferon) γ-secreting CD4+ T-effector cells and multifunctional T cells, which is analogous to leishmanization. In addition, in a leishmanization model, skin tissue-resident memory T (TRM) cells were also shown to be crucial for host protection. In this study, we evaluated the generation and function of skin TRM cells following immunization with LmCen-/- parasites and compared those with leishmanization. We show that immunization with LmCen-/- generated skin CD4+ TRM cells and is supported by the induction of cytokines and chemokines essential for their production and survival similar to leishmanization. Following challenge with wild-type L. major, TRM cells specific to L. major were rapidly recruited and proliferated at the site of infection in the immunized mice. Furthermore, upon challenge, CD4+ TRM cells induce higher levels of IFNγ and Granzyme B in the immunized and leishmanized mice than in non-immunized mice. Taken together, our studies demonstrate that the genetically modified live attenuated LmCen -/- vaccine generates functional CD4+ skin TRM cells, similar to leishmanization, that may play a crucial role in host protection along with effector T cells as shown in our previous study.
Collapse
Affiliation(s)
- Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Telly Sepahpour
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Kazuyo Takeda
- Laboratory of Clinical Hematology, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abhay R Satoskar
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, United States
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| |
Collapse
|
5
|
Tang-Huau TL, Rosenke K, Meade-White K, Carmody A, Smith BJ, Bosio CM, Jarvis MA, Feldmann H. Mastomys natalensis Has a Cellular Immune Response Profile Distinct from Laboratory Mice. Viruses 2021; 13:v13050729. [PMID: 33922222 PMCID: PMC8145423 DOI: 10.3390/v13050729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
The multimammate mouse (Mastomys natalensis; M. natalensis) has been identified as a major reservoir for multiple human pathogens including Lassa virus (LASV), Leishmania spp., Yersinia spp., and Borrelia spp. Although M. natalensis are related to well-characterized mouse and rat species commonly used in laboratory models, there is an absence of established assays and reagents to study the host immune responses of M. natalensis. As a result, there are major limitations to our understanding of immunopathology and mechanisms of immunological pathogen control in this increasingly important rodent species. In the current study, a large panel of commercially available rodent reagents were screened to identify their cross-reactivity with M. natalensis. Using these reagents, ex vivo assays were established and optimized to evaluate lymphocyte proliferation and cytokine production by M. natalensis lymphocytes. In contrast to C57BL/6J mice, lymphocytes from M. natalensis were relatively non-responsive to common stimuli such as phytohaemagglutinin P and lipopolysaccharide. However, they readily responded to concanavalin A stimulation as indicated by proliferation and cytokine production. In summary, we describe lymphoproliferative and cytokine assays demonstrating that the cellular immune responses in M. natalensis to commonly used mitogens differ from a laboratory-bred mouse strain.
Collapse
Affiliation(s)
- Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
- Correspondence: (T.-L.T.-H.); (H.F.); Tel.: +1-4063757410 (H.F.)
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA;
| | - Brian J. Smith
- Rocky Mountain Veterinary Branch Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA;
| | - Catharine M. Bosio
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA;
| | - Michael A. Jarvis
- Faculty of Health: Medicine, Dentistry and Human Sciences, School of Biomedical Sciences, University of Plymouth, PL4 8AA, UK;
- The Vaccine Group (TVG) Ltd., 14 Research Way, Derriford Research Facility, Plymouth Science Park, Plymouth PL6 8BU, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, National Institute of Health, Hamilton, MT 59840, USA; (K.R.); (K.M.-W.)
- Correspondence: (T.-L.T.-H.); (H.F.); Tel.: +1-4063757410 (H.F.)
| |
Collapse
|
6
|
de Freitas E Silva R, von Stebut E. Unraveling the Role of Immune Checkpoints in Leishmaniasis. Front Immunol 2021; 12:620144. [PMID: 33776999 PMCID: PMC7990902 DOI: 10.3389/fimmu.2021.620144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis are Neglected Tropical Diseases affecting millions of people every year in at least 98 countries and is one of the major unsolved world health issues. Leishmania is a parasitic protozoa which are transmitted by infected sandflies and in the host they mainly infect macrophages. Immunity elicited against those parasites is complex and immune checkpoints play a key role regulating its function. T cell receptors and their respective ligands, such as PD-1, CTLA-4, CD200, CD40, OX40, HVEM, LIGHT, 2B4 and TIM-3 have been characterized for their role in regulating adaptive immunity against different pathogens. However, the exact role those receptors perform during Leishmania infections remains to be better determined. This article addresses the key role immune checkpoints play during Leishmania infections, the limiting factors and translational implications.
Collapse
Affiliation(s)
| | - Esther von Stebut
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Hamrouni S, Bras-Gonçalves R, Kidar A, Aoun K, Chamakh-Ayari R, Petitdidier E, Messaoudi Y, Pagniez J, Lemesre JL, Meddeb-Garnaoui A. Design of multi-epitope peptides containing HLA class-I and class-II-restricted epitopes derived from immunogenic Leishmania proteins, and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis subjects. PLoS Negl Trop Dis 2020; 14:e0008093. [PMID: 32176691 PMCID: PMC7098648 DOI: 10.1371/journal.pntd.0008093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/26/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Human leishmaniasis is a public health problem worldwide for which the development of a vaccine remains a challenge. T cell-mediated immune responses are crucial for protection. Peptide vaccines based on the identification of immunodominant T cell epitopes able to induce T cell specific immune responses constitute a promising strategy. Here, we report the identification of human leukocyte antigen class-I (HLA-I) and -II (HLA-II)-restricted multi-epitope peptides from Leishmania proteins that we have previously described as vaccine candidates. Promastigote Surface Antigen (PSA), LmlRAB (L. major large RAB GTPase) and Histone (H2B) were screened, in silico, for T cell epitopes. 6 HLA-I and 5 HLA-II-restricted multi-epitope peptides, able to bind to the most frequent HLA molecules, were designed and used as pools to stimulate PBMCs from individuals with healed cutaneous leishmaniasis. IFN-γ, IL-10, TNF-α and granzyme B (GrB) production was evaluated by ELISA/CBA. The frequency of IFN-γ-producing T cells was quantified by ELISpot. T cells secreting cytokines and memory T cells were analyzed by flow cytometry. 16 of 25 peptide pools containing HLA-I, HLA-II or HLA-I and -II peptides were able to induce specific and significant IFN-γ levels. No IL-10 was detected. 6 peptide pools were selected among those inducing the highest IFN-γ levels for further characterization. 3/6 pools were able to induce a significant increase of the percentages of CD4+IFN-γ+, CD8+IFN-γ+ and CD4+GrB+ T cells. The same pools also induced a significant increase of the percentages of bifunctional IFN-γ+/TNF-α+CD4+ and/or central memory T cells. We identified highly promiscuous HLA-I and -II restricted epitope combinations from H2B, PSA and LmlRAB proteins that stimulate both CD4+ and CD8+ T cell responses in recovered individuals. These multi-epitope peptides could be used as potential components of a polytope vaccine for human leishmaniasis. The control of leishmaniasis, a neglected tropical disease of public health importance, caused by protozoan parasites of the genus Leishmania, mainly relies on chemotherapy, which is highly toxic. Currently, there is no vaccine against human leishmaniasis. Peptide-based vaccines consisting of T cell epitopes identified within proteins of interest by epitope predictive algorithms are a promising strategy for vaccine development. Here, we identified multi-epitope peptides composed of HLA-I and -II-restricted epitopes, using immunoinformatic tools, within Leishmania proteins previously described as potential vaccine candidates. We showed that multi-epitope peptides used as pools were able to activate IFN-γ producing CD4+ as well as CD8+ T cells, both required for parasite elimination. In addition, granzyme B-producing CD4+ T cells, bifunctional CD4+ IFN-γ+/TNF-α+ and/or TNF-α+/IL-2+ T cells as well as CD4+ and CD8+ central memory T cells, all involved in Leishmania infection control, were significantly increased in response to multi-epitope peptide stimulation. As far as we know, no study has described the detection of both CD4+ and CD8+ T cell populations in response to stimulation by both HLA-I and II-restricted peptides in humans. The immunogenic HLA-I and -II-restricted multi-epitope peptides identified in this study could constitute potential vaccine candidates against human leishmaniasis.
Collapse
Affiliation(s)
- Sarra Hamrouni
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | | | | | - Karim Aoun
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
| | - Rym Chamakh-Ayari
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
| | - Elodie Petitdidier
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Yasmine Messaoudi
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Julie Pagniez
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Jean-Loup Lemesre
- UMR INTERTRYP, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Amel Meddeb-Garnaoui
- Laboratoire de Parasitologie Médicale, Biotechnologie et Biomolécules, Institut Pasteur de Tunis, Tunis, Tunisie
- * E-mail:
| |
Collapse
|