1
|
Chowdhury D, Sharma M, Jahng JWS, Singh U. Extracellular Vesicles Derived From Entamoeba histolytica Have an Immunomodulatory Effect on THP-1 Macrophages. J Parasitol Res 2024; 2024:7325606. [PMID: 39502090 PMCID: PMC11537751 DOI: 10.1155/2024/7325606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Recent studies have shown that extracellular vesicles (EVs) secreted by various parasites are capable of modulating the host's innate immune responses, such as by altering macrophage (Mϕ) phenotypes and functions. Studies have shown that Mϕ promote early host responses to amoebic infection by releasing proinflammatory cytokines that are crucial to combating amoebiasis. Here, we are reporting for the first time the effect of EVs released by Entamoeba histolytica (EhEVs) on human THP-1 differentiated Mϕ (THP-1 Mϕ). We show that the EhEVs are internalized by THP-1 Mϕ which leads to differential regulation of various cytokines associated with both M1 and M2 Mϕ. We also saw that EhEV treatment thwarted Type 2 immune-response-related transcriptome pSTAT6 in the THP-1 Mϕ. Furthermore, EhEVs stimulated Mϕ to reduce their energy demand by suppressing oxidative phosphorylation (OXPHOS) and adenosine triphosphate (ATP) production. Hence, the human parasite E. histolytica-derived EVs are capable of eliciting an immune response from Mϕ that may contribute to overall infection status.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Manu Sharma
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James W. S. Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Upinder Singh
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
2
|
Palomino-Cano C, Moreno E, Irache JM, Espuelas S. Targeting and activation of macrophages in leishmaniasis. A focus on iron oxide nanoparticles. Front Immunol 2024; 15:1437430. [PMID: 39211053 PMCID: PMC11357945 DOI: 10.3389/fimmu.2024.1437430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages play a pivotal role as host cells for Leishmania parasites, displaying a notable functional adaptability ranging from the proinflammatory, leishmanicidal M1 phenotype to the anti-inflammatory, parasite-permissive M2 phenotype. While macrophages can potentially eradicate amastigotes through appropriate activation, Leishmania employs diverse strategies to thwart this activation and redirect macrophages toward an M2 phenotype, facilitating its survival and replication. Additionally, a competition for iron between the two entities exits, as iron is vital for both and is also implicated in macrophage defensive oxidative mechanisms and modulation of their phenotype. This review explores the intricate interplay between macrophages, Leishmania, and iron. We focus the attention on the potential of iron oxide nanoparticles (IONPs) as a sort of immunotherapy to treat some leishmaniasis forms by reprogramming Leishmania-permissive M2 macrophages into antimicrobial M1 macrophages. Through the specific targeting of iron in macrophages, the use of IONPs emerges as a promising strategy to finely tune the parasite-host interaction, endowing macrophages with an augmented antimicrobial arsenal capable of efficiently eliminating these intrusive microbes.
Collapse
Affiliation(s)
- Carmen Palomino-Cano
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Juan M. Irache
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Socorro Espuelas
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
3
|
Martins TMDM, Ferrari FR, de Queiroz AA, Dalcin LDL, França DCH, Honório-França AC, França EL, Fagundes-Triches DLG. The Role of Melatonin in the Inflammatory Process in Patients with Hyperglycemia and Leishmania Infection. Biomolecules 2024; 14:950. [PMID: 39199338 PMCID: PMC11352828 DOI: 10.3390/biom14080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder that causes chronic high blood sugar levels, and diabetic patients are more susceptible to infections. American cutaneous leishmaniasis is an infectious disease caused by a parasite that affects the skin and mucous membranes, leading to one or multiple ulcerative lesions. Chronic inflammation and functional changes in various organs and systems, including the immune system, are the primary causes of both diseases. Melatonin, an essential immunomodulatory, antioxidant, and neuroprotective agent, can benefit many immunological processes and infectious diseases, including leishmaniasis. Although, limited reports are available on diabetic patients with leishmaniasis. The literature suggests that melatonin may play a promising role in inflammatory disorders. This study was designed to assess melatonin levels and inflammatory mediators in diabetic patients affected by leishmaniasis. Blood samples from 25 individuals were analyzed and divided into four groups: a control group (without any diseases), a Leishmania-positive group, patients with type 2 diabetes mellitus, and patients with a combination of both diseases. This study measured the serum levels of melatonin through ELISA, while IL-4 and TNF-α were measured using flow cytometry, and C-reactive protein was measured through turbidimetry. This study found that patients with leishmaniasis significantly increased TNF-α and decreased melatonin levels. However, the group of diabetic patients with leishmaniasis showed higher melatonin levels than the control group. These observations suggest that TNF-α may influence melatonin production in patients with American cutaneous leishmaniasis, potentially contributing to the inflammatory characteristics of both diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78605-091, MT, Brazil; (T.M.d.M.M.); (F.R.F.); (A.A.d.Q.); (L.D.L.D.); (D.C.H.F.); (D.L.G.F.-T.)
| | | |
Collapse
|
4
|
Ribeiro Franco PI, do Carmo Neto JR, Guerra RO, Ferreira da Silva PE, Braga YLL, Nunes Celes MR, de Menezes LB, Miguel MP, Machado JR. Melatonin: A look at protozoal and helminths. Biochimie 2024; 219:96-109. [PMID: 37541568 DOI: 10.1016/j.biochi.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Melatonin is a pleiotropic neurohormone found in different animal, plant, and microorganism species. It is a product resulting from tryptophan metabolism in the pineal gland and is widely known for its ability to synchronize the circadian rhythm to antitumor functions in different types of cancers. The molecular mechanisms responsible for its immunomodulatory, antioxidant and cytoprotective effects involve binding to high-affinity G protein-coupled receptors and interactions with intracellular targets that modulate signal transduction pathways. In vitro and in vivo studies have reported the therapeutic potential of melatonin in different infectious and parasitic diseases. In this review, the protective and pathophysiological roles of melatonin in fighting protozoan and helminth infections and the possible mechanisms involved against these stressors will be discussed.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Departamento de Biologia Celular, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Priscilla Elias Ferreira da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Yarlla Loyane Lira Braga
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Liliana Borges de Menezes
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marina Pacheco Miguel
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
5
|
Aljedaie MM, Alam P. In silico identification of human microRNAs pointing centrin genes in Leishmania donovani: Considering the RNAi-mediated gene control. Front Genet 2024; 14:1329339. [PMID: 38390455 PMCID: PMC10883313 DOI: 10.3389/fgene.2023.1329339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/12/2023] [Indexed: 02/24/2024] Open
Abstract
Leishmaniasis, a parasitic disease caused by different species of the protozoa parasite Leishmania, is a neglected tropical human disease that is endemic in about a hundred countries worldwide. According to the World Health Organization (WHO), the annual incidence of cutaneous leishmaniasis (CL) is estimated to be 0.7-1.2 million cases globally, whereas the annual incidence of visceral leishmaniasis is estimated to be 0.2-0.4 million cases. In many eukaryotic organisms, including human beings and protozoan parasites, centrin genes encode proteins that play essential roles within the centrosome or basal body. Human microRNAs (miRNAs) have been linked to several infectious and non-infectious diseases associated with pathogen-host interactions, and they play the emphatic roles as gene expression regulators. In this study, we used the MirTarget bioinformatics tool, which is a machine learning-based approach implemented in miRDB, to predict the target of human miRNAs in Leishmania donovani centrin genes. For cross-validation, we utilized additional prediction algorithms, namely, RNA22 and RNAhybrid, targeting all five centrin isotypes. The centrin-3 (LDBPK_342160) and putative centrin-5 (NC_018236.1) genes in L. donovani were targeted by eight and twelve human miRNAs, respectively, among 2,635 known miRNAs (miRBase). hsa-miR-5193 consistently targeted both genes. Using TargetScan, TarBase, miRecords, and miRTarBase, we identified miRNA targets and off-targets in human homologs of centrin, inflammation, and immune-responsive genes. Significant targets were screened based on GO terminologies and KEGG pathway-enrichment analysis (Log10 p-value >0.0001). In silico tools that predict the biological roles of human miRNAs as primary gene regulators in pathogen-host interactions help unravel the regulatory patterns of these miRNAs, particularly in the early stages of inflammatory responses. It is also noted that these miRNAs played an important role in the late phase of adaptive immune response, inclusively their impacts on the immune system's response to L. donovani.
Collapse
Affiliation(s)
- Manei M Aljedaie
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
6
|
Kumari A, Syeda S, Rawat K, Kumari R, Shrivastava A. Melatonin modulates L-arginine metabolism in tumor-associated macrophages by targeting arginase 1 in lymphoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1163-1179. [PMID: 37639022 DOI: 10.1007/s00210-023-02676-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
L-Arginine metabolism plays a crucial role in determining the M1/M2 polarization of macrophages. The M1 macrophages express inducible nitric oxide synthase (iNOS), while the M2 macrophages express arginase 1 and metabolize arginine into nitric oxide and urea, respectively. The tumor microenvironment promotes M2 macrophage polarization and consequently switches the metabolic fate of arginine from nitric oxide towards urea production. Importantly, infiltration of M2 macrophages or tumor-associated macrophages (TAMs) has been correlated with poor prognosis of various cancer types. Melatonin is well reported to have antitumor and immunomodulatory properties. However, whether and how it impacts the polarization of TAMs has not been elucidated. Considering the crucial role of arginine metabolism in macrophage polarization, we were interested to know the fate of L-arginine in TAMs and whether it can be reinstated by melatonin or not. We used a murine model of Dalton's lymphoma and established an in vitro model of TAMs. For TAMs, we used the ascitic fluid of tumor-bearing hosts to activate the macrophages in the presence and absence of lipopolysaccharide (LPS). In these groups, L-arginine metabolism was evaluated, and then the effect of melatonin was assessed in these groups, wherein the metabolic fate of arginine as well as the expression of iNOS and arginase 1 were checked. Furthermore, in the in vivo system of the tumor-bearing host, the effect of melatonin was assessed. The in vitro model of TAMs showed a Th2 cytokine profile, reduced phagocytic activity, and increased wound healing ability. Upon investigating arginine metabolism, we observed high urea levels with increased activity and expression of arginase 1 in TAMs. Furthermore, we observed reduced levels of LPS-induced nitric oxide in TAMs; however, their iNOS expression was comparable. With melatonin treatment, urea level decreased significantly, while the reduction in nitric oxide level was not as significant as observed in its absence in TAMs. Also, melatonin significantly reduced arginase activity and expression at the transcriptional and translational levels, while iNOS expression was affected only at the translational level. This effect was further investigated in the in vivo system, wherein melatonin treatment reversed the metabolic fate of arginine, from urea towards nitric oxide, within the tumor microenvironment. This effect was further correlated with pro-apoptotic tumor cell death in the in vivo system. Our results reinforced the immunomodulatory role of melatonin and offered a strong prospect for activating the anti-tumor immune response in cancer conditions.
Collapse
Affiliation(s)
- Anupma Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Kavita Rawat
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Rani Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
7
|
Fernandes JCR, Muxel SM, López-Gonzálvez MA, Barbas C, Floeter-Winter LM. Early Leishmania infectivity depends on miR-372/373/520d family-mediated reprogramming of polyamines metabolism in THP-1-derived macrophages. Sci Rep 2024; 14:996. [PMID: 38200138 PMCID: PMC10781704 DOI: 10.1038/s41598-024-51511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
Leishmania amazonensis is a protozoan that primarily causes cutaneous leishmaniasis in humans. The parasite relies on the amino acid arginine to survive within macrophages and establish infection, since it is a precursor for producing polyamines. On the other hand, arginine can be metabolized via nitric oxide synthase 2 (NOS2) to produce the microbicidal molecule nitric oxide (NO), although this mechanism does not apply to human macrophages since they lack NOS2 activity. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at posttranscriptional levels. Our previous work showed that mmu-miR-294 targets Nos2 favoring Leishmania survival in murine macrophages. Here, we demonstrate that human macrophages upregulate the hsa-miR-372, hsa-miR-373, and hsa-miR-520d, which present the same seed sequence as the murine mmu-miR-294. Inhibition of the miR-372 impaired Leishmania survival in THP-1 macrophages and the effect was further enhanced with combinatorial inhibition of the miR-372/373/520d family, pointing to a cooperative mechanism. However, this reduction in survival is not caused by miRNA-targeting of NOS2, since the seed-binding motif found in mice is not conserved in the human 3'UTR. Instead, we showed the miR-372/373/520d family targeting the macrophage's main arginine transporter SLC7A2/CAT2 during infection. Arginine-related metabolism was markedly altered in response to infection and miRNA inhibition, as measured by Mass Spectrometry-based metabolomics. We found that Leishmania infection upregulates polyamines production in macrophages, as opposed to simultaneous inhibition of miR-372/373/520d, which decreased putrescine and spermine levels compared to the negative control. Overall, our study demonstrates miRNA-dependent modulation of polyamines production, establishing permissive conditions for intracellular parasite survival. Although the effector mechanisms causing host cell immunometabolic adaptations involve various parasite and host-derived signals, our findings suggest that the miR-372/373/520d family may represent a potential target for the development of new therapeutic strategies against cutaneous leishmaniasis.
Collapse
Affiliation(s)
- J C R Fernandes
- Instituto de Medicina Tropical da Faculdade de Medicina, Universidade de São Paulo (IMT-FMUSP), São Paulo, Brazil
- Instituto de Biociências, Universidade de São Paulo (IB-USP), São Paulo, Brazil
| | - S M Muxel
- Instituto de Ciências Biomédicas, Universidade de São Paulo (ICB-USP), São Paulo, Brazil
| | - M A López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - C Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - L M Floeter-Winter
- Instituto de Biociências, Universidade de São Paulo (IB-USP), São Paulo, Brazil.
| |
Collapse
|
8
|
Hamidi F, Mohammadi-Yeganeh S, Haji Molla Hoseini M, Tabaei SJS, Taghipour N, Koochaki A, Hosseini V, Haghighi A. TGF-β Targeted by miR-27a Modulates Anti-Parasite Responses of Immune System. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:390-399. [PMID: 37886255 PMCID: PMC10597889 DOI: 10.18502/ijpa.v18i3.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/19/2023] [Indexed: 10/28/2023]
Abstract
Background Immune cells and their secreted cytokines are known as the first barrier against pathogens. Leishmania major as an intracellular protozoan produces anti-inflammatory cytokines that lead to proliferation and survival of the parasite in the macrophages. miRNAs are small non-coding RNA molecules that regulate mRNAs expression. We aimed to investigate the relationship between the expression of TGF-β and a bioinformatically candidate miRNA, in leishmaniasis as a model of TGF-β overexpression. Methods The miRNAs that target TGF-β -3'UTR were predicted and scored by bioinformatic tools. After cloning of TGF-β-3'UTR in psi-CHECK ™- 2 vector, targeting validation was confirmed using Luciferase assay. After miRNA mimic transfection, the expression of miR-27a, TGF-β, as well as Nitric Oxide concentration was evaluated. Results miR-27a received the highest score for targeting TGF-β in bioinformatic predictions. Luciferase assay confirmed that miR-27a is targeting TGF-β-3'UTR, since miR-27a transfection decreased the luciferase activity. After miRNA transfection, TGF-β expression and Nitric Oxide concentration were declined in L. major infected macrophages. Conclusion Bioinformatic prediction, luciferase assay, and miRNA transfection results showed that miR-27a targets TGF-β. Since miRNA and cytokine-base therapies are developing in infectious diseases, finding and validating miRNAs targeting regulatory cytokines can be a novel strategy for controlling and treating leishmaniasis.
Collapse
Affiliation(s)
- Faezeh Hamidi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahedeh Hosseini
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Haghighi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Mahor H, Mukherjee A, Sarkar A, Saha B. Anti-leishmanial therapy: Caught between drugs and immune targets. Exp Parasitol 2023; 245:108441. [PMID: 36572088 DOI: 10.1016/j.exppara.2022.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/12/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is an enigmatic disease that has very restricted options for chemotherapy and none for prophylaxis. As a result, deriving therapeutic principles for curing the disease has been a major objective in Leishmania research for a long time. Leishmania is a protozoan parasite that lives within macrophages by subverting or switching cell signaling to the pathways that ensure its intracellular survival. Therefore, three groups of molecules aimed at blocking or eliminating the parasite, at least, in principle, include blockers of macrophage receptor- Leishmania ligand interaction, macrophage-activating small molecules, peptides and cytokines, and signaling inhibitors or activators. Macrophages also act as an antigen-presenting cell, presenting antigen to the antigen-specific T cells to induce activation and differentiation of the effector T cell subsets that either execute or suppress anti-leishmanial functions. Three groups of therapeutic principles targeting this sphere of Leishmania-macrophage interaction include antibodies that block pro-leishmanial response of T cells, ligands that activate anti-leishmanial T cells and the antigens for therapeutic vaccines. Besides these, prophylactic vaccines have been in clinical trials but none has succeeded so far. Herein, we have attempted to encompass all these principles and compose a comprehensive review to analyze the feasibility and adoptability of different therapeutics for leishmaniasis.
Collapse
Affiliation(s)
- Hima Mahor
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Arka Mukherjee
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India; Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
10
|
Polonio CM, da Silva P, Russo FB, Hyppolito BRN, Zanluqui NG, Benazzato C, Beltrão-Braga PCB, Muxel SM, Peron JPS. microRNAs Control Antiviral Immune Response, Cell Death and Chemotaxis Pathways in Human Neuronal Precursor Cells (NPCs) during Zika Virus Infection. Int J Mol Sci 2022; 23:ijms231810282. [PMID: 36142200 PMCID: PMC9499039 DOI: 10.3390/ijms231810282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Viral infections have always been a serious burden to public health, increasing morbidity and mortality rates worldwide. Zika virus (ZIKV) is a flavivirus transmitted by the Aedes aegypti vector and the causative agent of severe fetal neuropathogenesis and microcephaly. The virus crosses the placenta and reaches the fetal brain, mainly causing the death of neuronal precursor cells (NPCs), glial inflammation, and subsequent tissue damage. Genetic differences, mainly related to the antiviral immune response and cell death pathways greatly influence the susceptibility to infection. These components are modulated by many factors, including microRNAs (miRNAs). MiRNAs are small noncoding RNAs that regulate post-transcriptionally the overall gene expression, including genes for the neurodevelopment and the formation of neural circuits. In this context, we investigated the pathways and target genes of miRNAs modulated in NPCs infected with ZIKV. We observed downregulation of miR-302b, miR-302c and miR-194, whereas miR-30c was upregulated in ZIKV infected human NPCs in vitro. The analysis of a public dataset of ZIKV-infected human NPCs evidenced 262 upregulated and 3 downregulated genes, of which 142 were the target of the aforementioned miRNAs. Further, we confirmed a correlation between miRNA and target genes affecting pathways related to antiviral immune response, cell death and immune cells chemotaxis, all of which could contribute to the establishment of microcephaly and brain lesions. Here, we suggest that miRNAs target gene expression in infected NPCs, directly contributing to the pathogenesis of fetal microcephaly.
Collapse
Affiliation(s)
- Carolina M. Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Patrick da Silva
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Fabiele B. Russo
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Brendo R. N. Hyppolito
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nagela G. Zanluqui
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cecília Benazzato
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Patrícia C. B. Beltrão-Braga
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Sandra M. Muxel
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| | - Jean Pierre S. Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| |
Collapse
|
11
|
Jafarzadeh A, Nemati M, Aminizadeh N, Bodhale N, Sarkar A, Jafarzadeh S, Sharifi I, Saha B. Bidirectional cytokine-microRNA control: A novel immunoregulatory framework in leishmaniasis. PLoS Pathog 2022; 18:e1010696. [PMID: 35925884 PMCID: PMC9351994 DOI: 10.1371/journal.ppat.1010696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
As effector innate immune cells and as a host to the protozoan parasite Leishmania, macrophages play a dual role in antileishmanial immunoregulation. The 2 key players in this immunoregulation are the macrophage-expressed microRNAs (miRNAs) and the macrophage-secreted cytokines. miRNAs, as small noncoding RNAs, play vital roles in macrophage functions including cytokines and chemokines production. In the reverse direction, Leishmania-regulated cytokines alter miRNAs expression to regulate the antileishmanial functions of macrophages. The miRNA patterns vary with the time and stage of infection. The cytokine-regulated macrophage miRNAs not only help parasite elimination or persistence but also regulate cytokine production from macrophages. Based on these observations, we propose a novel immunoregulatory framework as a scientific rationale for antileishmanial therapy.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- * E-mail: (AJ); (BS)
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Najmeh Aminizadeh
- Department of Histology, School of Medicine, Islamic Azad University Branch of Kerman, Kerman
| | | | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bhaskar Saha
- National Centre For Cell Science, Pune, India
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India
- * E-mail: (AJ); (BS)
| |
Collapse
|
12
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
13
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
14
|
Gierlikowski W, Gierlikowska B. MicroRNAs as Regulators of Phagocytosis. Cells 2022; 11:cells11091380. [PMID: 35563685 PMCID: PMC9106007 DOI: 10.3390/cells11091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and thus act as important regulators of cellular phenotype and function. As their expression may be dysregulated in numerous diseases, they are of interest as biomarkers. What is more, attempts of modulation of some microRNAs for therapeutic reasons have been undertaken. In this review, we discuss the current knowledge regarding the influence of microRNAs on phagocytosis, which may be exerted on different levels, such as through macrophages polarization, phagosome maturation, reactive oxygen species production and cytokines synthesis. This phenomenon plays an important role in numerous pathological conditions.
Collapse
Affiliation(s)
- Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
- Correspondence:
| | - Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Żwirki i Wigury 63a, 02-091 Warsaw, Poland;
| |
Collapse
|
15
|
Jia H, Sun W, Li X, Xu W. Melatonin promotes apoptosis of thyroid cancer cells via regulating the signaling of microRNA-21 (miR-21) and microRNA-30e (miR-30e). Bioengineered 2022; 13:9588-9601. [PMID: 35412442 PMCID: PMC9161983 DOI: 10.1080/21655979.2022.2054206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Melatonin (MEL) is an effective therapeutic choice for thyroid cancer treatment. In this study, we aimed to explored the potential effect of MEL upon the drug sensitivity of cancer cells and the according underlying mechanisms. Thyroid cancer mice were established as a control group and a MEL group to observe the in vivo effect of MEL. Tumor size and weight in nude mice were detected to evaluate the effect of MEL on tumor growth. Immunohistochemistry assay (IHC) and Western blot were performed to analyze the expression of PTEN protein in tumor cells or tumor cells. After 32 days of cancer cell implantation, MEL was found to significantly repress tumor growth in nude mice approximately by half. Moreover, MEL also suppressed tumor cell proliferation, while apparently activating the apoptosis of tumor cells. In addition, hydrogen sulfide (H2S) production was obviously elevated by MEL treatment. Mechanistically, the expression of phosphatase and tensin homolog (PTEN) was remarkably activated by MEL treatment in tumor tissues of implanted TPC-1 and BCPaP cells in nude mice. Meanwhile, MEL inhibited the expression of miR-21 and miR-30e and promoted the expression of lncRNA-cancer susceptibility candidate 7 (CASC7). Both miR-21 and miR-30e could suppress PTEN expression, while miR-21 could also inhibit the expression of lncRNA-CASC7. In conclusion, the results demonstrated that the MEL administration could downregulate the expression of miR-21 and miR-30e, which resulted in increased expression of PTEN, a pro-apoptotic tumor suppressor, to promote the apoptosis of thyroid cancer cells.
Collapse
Affiliation(s)
- Hao Jia
- Thyroid & Vascular Surgery Department, Zhumadian Central Hospital, Zhumadian, Henan Province, China
| | - Wei Sun
- Thyroid & Vascular Surgery Department, Zhumadian Central Hospital, Zhumadian, Henan Province, China
| | - Xiangbo Li
- Thyroid & Vascular Surgery Department, Zhumadian Central Hospital, Zhumadian, Henan Province, China
| | - Wenhao Xu
- Thyroid & Vascular Surgery Department, Zhumadian Central Hospital, Zhumadian, Henan Province, China
| |
Collapse
|
16
|
Ramos-Sanchez EM, Reis LC, Souza MDA, Muxel SM, Santos KR, Lagos D, Pereira VRA, de Brito MEF, Kaye PM, Floeter-Winter LM, Goto H. miR-548d-3p Is Up-Regulated in Human Visceral Leishmaniasis and Suppresses Parasite Growth in Macrophages. Front Cell Infect Microbiol 2022; 12:826039. [PMID: 35265535 PMCID: PMC8900537 DOI: 10.3389/fcimb.2022.826039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Visceral leishmaniasis caused by Leishmania (Leishmania) infantum in Latin America progress with hepatosplenomegaly, pancytopenia, hypergammaglobulinemia, and weight loss and maybe lethal mainly in untreated cases. miRNAs are important regulators of immune and inflammatory gene expression, but their mechanisms of action and their relationship to pathogenesis in leishmaniasis are not well understood. In the present study, we sought to quantify changes in miRNAs associated with immune and inflammatory pathways using the L. (L.) infantum promastigote infected- human monocytic THP-1 cell model and plasma from patients with visceral leishmaniasis. We identified differentially expressed miRNAs in infected THP-1 cells compared with non-infected cells using qPCR arrays. These miRNAs were submitted to in silico analysis, revealing targets within functional pathways associated with TGF-β, chemokines, glucose metabolism, inflammation, apoptosis, and cell signaling. In parallel, we identified differentially expressed miRNAs in active visceral leishmaniasis patient plasma compared with endemic healthy controls. In silico analysis of these data indicated different predicted targets within the TGF-β, TLR4, IGF-I, chemokine, and HIF1α pathways. Only a small number of miRNAs were commonly identified in these two datasets, notably with miR-548d-3p being up-regulated in both conditions. To evaluate the potential biological role of miR-548d-3p, we transiently transfected a miR-548d-3p inhibitor into L. (L.) infantum infected-THP-1 cells, finding that inhibition of miR-548d-3p enhanced parasite growth, likely mediated through reduced levels of MCP-1/CCL2 and nitric oxide production. Further work will be required to determine how miR-548d-3p plays a role in vivo and whether it serves as a potential biomarker of progressive leishmaniasis.
Collapse
Affiliation(s)
- Eduardo Milton Ramos-Sanchez
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
- Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru
- Graduate Program in Animal Science, Agrarian Sciences Center (CCA), Federal University of Paraiba (UFPB), Areia, Brazil
| | - Luiza Campos Reis
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | - Marina de Assis Souza
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | - Sandra Márcia Muxel
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Kamila Reis Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Dimitris Lagos
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | | | | | - Paul Martin Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | | | - Hiro Goto
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
miR-294 and miR-410 Negatively Regulate Tnfa, Arginine Transporter Cat1/2, and Nos2 mRNAs in Murine Macrophages Infected with Leishmania amazonensis. Noncoding RNA 2022; 8:ncrna8010017. [PMID: 35202090 PMCID: PMC8875753 DOI: 10.3390/ncrna8010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate cellular processes by the post-transcriptional regulation of gene expression, including immune responses. The shift in the miRNA profiling of murine macrophages infected with Leishmania amazonensis can change inflammatory response and metabolism. L-arginine availability and its conversion into nitric oxide by nitric oxide synthase 2 (Nos2) or ornithine (a polyamine precursor) by arginase 1/2 regulate macrophage microbicidal activity. This work aimed to evaluate the function of miR-294, miR-301b, and miR-410 during early C57BL/6 bone marrow-derived macrophage infection with L. amazonensis. We observed an upregulation of miR-294 and miR-410 at 4 h of infection, but the levels of miR-301b were not modified. This profile was not observed in LPS-stimulated macrophages. We also observed decreased levels of those miRNAs target genes during infection, such as Cationic amino acid transporters 1 (Cat1/Slc7a1), Cat2/Slc7a22 and Nos2; genes were upregulated in LPS stimuli. The functional inhibition of miR-294 led to the upregulation of Cat2 and Tnfa and the dysregulation of Nos2, while miR-410 increased Cat1 levels. miR-294 inhibition reduced the number of amastigotes per infected macrophage, showing a reduction in the parasite growth inside the macrophage. These data identified miR-294 and miR-410 biomarkers for a potential regulator in the inflammatory profiles of microphages mediated by L. amazonensis infection. This research provides novel insights into immune dysfunction contributing to infection outcomes and suggests the use of the antagomiRs/inhibitors of miR-294 and miR-410 as new therapeutic strategies to modulate inflammation and to decrease parasitism.
Collapse
|
18
|
Chemokines in Leishmaniasis: Map of cell movements highlights the landscape of infection and pathogenesis. Cytokine 2021; 147:155339. [DOI: 10.1016/j.cyto.2020.155339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
|
19
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Barazesh A, Karimazar M, Nguewa P, Carrera Silva EA. Highlighting the interplay of microRNAs from Leishmania parasites and infected-host cells. Parasitology 2021; 148:1434-1446. [PMID: 34218829 PMCID: PMC11010138 DOI: 10.1017/s0031182021001177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023]
Abstract
Leishmania parasites, the causative agents of leishmaniasis, are protozoan parasites with the ability to modify the signalling pathway and cell responses of their infected host cells. These parasite strategies alter the host cell environment and conditions favouring their replication, survival and pathogenesis. Since microRNAs (miRNAs) are able to post-transcriptionally regulate gene expression processes, these biomolecules can exert critical roles in controlling Leishmania-host cell interplay. Therefore, the identification of relevant miRNAs differentially expressed in Leishmania parasites as well as in infected cells, which affect the host fitness, could be critical to understand the infection biology, pathogenicity and immune response against these parasites. Accordingly, the current review aims to address the differentially expressed miRNAs in both, the parasite and infected host cells and how these biomolecules change cell signalling and host immune responses during infection. A deep understanding of these processes could provide novel guidelines and therapeutic strategies for managing and treating leishmaniasis.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Barazesh
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008Pamplona, Spain
| | | |
Collapse
|
20
|
Souza MDA, Ramos-Sanchez EM, Muxel SM, Lagos D, Reis LC, Pereira VRA, Brito MEF, Zampieri RA, Kaye PM, Floeter-Winter LM, Goto H. miR-548d-3p Alters Parasite Growth and Inflammation in Leishmania (Viannia) braziliensis Infection. Front Cell Infect Microbiol 2021; 11:687647. [PMID: 34178725 PMCID: PMC8224172 DOI: 10.3389/fcimb.2021.687647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
American Tegumentary Leishmaniasis (ATL) is an endemic disease in Latin America, mainly caused in Brazil by Leishmania (Viannia) braziliensis. Clinical manifestations vary from mild, localized cutaneous leishmaniasis (CL) to aggressive mucosal disease. The host immune response strongly determines the outcome of infection and pattern of disease. However, the pathogenesis of ATL is not well understood, and host microRNAs (miRNAs) may have a role in this context. In the present study, miRNAs were quantified using qPCR arrays in human monocytic THP-1 cells infected in vitro with L. (V.) braziliensis promastigotes and in plasma from patients with ATL, focusing on inflammatory response-specific miRNAs. Patients with active or self-healed cutaneous leishmaniasis patients, with confirmed parasitological or immunological diagnosis, were compared with healthy controls. Computational target prediction of significantly-altered miRNAs from in vitro L. (V.) braziliensis-infected THP-1 cells revealed predicted targets involved in diverse pathways, including chemokine signaling, inflammatory, cellular proliferation, and tissue repair processes. In plasma, we observed distinct miRNA expression in patients with self-healed and active lesions compared with healthy controls. Some miRNAs dysregulated during THP-1 in vitro infection were also found in plasma from self-healed patients, including miR-548d-3p, which was upregulated in infected THP-1 cells and in plasma from self-healed patients. As miR-548d-3p was predicted to target the chemokine pathway and inflammation is a central to the pathogenesis of ATL, we evaluated the effect of transient transfection of a miR-548d-3p inhibitor on L. (V.) braziliensis infected-THP-1 cells. Inhibition of miR-548d-3p reduced parasite growth early after infection and increased production of MCP1/CCL2, RANTES/CCL5, and IP10/CXCL10. In plasma of self-healed patients, MCP1/CCL2, RANTES/CCL5, and IL-8/CXCL8 concentrations were significantly decreased and MIG/CXCL9 and IP-10/CXCL10 increased compared to patients with active disease. These data suggest that by modulating miRNAs, L. (V.) braziliensis may interfere with chemokine production and hence the inflammatory processes underpinning lesion resolution. Our data suggest miR-548d-3p could be further evaluated as a prognostic marker for ATL and/or as a host-directed therapeutic target.
Collapse
Affiliation(s)
- Marina de Assis Souza
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | - Eduardo Milton Ramos-Sanchez
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil.,Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru
| | | | - Dimitris Lagos
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Luiza Campos Reis
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | | | | | | | - Paul Martin Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | | | - Hiro Goto
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil.,Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Mukhopadhyay U, Banerjee A, Chawla-Sarkar M, Mukherjee A. Rotavirus Induces Epithelial-Mesenchymal Transition Markers by Transcriptional Suppression of miRNA-29b. Front Microbiol 2021; 12:631183. [PMID: 33679655 PMCID: PMC7930342 DOI: 10.3389/fmicb.2021.631183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/29/2023] Open
Abstract
Acute gastroenteritis (AGE) is a serious global health problem and has been known to cause millions of infant deaths every year. Rotavirus (RV), a member of the Reoviridae family, still majorly accounts for the AGE in children below 5 years of age in India and worldwide. The involvement of miRNAs in the pathogenesis of RV has been suggested to be of the proviral as well as the anti-viral nature. miRNAs that promote the RV pathogenesis are capable of targeting the cellular components to evade the host anti-viral strategies. On the other hand, miRNAs with anti-rotaviral properties are themselves incapacitated during the progression of the infection. The exploitation of the epithelial-mesenchymal transition (EMT) as a pro-rotaviral strategy has already been identified. Thus, miRNAs that proficiently target the intermediates of the EMT pathway may serve as anti-viral counterparts in the RV-host interactions. The role of microRNA-29b (miR-29b) in the majority of human cancers has been well demonstrated, but its significance in viral infections is yet to be elaborated. In this study, we have assessed the role of miR-29b in RV-induced EMT and RV replication. Our study on miR-29b provides evidence for the recruitment of RV non-structural protein NSP1 to control the trans-repression of miR-29b in a p53-dependent manner. The trans-repression of miR-29b modulates the EMT pathway by targeting tripartite motif-containing protein 44 (TRIM44) and cyclin E1 (CCNE1). SLUG and SNAIL transcription repressors (downstream of TRIM44 and CCNE1) regulate the expression of E-cadherin, an important marker of the EMT. Also, it is established that ectopic expression of miR-29b not only constrains the EMT pathway but also restricts RV replication. Therefore, miR-29b repression is a crucial event in the RV pathogenesis. Ectopic expression of miR-29b displays potential anti-viral properties against RV propagation.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Molecular Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| | - Mamta Chawla-Sarkar
- Division of Molecular Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Mukherjee
- Division of Molecular Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
22
|
Inhibition of anti-inflammatory cytokines, IL-10 and TGF-β, in Leishmania major infected macrophage by miRNAs: A new therapeutic modality against leishmaniasis. Microb Pathog 2021; 153:104777. [PMID: 33592260 DOI: 10.1016/j.micpath.2021.104777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/03/2023]
Abstract
Leishmania major (L. major) applies several mechanisms to escape the immune system. Interleukin-10 (IL-10) and Transforming Growth Factor (TGF-β) downregulate nitric oxide synthase (iNOS) leading to the survival of Leishmania within macrophages. The miRNAs are known as the modulators of the immune system. The present study was conducted to assess the effect of synthetic miR-340 mimic on cytokines (IL-10 and TGF-β1) involved in L. major infected macrophages. The miRNAs targeting of IL-10 and TGF-β1 was predicted using bioinformatic tools. Relative expression of predicted miRNA, IL-10, and TGF-β1 was measured by RT-qPCR before and after synthetic miRNA mimic transfection. Concentration of IL-10 and TGF-β was measured in posttreatment condition using ELISA method. Also, infectivity was assessed by Giemsa staining. mmu-miR-340 received the highest score for targeting cytokines. The expression of miR-340 was downregulated in L. major infected macrophages. By contrast, expression of IL-10 and TGF-β1 was upregulated in infected macrophages. After miRNA transfection, TGF-β1 and IL-10 were both downregulated and interestingly, the combination of miR-340 and miR-27a had a stronger effect on the downregulation of target genes. This research revealed that transfection of infected macrophages with miR-340 alone or in combination with miR-27a mimic can reduce macrophage infectivity and might be introduced as a novel therapeutic agent for cutaneous leishmaniasis.
Collapse
|
23
|
Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Melatonin and regulation of miRNAs: novel targeted therapy for cancerous and noncancerous disease. Epigenomics 2020; 13:65-81. [PMID: 33350862 DOI: 10.2217/epi-2020-0241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
miRNAs, small noncoding RNAs with crucial diagnostic and prognostic capabilities, play essential therapeutic roles in different human diseases. These biomarkers are involved in several biological mechanisms and are responsible for the regulation of multiple genes expressions in cells. miRNA-based therapy has shown a very bright future in the case of clinical interventions. Melatonin, the main product of the pineal gland, is a multifunctional neurohormone with numerous therapeutic potentials in human diseases. Melatonin is able to regulate miRNAs in different pathologies such as malignant and nonmalignant diseases, which can be considered as a novel kind of targeted therapy. Herein, this review discusses possible therapeutic utility of melatonin for the regulation of miRNAs in various pathological conditions.
Collapse
Affiliation(s)
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium falciparum. Biomolecules 2020; 10:biom10091243. [PMID: 32867164 PMCID: PMC7563138 DOI: 10.3390/biom10091243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host’s immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host–parasite biology.
Collapse
|
25
|
Kumar A, Vijaykumar S, Dikhit MR, Abhishek K, Mukherjee R, Sen A, Das P, Das S. Differential Regulation of miRNA Profiles of Human Cells Experimentally Infected by Leishmania donovani Isolated From Indian Visceral Leishmaniasis and Post-Kala-Azar Dermal Leishmaniasis. Front Microbiol 2020; 11:1716. [PMID: 32849363 PMCID: PMC7410929 DOI: 10.3389/fmicb.2020.01716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are small ribonucleic acid that act as an important regulator of gene expression at the molecular level. However, there is no comparative data on the regulation of microRNAs (miRNAs) in visceral leishmaniasis (VL) and post-kala-azar dermal leishmaniasis (PKDL). In this current study, we compared the expression miRNA profile in host cells (GTHP), with VL strain (GVL) and PKDL strain-infected host cell (GPKDL). Normalized read count comparison between different conditions revealed that the miRNAs are indeed differentially expressed. In GPKDL with respect to GVL and GTHP, a total of 798 and 879 miRNAs were identified, out of which 349 and 518 are known miRNAs, respectively. Comparative analysis of changes in miRNA expression suggested that the involvement of differentially expressed miRNAs in various biological processes like PI3K pathway activation, cell cycle regulation, immunomodulation, apoptosis inhibition, different cytokine production, T-cell phenotypic transitions calcium regulation, and so on. A pathway enrichment study using in silico predicted gene targets of differentially expressed miRNAs showed evidence of potentially universal immune signaling pathway effects. Whereas cytokine-cytokine receptor interaction, phagocytosis, and transforming growth factor beta (TGF-β) signaling pathways were more highly enriched using targets of miRNAs upregulated in GPKDL. These findings could contribute to a better understanding of PKDL pathogenesis. Furthermore, the identified miRNAs could also be used as biomarkers in diagnosis, prognosis, and therapeutics of PKDL infection control.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Saravanan Vijaykumar
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manas Ranjan Dikhit
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Rimi Mukherjee
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Abhik Sen
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
26
|
Rhythmic expression of the melatonergic biosynthetic pathway and its differential modulation in vitro by LPS and IL10 in bone marrow and spleen. Sci Rep 2020; 10:4799. [PMID: 32179854 PMCID: PMC7075864 DOI: 10.1038/s41598-020-61652-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Daily oscillation of the immune system follows the central biological clock outputs control such as melatonin produced by the pineal gland. Despite the literature showing that melatonin is also synthesized by macrophages and T lymphocytes, no information is available regarding the temporal profile of the melatonergic system of immune cells and organs in steady-state. Here, the expression of the enzymes arylalkylamine-N-acetyltransferase (AA-NAT), its phosphorylated form (P-AA-NAT) and acetylserotonin-O-methyltransferase (ASMT) were evaluated in phagocytes and T cells of the bone marrow (BM) and spleen. We also determined how the melatonergic system of these cells is modulated by LPS and the cytokine IL-10. The expression of the melatonergic enzymes showed daily rhythms in BM and spleen cells. Melatonin rhythm in the BM, but not in the spleen, follows P-AA-NAT daily variation. In BM cells, LPS and IL10 induced an increase in melatonin levels associated with the increased expressions of P-AA-NAT and ASMT. In spleen cells, LPS induced an increase in the expression of P-AA-NAT but not of melatonin. Conversely, IL10 induced a significant increase in melatonin production associated with increased AA-NAT/P-AA-NAT expressions. In conclusion, BM and spleen cells present different profiles of circadian production of local melatonin and responses to immune signals.
Collapse
|
27
|
Acuña SM, Floeter-Winter LM, Muxel SM. MicroRNAs: Biological Regulators in Pathogen-Host Interactions. Cells 2020; 9:E113. [PMID: 31906500 PMCID: PMC7016591 DOI: 10.3390/cells9010113] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen-host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.
Collapse
Affiliation(s)
| | | | - Sandra Marcia Muxel
- Department of Physiology, Universidade de São Paulo, 05508-090 São Paulo, Brazil; (S.M.A.); (L.M.F.-W.)
| |
Collapse
|
28
|
Differential immune response modulation in early Leishmania amazonensis infection of BALB/c and C57BL/6 macrophages based on transcriptome profiles. Sci Rep 2019; 9:19841. [PMID: 31882833 PMCID: PMC6934472 DOI: 10.1038/s41598-019-56305-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
The fate of Leishmania infection can be strongly influenced by the host genetic background. In this work, we describe gene expression modulation of the immune system based on dual global transcriptome profiles of bone marrow-derived macrophages (BMDMs) from BALB/c and C57BL/6 mice infected with Leishmania amazonensis. A total of 12,641 host transcripts were identified according to the alignment to the Mus musculus genome. Differentially expressed genes (DEGs) profiling revealed a differential modulation of the basal genetic background between the two hosts independent of L. amazonensis infection. In addition, in response to early L. amazonensis infection, 10 genes were modulated in infected BALB/c vs. non-infected BALB/c macrophages; and 127 genes were modulated in infected C57BL/6 vs. non-infected C57BL/6 macrophages. These modulated genes appeared to be related to the main immune response processes, such as recognition, antigen presentation, costimulation and proliferation. The distinct gene expression was correlated with the susceptibility and resistance to infection of each host. Furthermore, upon comparing the DEGs in BMDMs vs. peritoneal macrophages, we observed no differences in the gene expression patterns of Jun, Fcgr1 and Il1b, suggesting a similar activation trends of transcription factor binding, recognition and phagocytosis, as well as the proinflammatory cytokine production in response to early L. amazonensis infection. Analysis of the DEG profile of the parasite revealed only one DEG among the 8,282 transcripts, indicating that parasite gene expression in early infection does not depend on the host genetic background.
Collapse
|
29
|
Metabolomic Profile of BALB/c Macrophages Infected with Leishmania amazonensis: Deciphering L-Arginine Metabolism. Int J Mol Sci 2019; 20:ijms20246248. [PMID: 31835767 PMCID: PMC6940984 DOI: 10.3390/ijms20246248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Leishmaniases are neglected tropical diseases that are caused by Leishmania, being endemic worldwide. L-arginine is an essential amino acid that is required for polyamines production on mammal cells. During Leishmania infection of macrophages, L-arginine is used by host and parasite arginase to produce polyamines, leading to parasite survival; or, by nitric oxide synthase 2 to produce nitric oxide leading to parasite killing. Here, we determined the metabolomic profile of BALB/c macrophages that were infected with L. amazonensis wild type or with L. amazonensis arginase knockout, correlating the regulation of L-arginine metabolism from both host and parasite. Methods: The metabolites of infected macrophages were analyzed by capillary electrophoresis coupled with mass spectrometry (CE-MS). The metabolic fingerprints analysis provided the dual profile from the host and parasite. Results: We observed increased levels of proline, glutamic acid, glutamine, L-arginine, ornithine, and putrescine in infected-L. amazonensis wild type macrophages, which indicated that this infection induces the polyamine production. Despite this, we observed reduced levels of ornithine, proline, and trypanothione in infected-L. amazonensis arginase knockout macrophages, indicating that this infection reduces the polyamine production. Conclusions: The metabolome fingerprint indicated that Leishmania infection alters the L-arginine/polyamines/trypanothione metabolism inside the host cell and the parasite arginase impacts on L-arginine metabolism and polyamine production, defining the infection fate.
Collapse
|