1
|
Carella A, Carroll KC, Munson E. Update on novel validly published and included bacterial taxa derived from human clinical specimens and taxonomic revisions published in 2023. J Clin Microbiol 2024:e0100424. [PMID: 39495305 DOI: 10.1128/jcm.01004-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Taxonomy is a systematic practice in which microorganisms are granted names to facilitate and standardize multi-disciplinary communication. We summarize novel bacterial taxa derived from human clinical material that were published in peer-reviewed literature and/or included by the International Journal of Systematic and Evolutionary Microbiology during calendar year 2023, as well as taxonomic revisions that have been published/included by the same entity. While the majority of newly discovered facultative and anaerobic organisms were derived from microbiome surveillance, noteworthy novel taxa in the realm of pathogenicity potential include those related to Aerococcus spp., several Corynebacterium spp., Exercitatus varius gen. nov., sp. nov., and Mycoplasma phocimorsus sp. nov. With respect to nomenclature revision, the Bacillus and Clostridium genera continue to be visited annually. Creation of novel anaerobic Gram-negative bacillus genera Hallella, Hoylesella, Leyella, Segatella, and Xylanibacter impacted several Bacteroides spp. and Prevotella spp. Additional studies are necessary to ascertain the clinical significance of several of these microbes.
Collapse
Affiliation(s)
- Arianna Carella
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Cui X, Yin L, Zhang Y, Jiang X, Li L, Bi X. Salivary microbiota composition before and after use of proton pump inhibitors in patients with laryngopharyngeal reflux: a self-control study. BMC Oral Health 2024; 24:1194. [PMID: 39379876 PMCID: PMC11460238 DOI: 10.1186/s12903-024-05000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Issues associated with proton pump inhibitor (PPI) usage have been documented. PPIs affect the gastrointestinal microbiome, as well as the saliva microbiota of healthy individuals. However, the alterations in the saliva microbiota of laryngopharyngeal reflux (LPR) patients remain unclear. This study aims to examine the composition of saliva microbiota in LPR patients before and after PPI usage through a self-controlled study. METHODS Thirty-two adult LPR patients participated in the study. Saliva samples were collected before and after an 8-week regimen of twice-daily administration of 20-mg esomeprazole. The impact of PPI administration on bacterial communities was assessed using 16 S rRNA gene sequencing. The functional and metabolic changes in saliva microbial communities after PPI usage were analyzed using PICRUSt2 based on our 16 S rRNA gene sequencing results. RESULTS The alpha diversity within the salivary microbiota, as measured by the PD-whole-tree index, exhibited a significant difference between samples collected before and after PPI application (P = 0.038). Additionally, PCoA analysis of unweighted UniFrac distances (beta diversity) revealed distinct separation of saliva sample microbiota structures before and after PPI application in LPR patients, with statistical significance (Adonis test, R2 = 0.063, P< 0.010). Taxon-based analysis indicated that PPI administration increased the abundance of Epsilonproteobacteria, Campylobacterales, Campylobacteraceae, Campylobacter, and Campylobacter_gracilis, while reducing the abundance of Lactobacillaceae and Lactobacillus in salivary samples ( P< 0.050). Using LEfSe to compare bacterial abundances, Bacillaceae and Anoxybacillus were found to be enriched before PPI usage in LPR patients. Furthermore, the proportion of genes responsible for indole alkaloid biosynthesis in the salivary microbiota of LPR patients significantly increased after PPI therapy (P< 0.050). CONCLUSIONS These findings indicate that PPIs induce alterations in the salivary microbiota of LPR patients. CHINESE CLINICAL TRIAL REGISTRY No. ChiCTR2300067507. Registered on January 10,2023 retrospectively. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Xiaohuan Cui
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| | - Longlong Yin
- Hebei North University, Zhangjiakou, 075051, China
| | - Yanping Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China.
| | - Xingwang Jiang
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| | - Lina Li
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| | - Xinxin Bi
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| |
Collapse
|
3
|
Yalamarty R, Magesh S, John D, Chakladar J, Li WT, Brumund KT, Wang-Rodriguez J, Ongkeko WM. The intratumor microbiome varies by geographical location and anatomical site in head and neck squamous cell carcinoma. Curr Probl Cancer 2024; 50:101100. [PMID: 38820649 DOI: 10.1016/j.currproblcancer.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a highly heterogeneous cancer that is characterized by distinct phenotypes based on anatomical site and etiological agents. Recently, the intratumor microbiome has been implicated in cancer pathogenesis and progression. Although it is well established that the gut microbiome varies with geographical location and is highly influenced by factors such as diet, environment, and genetics, the intratumor microbiome is not very well characterized. In this review, we aim to characterize the HNSCC intratumor microbiome by geographical location and anatomical site. We conducted a review of primary literature from PubMed and assessed studies based on relevancy and recency. To the best of our knowledge, we are the first to comprehensively examine the tumor microenvironment of HNSCC with respect to these two primary factors on a large scale. Our results suggest that there are unique bacterial and fungal biomarkers for HNSCC for each of the following geographical locations: North America, Asia, Europe, Australia, and Africa. We also identified a panel of microbial biomarkers that are unique to two primary HNSCC anatomic sites, as well as microbial biomarkers associated with various etiological agents of HNSCC. Future study of these microbes may improve HNSCC diagnostic and therapeutic modalities by accounting for differences based on geographic regions and anatomical sites.
Collapse
Affiliation(s)
- Rishabh Yalamarty
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Shruti Magesh
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Daniel John
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jaideep Chakladar
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Wei Tse Li
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Kevin T Brumund
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Division of Head and Neck Surgery, Department of Surgery, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jessica Wang-Rodriguez
- Pathology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Pathology, UC San Diego School of Medicine, San Diego, CA 92093, USA
| | - Weg M Ongkeko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
4
|
Zheng X, Zheng Y, Chen T, Hou C, Zhou L, Liu C, Zheng J, Hu R. Effect of Laryngopharyngeal Reflux and Potassium-Competitive Acid Blocker (P-CAB) on the Microbiological Comprise of the Laryngopharynx. Otolaryngol Head Neck Surg 2024; 170:1380-1390. [PMID: 38385787 DOI: 10.1002/ohn.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To probe the microbiota composition progressing from healthy individuals to those with laryngopharyngeal reflux disease (LPRD) and subsequently undergoing potassium-competitive acid inhibitor (P-CAB) therapy. STUDY DESIGN Prospective case-control study. SETTING Academic Medical Center. METHODS Forty patients with LPRD and 51 patients without LPRD were recruited. An 8-week P-CAB therapy was initiated (post-T-LPRD), and 39 had return visits. In total, 130 laryngopharyngeal saliva samples were collected and sequenced by targeting the V3-V4 region of the 16S ribosomal RNA (rRNA) gene using an Illumina MiSeq. Amplicon sequence variants (ASVs) and clinical indices were analyzed. RESULTS Alpha and beta diversities were compared among the non-LPRD, LPRD, and post-T-LPRD groups, and the Observed_ASVs were not significantly different. At the same time, the Shannon and Simpson indices, unweighted Unifrac, weighted Unifrac, and binary Jaccard distance were significantly different between non-LPRD and LPRD groups. In addition, significant differences were found in the abundance of Streptococcus, Prevotella, and Prevotellaceae in the LPRD versus non-LPRD groups, and Neisseria, Leptotrichia, and Allprevotella in the LPRD versus post-T-LPRD groups. The genera model was used to distinguish patients with LPRD from those without, and a better receiver operating characteristic curve was formed after combining the clinical indices of reflux symptom index, reflux finding score, and pepsin, with an area under the curve of 0.960. CONCLUSION Laryngopharyngeal microbial communities changed after laryngopharyngeal reflux and were modified further after P-CAB treatment, which provides a potential diagnostic value for LPRD, especially when combined with clinical indices.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yujin Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ting Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chenjie Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liqun Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chaofeng Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jingyi Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Renyou Hu
- Chongqing Jinshan Science & Technology (Group) Co. Ltd., Chongqing, China
| |
Collapse
|
5
|
Gu Z, Liu Y. A bibliometric and visualized in oral microbiota and cancer research from 2013 to 2022. Discov Oncol 2024; 15:24. [PMID: 38302656 PMCID: PMC10834930 DOI: 10.1007/s12672-024-00878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Numerous studies have highlighted the implication of oral microbiota in various cancers. However, no bibliometric analysis has been conducted on the relationship between oral microbiota and cancer. This bibliometric analysis aimed to identify the research hotspots in oral microbiota and cancer research, as well as predict future research trends. The literature published relating to oral microbiota and cancer was searched from the Web of Science Core Collection database (WoSCC) from 2013 to 2022. VOSviewer or Citespace software was used to perform the bibliometric analysis, focusing on countries, institutions, authors, journals, keywords and references. A total of 1516 publications were included in the analysis. The number of publications related oral microbiota and cancer increased annually, reaching its peak in 2022 with 287 papers. The United States (456) and China (370) were the countries with the most publications and made significant contributions to the field. Sears CL and Zhou XD were the most productive authors. The high frequency of keywords revealed key topics, including cancer (colorectal cancer, oral cancer), oral microbiota (Fusobacterium nucleatum, Porphyromonas gingivalis), and inflammation (periodontal disease). The latest trend keywords were F. nucleatum, dysbiosis, prognosis, tumor microenvironment, gastric microbiota, complications and survival, suggesting a new hotspot in the field of oral microbiota and cancer. Our study provides a comprehensive analysis of oral microbiota and cancer research, revealing an increase in publications in recent years. Future research directions will continue to focus on the diversity of oral microbiota impacted by cancers and the underlying mechanism connecting them, providing new ideas for targeted therapy of tumorigenesis.
Collapse
Affiliation(s)
- Zhiyu Gu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Yunkun Liu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
6
|
Oberste M, Böse BE, Dos Anjos Borges LG, Junca H, Plumeier I, Kahl S, Simon F, Beule AG, Rudack C, Pieper DH. Effects of squamous cell carcinoma and smoking status on oropharyngeal and laryngeal microbial communities. Head Neck 2024; 46:145-160. [PMID: 37905455 DOI: 10.1002/hed.27562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Still, little is known about microbial dysbiosis in oropharyngeal and laryngeal tissue as risk factor for development of local squamous cell carcinoma. The site-specific microbiota at these regions in healthy and cancer tissue and their modulation by environmental factors need to be defined. METHODS The local microbiota of cancer tissue and healthy controls was profiled by 16S rRNA gene amplicon sequencing and statistical analysis using 111 oropharyngeal and 72 laryngeal intraoperative swabs. RESULTS Oropharynx and larynx harbor distinct microbial communities. Clear effects of both smoking and cancer were seen in the oropharynx whereas effects in the larynx were minor. CONCLUSION The distinct microbial communities at larynx and oropharynx partially explain why the effects of cancer and smoking were distinct at those sites. Thus, the use of microbiota supposed to mirror community changes in another target location should be avoided and more studies on the actual cancerous environment are necessary.
Collapse
Affiliation(s)
- Maximilian Oberste
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Brit Elisabeth Böse
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | | | - Howard Junca
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Iris Plumeier
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Kahl
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Simon
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Achim Georg Beule
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Claudia Rudack
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Dietmar H Pieper
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
7
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
8
|
Asili P, Mirahmad M, Rezaei P, Mahdavi M, Larijani B, Tavangar SM. The Association of Oral Microbiome Dysbiosis with Gastrointestinal Cancers and Its Diagnostic Efficacy. J Gastrointest Cancer 2023; 54:1082-1101. [PMID: 36600023 DOI: 10.1007/s12029-022-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The second leading mortality cause in the world is cancer, making it a critical issue that impacts human health. As a result, scientists are looking for novel biomarkers for cancer detection. The oral microbiome, made up of approximately 700 species-level taxa, is a significant source for discovering novel biomarkers. In this review, we aimed to prepare a summary of research that has investigated the association between the oral microbiome and gastrointestinal cancers. METHODS We searched online scientific datasets including Web of Science, PubMed, Scopus, and Google Scholar. Eligibility criteria included human studies that reported abundances of the oral microbiome, or its diagnostic/prognostic performance in patients with gastrointestinal cancers. RESULTS Some phyla of the oral microbiome have a relationship with cancers. Some particular phyla of the oral microbiome that may be related to gastrointestinal cancers consist of Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria. Changes in the abundances of Porphyromonas, Fusobacterium, Prevotella, and Veillonella are correlated with carcinogenesis, and may be used for distinguishing cancer patients from healthy subjects. Oral, colorectal, pancreatic, and esophageal cancers are the most important cancers related to the oral microbiome. CONCLUSION The results of this study may help future research to select bacteria as an early diagnostic or prognostic biomarker of gastrointestinal cancer. Given the current state of our knowledge, additional research is required to comprehend the multiplex processes underlying the role of bacterial microbiota upon cancer progression and to characterize the complex microbiota-host interaction network.
Collapse
Affiliation(s)
- Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rezaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Pan Y, Lv H, Zhang F, Chen S, Cheng Y, Ma S, Hu H, Liu X, Cai X, Fan F, Gong S, Chen P, Chu Q. Green tea extracts alleviate acetic acid-induced oral inflammation and reconstruct oral microbial balance in mice. J Food Sci 2023; 88:5291-5308. [PMID: 37889079 DOI: 10.1111/1750-3841.16818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Oral cavity contains the second largest microbial community in the human body. Due to the highly vascularized feature of mouth, oral microbes could directly access the bloodstream and affect the host healthy systemically. The imbalance of oral microbiota is closely related to various oral and systemic diseases. Green tea extracts (GTE) mainly contain tea polyphenols, alkaloids, amino acid, flavones, and so on, which equipped with excellent anti-inflammatory activities. Previous studies have demonstrated the beneficial effects of GTE on oral health. However, most researches used in vitro models or focused on limited microorganisms. In this study, the regulatory effect of GTE on oral microbiome and the alleviative effect on oral inflammation in vivo were evaluated. The results showed that GTE could efficiently alleviate the inflammations of the tongue, cheek pouch, as well as throat. GTE effectively inhibited the activation of NF-κB through the upregulation of the anti-inflammatory cytokine interleukin (IL)-10, consequently leading to reduced expression of pro-inflammatory cytokines IL-6 and tumor necrosis factor-α. The indexes of spleen and thymus were also elevated by GTE in stomatitis mice. Moreover, GTE promoted the growth of probiotics Lactobacillus and Bacillus, inhibited the reproduction of pathogens Achromobacter, reversing the microbiota disorders in oral cavity. This study not only presents a novel approach for enhancing oral microecology but also facilitates the wider adoption of tea consumption.
Collapse
Affiliation(s)
- Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Fuyuan Zhang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shuxi Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yan Cheng
- Hangzhou Real Taste Tea Culture Development Co., Ltd., Hangzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | - Hao Hu
- College of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xiyu Liu
- Wuyistar Tea Industrial Co., Ltd., Wuyishan, China
| | - Xiaoyong Cai
- Wuyistar Tea Industrial Co., Ltd., Wuyishan, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Wang XL, Xu HW, Liu NN. Oral Microbiota: A New Insight into Cancer Progression, Diagnosis and Treatment. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:535-547. [PMID: 37881320 PMCID: PMC10593652 DOI: 10.1007/s43657-023-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
The polymorphic microbiome has been defined as one of the "Hallmarks of Cancer". Extensive studies have now uncovered the role of oral microbiota in cancer development and progression. Bacteria, fungi, archaea, and viruses in the oral cavity interact dynamically with the oral microenvironment to maintain the oral micro-ecological homeostasis. This complex interaction is influenced by many factors, such as maternal transmission, personal factors and environmental factors. Dysbiosis of oral microbiota can disturbed this host-microbiota interaction, leading to systemic diseases. Numerous studies have shown the potential associations between oral microbiota and a variety of cancers. However, the underlying mechanisms and therapeutic insights are still poorly understood. In this review, we mainly focus on the following aspects: (1) the factors affect oral microbiota composition and function; (2) the interaction between microenvironment and oral microbiota; (3) the role of multi-kingdom oral microbiota in human health; (4) the potential underlying mechanisms and therapeutic benefits of oral microbiota against cancer. Finally, we aim to describe the impact of oral microbiota on cancer progression and provide novel therapeutic insights into cancer prevention and treatment by targeting oral microbiota.
Collapse
Affiliation(s)
- Xiu-Li Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Hua-Wen Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| |
Collapse
|
11
|
Liberale C, Soloperto D, Marchioni A, Monzani D, Sacchetto L. Updates on Larynx Cancer: Risk Factors and Oncogenesis. Int J Mol Sci 2023; 24:12913. [PMID: 37629093 PMCID: PMC10454133 DOI: 10.3390/ijms241612913] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Laryngeal cancer is a very common tumor in the upper aero-digestive tract. Understanding its biological mechanisms has garnered significant interest in recent years. The development of laryngeal squamous cell carcinoma (LSCC) follows a multistep process starting from precursor lesions in the epithelium. Various risk factors have been associated with laryngeal tumors, including smoking, alcohol consumption, opium use, as well as infections with HPV and EBV viruses, among others. Cancer development involves multiple steps, and genetic alterations play a crucial role. Tumor suppressor genes can be inactivated, and proto-oncogenes may become activated through mechanisms like deletions, point mutations, promoter methylation, and gene amplification. Epigenetic modifications, driven by miRNAs, have been proven to contribute to LSCC development. Despite advances in molecular medicine, there are still aspects of laryngeal cancer that remain poorly understood, and the underlying biological mechanisms have not been fully elucidated. In this narrative review, we examined the literature to analyze and summarize the main steps of carcinogenesis and the risk factors associated with laryngeal cancer.
Collapse
Affiliation(s)
- Carlotta Liberale
- Unit of Otorhinolaryngology, Head & Neck Department, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.L.); (D.M.); (L.S.)
| | - Davide Soloperto
- Unit of Otorhinolaryngology, Head & Neck Department, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.L.); (D.M.); (L.S.)
| | | | - Daniele Monzani
- Unit of Otorhinolaryngology, Head & Neck Department, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.L.); (D.M.); (L.S.)
| | - Luca Sacchetto
- Unit of Otorhinolaryngology, Head & Neck Department, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.L.); (D.M.); (L.S.)
| |
Collapse
|
12
|
Wu S, Cheng L, Pennhag AAL, Seifert M, Guðnadóttir U, Engstrand L, Mints M, Andersson S, Du J. The salivary microbiota is altered in cervical dysplasia patients and influenced by conization. IMETA 2023; 2:e108. [PMID: 38867925 PMCID: PMC10989756 DOI: 10.1002/imt2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 06/14/2024]
Abstract
This study supports the correlation between the salivary microbiota and cervical dysplasia and suggests that smoking influences the salivary microbiota.
Collapse
Affiliation(s)
- Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Alexandra A. L. Pennhag
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Maike Seifert
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Unnur Guðnadóttir
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- Science for Life LaboratoryKarolinska InstituteStockholmSweden
| | - Miriam Mints
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Sonia Andersson
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| |
Collapse
|
13
|
Yu S, Chen J, Zhao Y, Yan F, Fan Y, Xia X, Shan G, Zhang P, Chen X. Oral-microbiome-derived signatures enable non-invasive diagnosis of laryngeal cancers. J Transl Med 2023; 21:438. [PMID: 37408030 DOI: 10.1186/s12967-023-04285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Recent studies have uncovered that the microbiota in patients with head and neck cancers is significantly altered and may drive cancer development. However, there is limited data to explore the unique microbiota of laryngeal squamous cell carcinoma (LSCC), and little is known regarding whether the oral microbiota can be utilized as an early diagnostic biomarker. METHODS Using 16S rRNA gene sequencing, we characterized the microbiome of oral rinse and tissue samples from 77 patients with LSCC and 76 control patients with vocal polyps, and then performed bioinformatic analyses to identify taxonomic groups associated with clinicopathologic features. RESULTS Multiple bacterial genera exhibited significant differences in relative abundance when stratifying by histologic and tissue type. By exploiting the distinct microbial abundance and identifying the tumor-associated microbiota taxa between patients of LSCC and vocal polyps, we developed a predictive classifier by using rinse microbiota as key features for the diagnosis of LSCC with 85.7% accuracy. CONCLUSION This is the first evidence of taxonomical features based on the oral rinse microbiome that could diagnose LSCC. Our results revealed the oral rinse microbiome is an understudied source of clinical variation and represents a potential non-evasive biomarker of LSCC.
Collapse
Affiliation(s)
- Shuting Yu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Junru Chen
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Fangxu Yan
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yue Fan
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Xin Xia
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Xingming Chen
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China.
| |
Collapse
|
14
|
Propionate-producing Veillonella parvula regulates the malignant properties of tumor cells of OSCC. Med Oncol 2023; 40:98. [PMID: 36808012 DOI: 10.1007/s12032-023-01962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
Oral squamous cell carcinoma (OSCC), main head and neck squamous cell carcinomas (HNSCCs), remains a global health concern with unknown pathogenesis. Veillonella parvula NCTC11810 was observed to decrease in saliva microbiome of OSCC patients in this study and the aim was to detect the novel role of Veillonella parvula NCTC11810 in regulating the biological characteristics of OSCC through TROP2/PI3K/Akt pathway. Oral microbial community changes of OSCC patients were detected by 16S rDNA gene sequencing technology. CCK8 assay, Transwell assay, and Annexin V-FITC/PI staining were used for proliferation, invasion, and apoptosis analysis of OSCC cell lines. Expression of proteins were determined by Western blotting analysis. Veillonella parvula NCTC11810 showed decreased in saliva microbiome of TROP2 high-expressed OSCC patients. Culture supernatant of Veillonella parvula NCTC11810 promoted the apoptosis and inhibited the proliferation and invasion ability of HN6 cells, while sodium propionate (SP), the main metabolite of Veillonella parvula NCTC11810, played a similar role through the inhibition of TROP2/PI3K/Akt pathway. Studies above supported the proliferation-inhibiting, invasion-inhibiting, and apoptosis-promoting function of Veillonella parvula NCTC11810 in OSCC cells which provided new insights into oral microbiota and their metabolite as a therapeutic method for OSCC patients with TROP2 high expressing.
Collapse
|
15
|
Zheng X, Lu X, Hu Y. Distinct respiratory microbiota associates with lung cancer clinicopathological characteristics. Front Oncol 2023; 13:847182. [PMID: 36816941 PMCID: PMC9932187 DOI: 10.3389/fonc.2023.847182] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Commensal microbiota dysbiosis is associated with the development of lung cancer. The current studies about composition of respiratory microbiota in lung cancer patients yielded inconsistent results. This study aimed to examine the association between airway microbiota and lung cancer clinicopathological characteristics. Methods Surgically removed lesion tissues from 75 non-small cell lung cancer patients and 7 patients with benign pulmonary diseases were analyzed by 16S rRNA sequencing. Taxonomy, relative abundance, and diversity of respiratory microbiota were compared among lung cancer of different pathology and TNM stages. The effects of antibiotic and cigarette exposure on respiratory microbiota in lung cancer patients were also evaluated. Results Bacterial relative abundance and alpha- and beta-diversity analysis of lung microbiota showed significant differences among lung cancer of different pathology and benign pulmonary diseases. At the genus level, the abundance differences of 13 taxa between lung squamous cell carcinoma and lung adenocarcinoma, 63 taxa between lung squamous cell carcinoma and benign pulmonary diseases, and 4 taxa between lung adenocarcinoma and benign pulmonary diseases reached statistical significance. In contrast, diversity differences were not as significant across lung cancer of different stages. No significant differences were observed in tissue taxonomic abundances and diversity at all taxonomic levels between lung cancer patients with and without antibiotic exposure 3 months prior to surgery. For lung adenocarcinoma, respiratory bacterial abundance and diversity at all taxonomic levels did not show significant differences between smokers and non-smokers. Conclusions Our results confirm significantly differential respiratory microbiome taxa, abundance, and diversity in lung cancer of different pathology and some stages. Short-term antibiotic application might play a minor role in molding airway microbiota in lung cancer patients. Composition and diversity of respiratory microbiota in lung adenocarcinoma are not affected by cigarette exposure.
Collapse
Affiliation(s)
- Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingbing Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Hu
- Department of Thoracic surgery, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Yang Hu,
| |
Collapse
|
16
|
Chen JW, Shih CJ, Wu LW, Wu YC, Chiang WF, Chen YL, Wu JH. Phocaeicola oris sp. nov., an anaerobic bacterium isolated from the saliva of a patient with oral squamous cell carcinoma. Int J Syst Evol Microbiol 2023; 73. [PMID: 36749694 DOI: 10.1099/ijsem.0.005703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A Gram-stain-negative or -positive, strictly anaerobic, non-spore-forming and pleomorphic bacterium (designated 14-104T) was isolated from the saliva sample of a patient with oral squamous cell carcinoma. It was an acid-tolerant neutralophilic mesophile, growing at between 20 and 40 °C (with optimum growth at 30 °C) and pH between pH 3.0 and 7.0 (with optimum growth at pH 6.0-7.0). It contained anteiso-C15 : 0 and C15 : 0 as the major fatty acids. The genome size of strain 14-104T was 2.98 Mbp, and the G+C content was 39.6 mol%. It shared <87 % 16S rRNA sequence similarity, <71 % orthologous average nucleotide identity, <76 % average amino acid identity and <68 %% of conserved proteins with its closest relative, Phocaeicola abscessus CCUG 55929T. Reconstruction of phylogenetic and phylogenomic trees revealed that strain 14-104T and P. abscessus CCUG 55929T were clustered as a distinct clade without any other terminal node. The phylogenetic and phylogenomic analyses along with physiological and chemotaxonomic data indicated that strain 14-104T represents a novel species in the genus Phocaeicola, for which the name Phocaeicola oris sp. nov. is proposed. The type strain is 14-104T (=BCRC 81305T= NBRC 115041T).
Collapse
Affiliation(s)
- Jiung-Wen Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, ROC.,Present address: Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd, AL 35294, Birmingham, USA
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Laboratory Science and Technology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Yen-Chi Wu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Wei-Fan Chiang
- Department of Oral & Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, Taiwan, ROC
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
17
|
Assessment of the In Vitro Cytotoxic Profile of Two Broad-Spectrum Antibiotics-Tetracycline and Ampicillin-On Pharyngeal Carcinoma Cells. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091289. [PMID: 36143966 PMCID: PMC9505149 DOI: 10.3390/medicina58091289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Background and Objectives: In spite of the fact that antibiotics are considered to be the cornerstone of modern medicine, their use in the treatment of cancer remains controversial. In the present study, the main objective was to examine the effects of two antibiotics—tetracycline and ampicillin—on the viability, morphology, migration, and organization and structure of the nuclei and the actin fiber network of pharyngeal carcinoma cells—Detroit-562. Materials and Methods: In order to determine the viability of the cells, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was applied after the cells were stimulated with five concentrations of tetracycline and ampicillin (10, 25, 50, 75, and 100 μM) for 72 h. A scratch assay was used to assess the migration ability of the cells. For the visualization of the nuclei and actin fibers, 4,6-diamidino-2-phenylindole (Dapi) and Rhodamine-Phalloidin were used. Results: There are different effects of tetracycline and ampicillin. Thus, tetracycline: (i) exhibited a concentration-dependent cytotoxic effect, decreasing cell viability to approximately 46%; (ii) inhibits cellular migration up to 16% compared to 60% for control cells; and (iii) induces changes in cell morphology as well as apoptotic changes in the nucleus and F-actin fibers. In contrast, in the case of ampicillin, an increase in viability up to 113% was observed at 10 μM, while a decrease in viability up to approximately 94% was observed at the highest concentration tested (100 μM). Conclusions: The results indicated a different effect regarding the impact on pharyngeal carcinoma cells. Thus, tetracycline has a concentration-dependent cytotoxic effect, while in the case of ampicillin a slight stimulation of cell viability was observed.
Collapse
|
18
|
Jiao J, Zheng Y, Zhang Q, Xia D, Zhang L, Ma N. Saliva microbiome changes in thyroid cancer and thyroid nodules patients. Front Cell Infect Microbiol 2022; 12:989188. [PMID: 36034695 PMCID: PMC9403763 DOI: 10.3389/fcimb.2022.989188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Thyroid disease has been reported to associate with gut microbiota, but the effects of thyroid cancer and thyroid nodules on the oral microbiota are still largely unknown. This study aimed to identify the variation in salivary microbiota and their potential association with thyroid cancer and thyroid nodules. Methods We used 16S rRNA high-throughput sequencing to examine the salivary microbiota of thyroid cancer patients (n = 14), thyroid nodules patients (n = 9), and healthy controls (n = 15). Results The alpha-diversity indices Chao1 and ACE were found to be relatively higher in patients with thyroid cancer and thyroid nodules compared to healthy controls. The beta diversity in both the thyroid cancer and thyroid nodules groups was divergent from the healthy control group. The genera Alloprevotella, Anaeroglobus, Acinetobacter, unclassified Bacteroidales, and unclassified Cyanobacteriales were significantly enriched in the thyroid cancer group compared with the healthy control group. In contrast, the microbiome of the healthy controls was mainly composed of the genera Haemophilus, Lautropia, Allorhizobium Neorhizobium Pararhizobium Rhizobium, Escherichia Shigella, and unclassified Rhodobacteraceae. The thyroid nodules group was dominated by genre uncultured Candidatus Saccharibacteria bacterium, unclassified Clostridiales bacterium feline oral taxon 148, Treponema, unclassified Prevotellaceae, Mobiluncus, and Acholeplasma. In contrast, the genera unclassified Rhodobacteraceae and Aggregatibacter dominated the healthy control group. The study also found that clinical indicators were correlated with the saliva microbiome. Conclusion The salivary microbiota variation may be connected with thyroid cancer and thyroid nodules.
Collapse
Affiliation(s)
- Junjun Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Qingyu Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Degeng Xia
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Ning Ma, ; Li Zhang,
| | - Ning Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Ning Ma, ; Li Zhang,
| |
Collapse
|
19
|
Kurnia RS, Tarigan S, Nugroho CMH, Silaen OSM, Natalia L, Ibrahim F, Sudarmono PP. Potency of bacterial sialidase Clostridium perfringens as antiviral of Newcastle disease infections using embryonated chicken egg in ovo model. Vet World 2022; 15:1896-1905. [DOI: 10.14202/vetworld.2022.1896-1905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Clostridium toxins are widely used as medicinal agents. Many active metabolic enzymes, including sialidase (neuraminidase), hyaluronidase, and collagenase, contribute to the mechanism of action of these toxins. Sialidase from Clostridium perfringens recognizes and degrades sialic acid receptors in the host cell glycoprotein, glycolipid, and polysaccharide complexes. Sialic acid promotes the adhesion of various pathogens, including viruses, under pathological conditions. This study aimed to investigate the potential of C. perfringens sialidase protein to inhibit Newcastle disease virus (NDV) infection in ovo model.
Materials and Methods: C. perfringens was characterized by molecular identification through polymerase chain reaction (PCR) and is cultured in a broth medium to produce sialidase. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis was conducted to characterize the sialidase protein. In contrast, enzymatic activity and protein concentration were carried out using a neuraminidase assay kit and Bradford to obtain suitable active substances. Furthermore, embryonated chicken egg models were used to observe the toxicity of several sialidase doses. Then, the hemagglutination (HA) titer was obtained, and absolute quantitative reverse transcription–PCR assay was performed to measure the viral replication inhibitory activity of sialidase against NDV.
Results: Each isolate had a specific sialidase gene and its product. The sialidase derived from C. perfringens could hydrolyze the sialic acid receptor Neu5Ac (2,6)-Gal higher than Neu5Ac (2,3)Gal in chicken erythrocytes, as observed by enzyme-linked lectin assay. A significant difference (p = 0.05) in the HA titer in the pre-challenge administration group at dosages of 375 mU, 187.5 mU, and 93.75 mU in the competitive inhibition experiment suggests that sialidase inhibits NDV reproduction. Quantification of infective viral copy confirmed the interference of viral replication in the pre-challenge administration group, with a significant difference (p = 0.05) at the treatment doses of 750 mU, 375 mU, and 46.87 mU.
Conclusion: The potency of sialidase obtained from C. perfringens was shown in this study, given its ability to reduce the viral titer and copy number in allantoic fluids without adversely impacting the toxicity of the chicken embryo at different concentrations.
Collapse
Affiliation(s)
- Ryan Septa Kurnia
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Simson Tarigan
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | | | - Otto Sahat Martua Silaen
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Lily Natalia
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Fera Ibrahim
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Pratiwi Pudjilestari Sudarmono
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
20
|
Yang J, He P, Zhou M, Li S, Zhang J, Tao X, Wang A, Wu X. Variations in oral microbiome and its predictive functions between tumorous and healthy individuals. J Med Microbiol 2022; 71. [PMID: 35921227 DOI: 10.1099/jmm.0.001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction. The oral cavity is one of the largest reservoirs of microorganisms and many pathogenic bacteria have been shown to be associated with the aetiology of oral cancers.Gap Statement. Owing to the complexity of oral microbial communities and their unclear relationship with oral cancer, identification of specific bacteria which contribute to oral cancer is a key imperative.Aim. To compare and investigate the variations in the composition of the bacterial microbiome and its functions between patients with oral tumorous lesions and healthy subjects.Methodology. Twenty-seven samples from individuals with oral tumours (five oral benign tumours and 22 oral squamous cell carcinomas) and 15 samples from healthy subjects were collected. Genomic DNA was extracted and the V3-V5 region of the 16S rRNA gene was sequenced. Subsequently, bioinformatic assessment was conducted using QIIME2, PICRUSt and linear discriminant analysis effect size analyses (LEfSe).Results. The oral microbiota was composed mainly of the phyla Proteobacteria (31.76 %, 35.00 %), Bacteroidetes (30.13 %, 25.13 %) and Firmicutes (23.92 %, 17.07 %) in tumorous and healthy individuals, respectively. Neisseria, Prevotella, Fusobacterium, Streptococcus, Capnocytophaga, Veillonella, Haemophilus, Prevotella, Porphyromonas and Leptotrichia were the most abundant genera. Alpha diversity in the tumour group was significantly greater than that in the healthy group (P<0.05). Differential analysis of microbes between groups demonstrated a significantly higher number of Neisseria, Veillonella, Streptococcus, Leptotrichia, Lautropia, Sphingopyxis, Sphingobium, Tannerella, Actinomyces and Rothia in healthy controls compared with the tumour group. However, the genera Treponema, Micrococcus, Pseudomonas, Janthinobacterium, Parvimos, Loktanella, Staphylococcus, Acinetobacter, Catonella, Aggregatibacter and Propionibacterium were significantly higher in the tumour group. Pathways related to cancers, cell motility, environmental adaptation, metabolism and signal transduction were enhanced in the tumour group, while functions associated with immune system diseases, replication, repair and translation were significantly enhanced in the healthy group.Conclusion. Variations in the oral microbiota and its functions showed a correlation with oral tumours. The tumour group showed an increased abundance of some multi-drug-resistant and periodontitis-related pathogens. The significantly altered microbiotas may serve as potential biomarkers or inform combination therapy for oral tumours.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical Laboratory, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, PR China
| | - Peng He
- Department of Microbiology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Mou Zhou
- Department of Blood Transfusion, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, PR China
| | - Sheng Li
- Department of Acupuncture and Moxibustion, The 2nd Clinical Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, PR China
| | - Jing Zhang
- Department of Microbiology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Xia Tao
- Department of Microbiology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Anna Wang
- Department of Microbiology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Xinwei Wu
- Department of Microbiology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| |
Collapse
|
21
|
McKeon MG, Gallant JN, Kim YJ, Das SR. It Takes Two to Tango: A Review of Oncogenic Virus and Host Microbiome Associated Inflammation in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14133120. [PMID: 35804891 PMCID: PMC9265087 DOI: 10.3390/cancers14133120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Certain viruses, specifically, human papillomavirus (HPV) and Epstein–Barr virus (EBV), have been linked with the development of head and neck cancer. In this study, we review the mechanisms by which (these) viruses lead to cellular transformation and a chronic inflammatory state. Given that the head and neck host a rich microbiome (which itself is intrinsically linked to inflammation), we scrutinize the literature to highlight the interplay between viruses, cellular transformation, inflammation, and the local host microbiome in head and neck cancer. Abstract While the two primary risk factors for head and neck squamous cell carcinoma (HNSCC) are alcohol and tobacco, viruses account for an important and significant upward trend in HNSCC incidence. Human papillomavirus (HPV) is the causative agent for a subset of oropharyngeal squamous cell carcinoma (OPSCC)—a cancer that is impacting a rapidly growing group of typically middle-aged non-smoking white males. While HPV is a ubiquitously present (with about 1% of the population having high-risk oral HPV infection at any one time), less than 1% of those infected with high-risk strains develop OPSCC—suggesting that additional cofactors or coinfections may be required. Epstein–Barr virus (EBV) is a similarly ubiquitous virus that is strongly linked to nasopharyngeal carcinoma (NPC). Both of these viruses cause cellular transformation and chronic inflammation. While dysbiosis of the human microbiome has been associated with similar chronic inflammation and the pathogenesis of mucosal diseases (including OPSCC and NPC), a significant knowledge gap remains in understanding the role of bacterial-viral interactions in the initiation, development, and progression of head and neck cancers. In this review, we utilize the known associations of HPV with OPSCC and EBV with NPC to investigate these interactions. We thoroughly review the literature and highlight how perturbations of the pharyngeal microbiome may impact host-microbiome-tumor-viral interactions—leading to tumor growth.
Collapse
Affiliation(s)
- Mallory G. McKeon
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Jean-Nicolas Gallant
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Young J. Kim
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Correspondence: ; Tel.: +1-(615)-322-0322; Fax: +1-(615)-343-6160
| |
Collapse
|
22
|
Anipindi M, Bitetto D. Diagnostic and Therapeutic Uses of the Microbiome in the Field of Oncology. Cureus 2022; 14:e24890. [PMID: 35698690 PMCID: PMC9184241 DOI: 10.7759/cureus.24890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a leading cause of death worldwide and it can affect almost every part of the human body. Effective screening and early diagnosis of cancers is extremely difficult due to the multifactorial etiology of the disease and delayed presentation of the patients. The available treatments are usually not specific to the affected organ system, leading to intolerable systemic side effects and early withdrawal from therapies. In vivo and in vitro studies have revealed an association of specific microbiome signatures with individual cancers. The cancer-related human microbiome has also been shown to affect the response of tissues to chemotherapy, immunotherapy, and radiation. This is an excellent opportunity for us to design specific screening markers using the microbiome to prevent cancers and diagnose them early. We can also develop precise treatments that can target cancer-affected specific organ systems and probably use a lesser dose of chemotherapy or radiation for the same effect. This prevents adverse effects and early cessation of treatments. However, we need further studies to exactly clarify and characterize these associations. In this review article, we focus on the association of the microbiome with individual cancers and highlight its future role in cancer screenings, diagnosis, prognosis, and treatments.
Collapse
Affiliation(s)
- Manasa Anipindi
- Internal Medicine, Einstein Medical Center Philadelphia, East Norriton, USA
| | - Daniel Bitetto
- Internal Medicine, Einstein Medical Center Philadelphia, East Norriton, USA
| |
Collapse
|
23
|
Lee BM, Park JW, Jo JH, Oh B, Chung G. Comparative analysis of the oral microbiome of burning mouth syndrome patients. J Oral Microbiol 2022; 14:2052632. [PMID: 35341209 PMCID: PMC8942548 DOI: 10.1080/20002297.2022.2052632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Burning mouth syndrome
(BMS) is a chronic pain condition accompanied by unpleasant burning sensations
of the oral mucosa. While multiple factors were proposed for the etiology, evidence
suggested a neuropathic pain origin while others suspected the use of
antibiotics as the underlying cause. Interestingly, several reports demonstrated
the intimate interaction of the nervous system and the microbiome. The current
study aims to elucidate the correlation of the oral microbiome with the pathophysiology
of the primary BMS. Microbiome samples obtained from the unstimulated whole
saliva of 19 primary BMS patients and 22 healthy controls were sequenced and analyzed
of the V3-V4 region of 16S rRNA gene. There was a distinct difference in the
microbial composition between the BMS and the control groups at all taxonomic levels.
Alpha diversity indexes of the oral microbiome were significantly lower in the
BMS group. The samples were readily distinguished by multidimensional scaling
analysis and linear discriminant analysis effect size. Streptococcus, Rothia, Bergeyella, and Granulicatella
genus were dominant in the BMS group, while Prevotella, Haemophilus,
Fusobacterium, Campylobacter,
and Allorevotella genus were more
abundant in the healthy group. Distinct microbiome signatures of BMS patients
suggested a diagnostic value and a potential role in the pathogenesis of BMS.
Collapse
Affiliation(s)
- Byeong-Min Lee
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji Woon Park
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Oral Medicine and Oral Diagnosis, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Department of Oral Medicine, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Jung Hwan Jo
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Department of Oral Medicine, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Bumjo Oh
- Department of Family Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Abstract
Little is known about the influence of gastric microbiota on host metabolism, even though the stomach plays an important role in the production of hormones involved in body weight regulation and glucose homeostasis. Proton pump inhibitors (PPIs) and Helicobacter pylori alter gut microbiota, but their impact on gastric microbiota in patients with obesity and the influence of these factors on the metabolic response to bariatric surgery is not fully understood. Forty-one subjects with morbid obesity who underwent sleeve gastrectomy were included in this study. The H. pylori group was established by the detection of H. pylori using a sequencing-based method (n = 16). Individuals in whom H. pylori was not detected were classified according to PPI treatment. Gastric biopsy specimens were obtained during surgery and were analyzed by a high-throughput-sequencing method. Patients were evaluated at baseline and 3, 6, and 12 months after surgery. β-Diversity measures were able to cluster patients according to their gastric mucosa-associated microbiota composition. H. pylori and PPI treatment are presented as two important factors for gastric mucosa-associated microbiota. H. pylori reduced diversity, while PPIs altered β-diversity. Both factors induced changes in the gastric mucosa-associated microbiota composition and its predicted functions. PPI users showed lower percentages of change in the body mass index (BMI) in the short term after surgery, while the H. pylori group showed higher glucose levels and lower percentages of reduction in body weight/BMI 1 year after surgery. PPIs and H. pylori colonization could modify the gastric mucosa-associated microbiota, altering its diversity, composition, and predicted functionality. These factors may have a role in the metabolic evolution of patients undergoing bariatric surgery. IMPORTANCE The gut microbiota has been shown to have an impact on host metabolism. In the stomach, factors like proton pump inhibitor treatment and Helicobacter pylori haven been suggested to alter gut microbiota; however, the influence of these factors on the metabolic response to bariatric surgery has not been fully studied. In this study, we highlight the impact of these factors on the gastric microbiota composition. Moreover, proton pump inhibitor treatment and the presence of Helicobacter pylori could have an influence on bariatric surgery outcomes, mainly on body weight loss and glucose homeostasis. Deciphering the relationship between gastric hormones and gastric microbiota and their contributions to bariatric surgery outcomes paves the way to develop gut manipulation strategies to improve the metabolic success of bariatric surgery.
Collapse
|
25
|
Wei LQ, Cheong IH, Yang GH, Li XG, Kozlakidis Z, Ding L, Liu NN, Wang H. The Application of High-Throughput Technologies for the Study of Microbiome and Cancer. Front Genet 2021; 12:699793. [PMID: 34394190 PMCID: PMC8355622 DOI: 10.3389/fgene.2021.699793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Human gut microbiome research, especially gut microbiome, has been developing at a considerable pace over the last decades, driven by a rapid technological advancement. The emergence of high-throughput technologies, such as genomics, transcriptomics, and others, has afforded the generation of large volumes of data, and in relation to specific pathologies such as different cancer types. The current review identifies high-throughput technologies as they have been implemented in the study of microbiome and cancer. Four main thematic areas have emerged: the characterization of microbial diversity and composition, microbial functional analyses, biomarker prediction, and, lastly, potential therapeutic applications. The majority of studies identified focus on the microbiome diversity characterization, which is reaching technological maturity, while the remaining three thematic areas could be described as emerging.
Collapse
Affiliation(s)
- Lu Qi Wei
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Io Hong Cheong
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Huan Yang
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Guang Li
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Lei Ding
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Throat Microbial Community Structure and Functional Changes in Postsurgery Laryngeal Carcinoma Patients. Appl Environ Microbiol 2020; 86:AEM.01849-20. [PMID: 33008819 DOI: 10.1128/aem.01849-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
The microbial community structure in the throat and its shift after laryngectomy in laryngeal squamous cell carcinoma (LSCC) patients were investigated. Thirty swab samples taken prior to laryngectomy (SLC), 18 samples 1 week after laryngectomy (SLCA1w), and 30 samples 24 weeks after laryngectomy (SLCA24w) from 30 LSCC patients were examined. Microbial diversity was profiled through sequencing the V3-V4 variable region of the 16S rRNA gene. Quantitative real-time PCR (qPCR) was used to validate the 16S rRNA sequence data for the V3-V4 region. The community structure and function of throat microbiota were assessed by PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) analysis. Both alpha and beta diversity results showed significant differences in the throat microbiota of LSCC patients before and after laryngectomy (P < 0.05). The drinking index of the SLC group was positively associated with the genus abundance of Prevotella (P < 0.05). The SLCA1w group had lower abundances of Fusobacterium, Leptotrichia, Lachnoanaerobaculum, and Veillonella than the SLC group (P < 0.05). The SLCA24w group had higher abundances of Streptococcus and Leptotrichia as well as lower abundances of Fusobacterium and Alloprevotella than the SLC group (P < 0.05). The throat microbiomes of the SLC group could be implicated in human cancer signaling pathways, as evidenced by PICRUSt analysis (P < 0.05). Our study clarifies alterations in throat microbial community structure and function in LSCC patients during the perioperative period and postoperative recovery period.IMPORTANCE Laryngeal squamous cell carcinoma greatly impacts patients' lives, and noninvasive means of prognostic assessment are valuable in determining the effectiveness of laryngectomy. We set out to study the microbial structure changes in the throat before and after laryngectomy and found the gene functions of several throat bacteria to be associated with human cancer signaling pathways. Our findings may offer insights into the disease management of patients with laryngeal squamous cell carcinoma. We hope to provide a means of using molecular mechanisms to improve the prognosis of laryngeal cancer treatment and to facilitate relevant research.
Collapse
|
27
|
Zuo HJ, Fu MR, Zhao HL, Du XW, Hu ZY, Zhao XY, Ji XQ, Feng XQ, Zhumajiang W, Zhou TH, Tian YL, Pei XF, Yu R, Hu XY. Study on the Salivary Microbial Alteration of Men With Head and Neck Cancer and Its Relationship With Symptoms in Southwest China. Front Cell Infect Microbiol 2020; 10:514943. [PMID: 33244461 PMCID: PMC7685052 DOI: 10.3389/fcimb.2020.514943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/15/2020] [Indexed: 02/05/2023] Open
Abstract
This study explored the association between oral microbes and head and neck cancer (HNC) as well as symptoms related to patients with HNC before surgical treatment. Fifty-six patients with HNC and 64 matched healthy controls were recruited from West China hospital in Southwest China. The demographic, clinical, and symptom data were collected. Salivary samples were collected to determine the microbial characteristics using 16S rRNA gene sequencing. Patients with HNC presented increased Capnocytophaga abundances. The oral microbial markers as Capnocytophaga (area under the curve=0.81) achieved a high classification power between the HNC patients and healthy controls. Moreover, using Capnocytophaga in conjunction with symptom of voice/speech difficulty achieved an overall predicting accuracy of 92.5% comparing with using Capnocytophaga alone (79.2% accuracy) in distinguishing the HNC patients from healthy controls. Salivary microbial profiles and HNC symptoms may be potential biomarkers for HNC screening.
Collapse
Affiliation(s)
- Hao-Jiang Zuo
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mei R. Fu
- Boston College William F. Connell School of Nursing, Chestnut Hill, MA, United States
| | - Hui-Ling Zhao
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xin-Wen Du
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Zi-Yi Hu
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xun-Ying Zhao
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiao-Qin Ji
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xian-Qiong Feng
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wuerken Zhumajiang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
- Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ting-Hui Zhou
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Li Tian
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiao-Fang Pei
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Rong Yu
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiu-Ying Hu
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
- Innovation Center of Nursing Research, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Jung Y, Tagele SB, Son H, Ibal JC, Kerfahi D, Yun H, Lee B, Park CY, Kim ES, Kim SJ, Shin JH. Modulation of Gut Microbiota in Korean Navy Trainees following a Healthy Lifestyle Change. Microorganisms 2020; 8:microorganisms8091265. [PMID: 32825401 PMCID: PMC7569816 DOI: 10.3390/microorganisms8091265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Environmental factors can influence the composition of gut microbiota, but understanding the combined effect of lifestyle factors on adult gut microbiota is limited. Here, we investigated whether changes in the modifiable lifestyle factors, such as cigarette smoking, alcohol consumption, sleep duration, physical exercise, and body mass index affected the gut microbiota of Korean navy trainees. The navy trainees were instructed to stop smoking and alcohol consumption and follow a sleep schedule and physical exercise regime for eight weeks. For comparison, healthy Korean civilians, who had no significant change in lifestyles for eight weeks were included in this study. A total of 208 fecal samples were collected from navy trainees (n = 66) and civilians (n = 38) at baseline and week eight. Gut flora was assessed by sequencing the highly variable region of the 16S rRNA gene. The α-and β -diversity of gut flora of both the test and control groups were not significantly changed after eight weeks. However, there was a significant difference among individuals. Smoking had a significant impact in altering α-diversity. Our study showed that a healthy lifestyle, particularly cessation of smoking, even in short periods, can affect the gut microbiome by enhancing the abundance of beneficial taxa and reducing that of harmful taxa.
Collapse
Affiliation(s)
- YeonGyun Jung
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
| | - Setu Bazie Tagele
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
- Department of Applied Plant Sciences, University of Gondar, Gondar 196, Ethiopia
| | - HyunWoo Son
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
| | - Jerald Conrad Ibal
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
| | - Dorsaf Kerfahi
- Department of Biological Sciences, Keimyung University, Daegu 42601, Korea;
| | - Hyunju Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (H.Y.); (B.L.); (C.Y.P.)
| | - Bora Lee
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (H.Y.); (B.L.); (C.Y.P.)
| | - Clara Yongjoo Park
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (H.Y.); (B.L.); (C.Y.P.)
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Sang-Jun Kim
- Department of Natural Sciences, Republic of Korea Naval Academy, Changwon 51702, Korea;
| | - Jae-Ho Shin
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
- Correspondence: ; Tel.: +82-53-950-5716; Fax: +82-53-953-7233
| |
Collapse
|
29
|
Sun J, Tang Q, Yu S, Xie M, Xie Y, Chen G, Chen L. Role of the oral microbiota in cancer evolution and progression. Cancer Med 2020; 9:6306-6321. [PMID: 32638533 PMCID: PMC7476822 DOI: 10.1002/cam4.3206] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria identified in the oral cavity are highly complicated. They include approximately 1000 species with a diverse variety of commensal microbes that play crucial roles in the health status of individuals. Epidemiological studies related to molecular pathology have revealed that there is a close relationship between oral microbiota and tumor occurrence. Oral microbiota has attracted considerable attention for its role in in‐situ or distant tumor progression. Anaerobic oral bacteria with potential pathogenic abilities, especially Fusobacterium nucleatum and Porphyromonas gingivalis, are well studied and have close relationships with various types of carcinomas. Some aerobic bacteria such as Parvimonas are also linked to tumorigenesis. Moreover, human papillomavirus, oral fungi, and parasites are closely associated with oropharyngeal carcinoma. Microbial dysbiosis, colonization, and translocation of oral microbiota are necessary for implementation of carcinogenic functions. Various underlying mechanisms of oral microbiota‐induced carcinogenesis have been reported including excessive inflammatory reaction, immunosuppression of host, promotion of malignant transformation, antiapoptotic activity, and secretion of carcinogens. In this review, we have systemically described the impact of oral microbial abnormalities on carcinogenesis and the future directions in this field for bringing in new ideas for effective prevention of tumors.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yanling Xie
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
30
|
Wang B, Zhang Y, Zhao Q, Yan Y, Yang T, Xia Y, Chen H. Patients With Reflux Esophagitis Possess a Possible Different Oral Microbiota Compared With Healthy Controls. Front Pharmacol 2020; 11:1000. [PMID: 32733243 PMCID: PMC7358540 DOI: 10.3389/fphar.2020.01000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Aim Reflux Esophagitis (RE) is caused by a variety of factors including anatomical and functional alterations involved in the pathogenesis. Oral microbiota is influenced by many factors such as heredity, nutrition, environments and host conditions, but little is known about relationship between oral microbiota and RE. The aim of this study was to explore whether the oral microbiota is changed in patients with RE. Methods To clarify this correlation, fresh saliva samples from all subjects were collected and then oral microorganism diversity was analysed in 55 patients with RE and 51 controls via hypervariable tag sequencing and analyzing the V3–V4 region of the 16S rDNA gene. Results There was no difference found in oral microbial diversity between RE patients and healthy controls by Shannon diversity index (p=0.60) and Simpson diversity index (p= 0.38). The abundance of Proteobacteria was lower, but Bacteroidetes was higher in patients with RE at the phylum level. At the genus level the abundances of Prevotella, Veillonella, Megasphaera, Peptostreptococcus, Atopobium, Oribacterium, Eubacterium, and Lachnoanaerobaculum were increased, while Neisseria, Streptococcus, Rothia, Granulicatella, Gemella, Aggregatibacter, Treponema, Campylobacter, Filifactor, Corynebacterium, and Lactivibrio were decreased in RE patients than the controls. Conclusions Our study suggested oral microbial dysbiosis in patients with RE, and identified bacterial species with potential biomarker significance. Further studies are required to understand role of oral microbial dysbiosis in the pathogenesis of RE.
Collapse
Affiliation(s)
- Baoyong Wang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Yu Zhang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Qiaofei Zhao
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Yifan Yan
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Tian Yang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Yanli Xia
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hongwei Chen
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
31
|
Zhu C, Yuan C, Wei FQ, Sun XY, Zheng SG. Comparative evaluation of peptidome and microbiota in different types of saliva samples. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:686. [PMID: 32617306 PMCID: PMC7327340 DOI: 10.21037/atm-20-393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Clinical and research interest in salivary peptidome and microbiota is ever-growing owing to its great value for diagnosis, risk assessment and prediction of prognosis in oral and systemic diseases. Saliva can be stimulated for the purpose of rapid collection, but currently there are no studies systematically addressing the similarities and differences of salivary peptidome and microbiota in different types of samples. The purpose of this study was to investigate the variations of salivary peptidome and microbial profiles in response to different stimulating conditions. Methods Unstimulated saliva and three types of stimulated saliva samples (olfaction, gustation, and mastication stimulated saliva) were collected from 10 systematically and orally healthy donors. The peptidome profiles were detected by weak cation exchange magnetic beads and analyzed through matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS), while their microbial profiles were analyzed by 16S rDNA V3-V4 hypervariable region amplicon sequencing utilizing the Illumina MiSeq PE300 platform. The distance matrixes of salivary peptidome and microbial profiles were generated and the intra-individual distances were extracted, then the variations brought by different sampling conditions and repeated collections were compared. Results By comparisons of the overall salivary peptidome and microbial profiles, olfactory stimulation led to minimal variations comparing with that of unstimulated saliva, but appreciable variations were observed between saliva samples collected with gustatory/masticatory stimulation and unstimulated saliva. The three types of stimulated saliva exhibited significantly different peptidome and microbial profiles. Conclusions Stimulated saliva collected in response to olfactory stimulation is an appropriate alternative to unstimulated saliva, whereas gustatory/masticatory stimulation introduced appreciable variations. It is suggested that only one type of stimulating method should be used throughout one peptidome/microbiome research, which provides comprehensive insight into the optimization of sampling methods for salivaomic studies in the future.
Collapse
Affiliation(s)
- Ce Zhu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Fang-Qiao Wei
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiang-Yu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shu-Guo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
32
|
Konings H, Stappers S, Geens M, De Winter BY, Lamote K, van Meerbeeck JP, Specenier P, Vanderveken OM, Ledeganck KJ. A Literature Review of the Potential Diagnostic Biomarkers of Head and Neck Neoplasms. Front Oncol 2020; 10:1020. [PMID: 32670885 PMCID: PMC7332560 DOI: 10.3389/fonc.2020.01020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Head and neck neoplasms have a poor prognosis because of their late diagnosis. Finding a biomarker to detect these tumors in an early phase could improve the prognosis and survival rate. This literature review provides an overview of biomarkers, covering the different -omics fields to diagnose head and neck neoplasms in the early phase. To date, not a single biomarker, nor a panel of biomarkers for the detection of head and neck tumors has been detected with clinical applicability. Limitations for the clinical implementation of the investigated biomarkers are mainly the heterogeneity of the study groups (e.g., small population in which the biomarker was tested, and/or only including high-risk populations) and a low sensitivity and/or specificity of the biomarkers under study. Further research on biomarkers to diagnose head and neck neoplasms in an early stage, is therefore needed.
Collapse
Affiliation(s)
- Heleen Konings
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sofie Stappers
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Margot Geens
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Department of Pneumology, Antwerp University Hospital, Edegem, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jan P van Meerbeeck
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Department of Pneumology, Antwerp University Hospital, Edegem, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pol Specenier
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Olivier M Vanderveken
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Otorhinolaryngology-Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,Department of Translational Neurosciences, Antwerp University, Antwerp, Belgium
| | - Kristien J Ledeganck
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Zhu C, Yuan C, Wei FQ, Sun XY, Zheng SG. Intraindividual Variation and Personal Specificity of Salivary Microbiota. J Dent Res 2020; 99:1062-1071. [PMID: 32374655 DOI: 10.1177/0022034520917155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Salivary microbiota is a typical habitat of the human microbiome. This study intended to use salivary microbiota as a model aiming to systematically address the influence of collection methods and temporal dynamics on the human microbiota compared to personal specificity. We carried out a supervised short-term longitudinal study to evaluate the influence of the change of collection methods and sampling time point on salivary microbiota in 10 systemically and orally healthy individuals with certain confounding factors (sex, oral and general health state, medication history, physical exercise, diet, and oral hygiene behavior) controlled before and during the sampling period. The microbial profiles were analyzed by 16S rDNA V3 to V4 hypervariable region amplicon sequencing. The taxonomic structure represented by the dominant species and the weighted UniFrac distance algorithm were used to demonstrate the individual specificity and the intraindividual variation introduced by the change of collection method and sampling time point. The findings suggested individual specificity existed in salivary microbiota from individuals with similar oral and general health status. The intraindividual variation brought by the change of collection method or sampling time point might introduce remarkable perturbation with the personal specificity. Insights into the intraindividual variation and personal specificity of salivary microbiota will enhance our understanding in salivary microbiota-related research. We recommend keeping collection conditions consistent within a study to avoid interference brought by the sampling. The strategy of repeated sampling at multiple time points as representative samples, as well as thorough interpretation of the complex relationships and causality between microbiome composition and disease without the interference of temporal dynamics, is optimal for research exploring the relationship between the salivary microbiome and disease.
Collapse
Affiliation(s)
- C Zhu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - C Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - F Q Wei
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - X Y Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - S G Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
34
|
Belstrøm D. The salivary microbiota in health and disease. J Oral Microbiol 2020; 12:1723975. [PMID: 32128039 PMCID: PMC7034443 DOI: 10.1080/20002297.2020.1723975] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
The salivary microbiota (SM), comprising bacteria shed from oral surfaces, has been shown to be individualized, temporally stable and influenced by diet and lifestyle. SM reflects local bacterial alterations of the supragingival and subgingival microbiota, and periodontitis and dental-caries associated characteristics of SM have been reported. Also, data suggest an impact of systemic diseases on SM as demonstrated in patients with a wide variety of systemic diseases including diabetes, cancer, HIV and rheumatoid arthritis. The presence of systemic diseases seems to influence salivary levels of specific bacterial species, as well as α- and β-diversity of SM. The composition of SM might thereby potentially mirror oral and general health status. The contentious development of advanced molecular techniques such as metagenomics, metatranscriptomics and metabolomics has enabled the possibility to address bacterial functions rather than presence in microbial samples. However, at present only a few studies have employed such techniques on SM to reveal functional and metabolic characteristics in oral health and disease. Future studies are therefore warranted to illuminate the possible impact of metabolic functions of SM on oral and general health status. Ultimately, such an approach has the possibility to reveal novel and personalized therapeutic avenues in oral and general medicine.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section for Periodontology and Microbiology, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Panda M, Rai AK, Rahman T, Das A, Das R, Sarma A, Kataki AC, Chattopadhyay I. Alterations of salivary microbial community associated with oropharyngeal and hypopharyngeal squamous cell carcinoma patients. Arch Microbiol 2019; 202:785-805. [PMID: 31832691 DOI: 10.1007/s00203-019-01790-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
The highest number (35.1% of global incident cases) of new oropharyngeal (OP) and hypopharyngeal (HP) cancer cases was reported in South-Central Asia. The highest incidence of HP cancer in India was reported in East Khasi Hills District of Meghalaya, Aizawl District of Mizoram, and Kamrup Urban District of Assam. HP and OP cancer showed the highest mortality rate, worst prognoses and the highest rate of nodal metastases and distant metastases. Thus, research is required to detect specific biomarkers for early prevention and diagnosis for these cancers. Oral microbiome signatures in saliva are considered as a potential diagnostic biomarker for OP and HP cancer. Bacterial profile alterations in OP and HP cancer have not been reported in India population, to establish the association of oral bacteria in the progression of OP and HP cancer; we studied bacterial communities in saliva of eight OP and seven HP cancer patients as compared to healthy controls using 16S rRNA V3-V4 region sequencing. The higher abundance of Haemophilus parainfluenzae, Haemophilus influenzae and Prevotella copri and lower abundance of Rothia mucilaginosa, Aggregatibacter segnis, Veillonella dispar, Prevotella nanceiensis, Rothia aeria, Capnocytophaga ochracea, Neisseria bacilliformis, Prevotella nigrescens and Selenomonas noxia in saliva of OP and HP cancer patients may be considered as a non-invasive diagnostic biomarker for OP and HP cancer patients. Streptococcus anginosus may be considered as a non-invasive diagnostic biomarker for OP cancer patients only. Therefore, evaluation of salivary microbial biomarkers may be informative to understand the pathobiology and carcinogenesis of OP and HP cancer.
Collapse
Affiliation(s)
- Madhusmita Panda
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, India
| | - Avdhesh Kumar Rai
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Tashnin Rahman
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Ashok Das
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Rajjyoti Das
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Anupam Sarma
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Amal Ch Kataki
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Indranil Chattopadhyay
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, India.
| |
Collapse
|
36
|
Yeoh YK, Chan MH, Chen Z, Lam EWH, Wong PY, Ngai CM, Chan PKS, Hui M. The human oral cavity microbiota composition during acute tonsillitis: a cross-sectional survey. BMC Oral Health 2019; 19:275. [PMID: 31806002 PMCID: PMC6896734 DOI: 10.1186/s12903-019-0956-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Microbial culture-based investigations of inflamed tonsil tissues have previously indicated enrichment of several microorganisms such as Streptococcus, Staphylococcus and Prevotella. These taxa were also largely reflected in DNA sequencing studies performed using tissue material. In comparison, less is known about the response of the overall oral cavity microbiota to acute tonsillitis despite their role in human health and evidence showing that their compositions are correlated with diseases such as oral cancers. In addition, the influence of subject-specific circumstances including consumption of prescription antibiotics and smoking habits on the microbiology of acute tonsillitis is unknown. METHODS We collected oral rinse samples from 43 individuals admitted into hospital for acute tonsillitis and 165 non-disease volunteers recruited from the public, and compared their microbial community compositions using 16S rRNA gene sequencing. We assessed the impact of tonsillitis, whether subjects were prescribed antibiotics, the presence of oral abscesses and their smoking habits on community composition, and identified specific microbial taxa associated with tonsillitis and smoking. RESULTS Oral rinse community composition was primarily associated with disease state (tonsillitis vs non-tonsillitis) although its effect was subtle, followed by smoking habit. Multiple Prevotella taxa were enriched in tonsillitis subjects compared to the non-tonsillitis cohort, whereas the non-tonsillitis cohort primarily showed associations with several Neisseria sequence variants. The presence of oral abscesses did not significantly influence community composition. Antibiotics were prescribed to a subset of individuals in the tonsillitis cohort but we did not observe differences in community composition associated with antibiotics consumption. In both tonsillitis and non-tonsillitis cohorts, smoking habit was associated with enrichment of several Fusobacterium variants. CONCLUSIONS These findings show that the oral cavity microbial community is altered during acute tonsillitis, with a consistent enrichment of Prevotella during tonsillitis raising the possibility of targeted interventions. It also supports the possible link between smoking, Fusobacteria and oral cancers.
Collapse
Affiliation(s)
- Yun Kit Yeoh
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Hin Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Yan Chai Hospital, Hong Kong SAR, China
| | - Zigui Chen
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eddy W H Lam
- Department of Otorhinolaryngology, Head and Neck Surgery, Yan Chai Hospital, Hong Kong SAR, China
| | - Po Yee Wong
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Man Ngai
- Department of Otorhinolaryngology, Head and Neck Surgery, Yan Chai Hospital, Hong Kong SAR, China
| | - Paul K S Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mamie Hui
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|