1
|
Wang Y, Wang Y, Jiang Y, Qin Q, Wei S. The essential function of cathepsin X of the orange-spotted grouper, Epinephelus coioides during SGIV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105278. [PMID: 39395685 DOI: 10.1016/j.dci.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Cathepsin X, a class of cysteine proteases in the lysosome, involved in intracellular protein degradation processes. Numerous reports revealed that many kinds of cysteine proteases played a crucial role in pathogen invasion. To investigate the relationship between cathepsin X of teleost fish and virus infection, EcCX was cloned and characterized in the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of EcCX included 909 nucleotides and encoded a protein consisting of 302 amino acids, which shared 75% and 56% identity with zebrafish and humans, respectively. The protein EcCX mainly consisted of a signal peptide (1-19 aa), a pro-pre-peptide region (20-55 aa), and a mature cysteine protease region (56-302 aa). Subcellular localization analysis showed that EcCX was mainly distributed in the cytoplasm, but EcCX ectoped to the vicinity of apoptotic vesicles in FHM cells during SGIV infection. Following stimulation with SGIV or Poly (dA:dT), there was a notable rise in the expression levels of EcCX. EcCX overexpression facilitated virus infection, upregulated the production of inflammatory factors, and induced the activation of the NF-κB promoter. Furthermore, the overexpression of EcCX also accelerated the process of SGIV-induced apoptosis, potentially by enhancing the promoter activity of P53 and AP-1. Overall, our findings demonstrated a correlation between the function of EcCX and SGIV infection, providing a new understanding of the mechanisms involved in fish virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yewen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
2
|
Zhang L, Xu L, Zhang X, Liao J, Kang S, Wu S, Qin Q, Wei J. Singapore grouper iridovirus VP12 evades the host antiviral immune response by targeting the cGAS-STING signalling pathway. J Gen Virol 2024; 105. [PMID: 39392059 DOI: 10.1099/jgv.0.002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The emergence of Singapore grouper iridovirus (SGIV) has caused huge losses to grouper farming. SGIV is a DNA virus and belongs to the genus Ranavirus. Groupers infected with SGIV showed haemorrhaging and swelling of the spleen, with a mortality rate of more than 90% within a week. Therefore, it is of great significance to study the escape mechanism of SGIV from host innate immunity for the prevention and treatment of viral diseases in grouper. In this study, the viral proteins that interact with EccGAS were identified by mass spectrometry, and the SGIV VP12 protein that inhibits cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated antiviral innate immunity was screened by the dual-luciferase reporter gene assay. VP12 belongs to the late gene of the virus. The immunofluorescence analysis demonstrated that VP12 was aggregated and distributed in the cytoplasm during the early stage of virus infection and translocated into the nucleus at the late stage of virus infection. VP12 inhibited the activation of IFN3, ISRE and NF-κB promoter activities mediated by cGAS-STING, EcTBK1 and EcIRF3. Quantitative real-time PCR analysis showed that VP12 inhibited the expression of interferon-related genes, including those mediated by cGAS-STING. VP12 enhanced the inhibition of IFN3, ISRE and NF-κB promoter activity by EccGAS, EccGAS-mab-21 and EccGAS-delete-mab21. The interaction between VP12 and EccGAS was found to be domain independent. The immunoprecipitation results demonstrated that VP12 interacted and co-localized with EccGAS, EcTBK1 and EcIRF3. VP12 degraded the protein levels of EcTBK1 and EcIRF3 and degraded EcIRF3 through the protease pathway. These results suggest that SGIV VP12 protein escapes the cGAS-STING signalling pathway and degrades EcIRF3 protein expression through the protease pathway.
Collapse
Affiliation(s)
- Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaming Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaozhu Kang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, PR China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, PR China
| |
Collapse
|
3
|
Dilshan MAH, Omeka WKM, Udayantha HMV, Liyanage DS, Rodrigo DCG, Hanchapola HACR, Kodagoda YK, Lee J, Lee S, Jeong T, Kim KM, Han HJ, Wan Q, Lee J. Molecular features, antioxidant potential, and immunological expression assessment of thioredoxin-like protein 1 (TXNL1) in yellowtail clownfish (Amphiprion clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109009. [PMID: 37598735 DOI: 10.1016/j.fsi.2023.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Thioredoxin-like protein 1 (TXNL1) is a redox-active protein belonging to the thioredoxin family, which mainly controls the redox status of cells. The TXNL1 gene from Amphiprion clarkii (AcTXNL1) was obtained from a pre-established transcriptome database. The AcTXNL1 is encoded with 289 amino acids and is predominantly localized in the cytoplasm and nucleus. The TXN domain of AcTXNL1 comprises a34CGPC37 motif with redox-reactive thiol (SH-) groups. The spatial distribution pattern of AcTXNL1 mRNA was examined in different tissues, and the muscle was identified as the highest expressed tissue. AcTXNL1 mRNA levels in the blood and gills were significantly increased in response to different immunostimulants. In vitro antioxidant capacity of the recombinant AcTXNL1 protein (rACTXNL1) was evaluated using the ABTS free radical-scavenging activity assay, cupric ion reducing antioxidant capacity assay, turbidimetric disulfide reduction assay, and DNA nicking protection assay. The potent antioxidant activity of rAcTXNL1 exhibited a concentration-dependent manner in all assays. Furthermore, in the cellular environment, overexpression of AcTXNL1 increased cell viability under H2O2 stress and reduced nitric oxide (NO) production induced by lipopolysaccharides (LPS). Collectively, the experimental results revealed that AcTXNL1 is an antioxidant and immunologically important gene in A. clarkii.
Collapse
Affiliation(s)
- M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Kyong Min Kim
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, Republic of Korea
| | - Hyun-Ja Han
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
4
|
Guo M, Wei J, Zhou Y, Qin Q. Antiviral immunity of grouper MAP kinase phosphatase 1 to Singapore grouper iridovirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104674. [PMID: 36889370 DOI: 10.1016/j.dci.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Singapore grouper iridovirus (SGIV), with various mechanisms for evading and modulating host, has inflicted heavy economic losses in the grouper aquaculture. MAP kinase phosphatase 1 (MKP-1) regulates mitogen-activated protein kinases (MAPKs) to mediate the innate immune response. Here, we cloned EcMKP-1, an MKP-1 homolog from the orange-spotted grouper Epinephelus coioides, and investigated its role in the infection of SGIV. In juvenile grouper, EcMKP-1 was highly upregulated and peaked at different times after injection with lipopolysaccharide, polyriboinosinic polyribocytidylic acid and SGIV. EcMKP-1 expression in heterologous fathead minnow cells was able to suppress SGIV infection and replication. Furthermore, EcMKP-1 was a negative regulator of c-Jun N-terminal kinase (JNK) phosphorylation early in SGIV infection. EcMKP-1 decreased the apoptotic percentage and caspase-3 activity during the late stage of SGIV replication. Our results demonstrate critical functions of EcMKP-1 in antiviral immunity, JNK dephosphorylation and anti-apoptosis during SGIV infection.
Collapse
Affiliation(s)
- Minglan Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, 572000, PR China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, PR China.
| |
Collapse
|
5
|
Zhang L, Zhang X, Liao J, Xu L, Kang S, Chen H, Sun M, Wu S, Xu Z, Wei S, Qin Q, Wei J. Grouper cGAS is a negative regulator of STING-mediated interferon response. Front Immunol 2023; 14:1092824. [PMID: 36845102 PMCID: PMC9945316 DOI: 10.3389/fimmu.2023.1092824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is one of the classical pattern recognition receptors that recognizes mainly intracytoplasmic DNA. cGAS induces type I IFN responses to the cGAS-STING signaling pathway. To investigate the roles of cGAS-STING signaling pathway in grouper, a cGAS homolog (named EccGAS) was cloned and identified from orange-spotted grouper (Epinephelus coioides). The open reading frame (ORF) of EccGAS is 1695 bp, encodes 575 amino acids, and contains a Mab-21 typical structural domain. EccGAS is homologous to Sebastes umbrosus and humans at 71.8% and 41.49%, respectively. EccGAS mRNA is abundant in the blood, skin, and gills. It is uniformly distributed in the cytoplasm and colocalized in the endoplasmic reticulum and mitochondria. Silencing of EccGAS inhibited the replication of Singapore grouper iridovirus (SGIV) in grouper spleen (GS) cells and enhanced the expression of interferon-related factors. Furthermore, EccGAS inhibited EcSTING-mediated interferon response and interacted with EcSTING, EcTAK1, EcTBK1, and EcIRF3. These results suggest that EccGAS may be a negative regulator of the cGAS-STING signaling pathway of fish.
Collapse
Affiliation(s)
- Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiaming Liao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaozhu Kang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mengshi Sun
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao, China,Pilot National Laboratory for Marine Science and Technology, Qingdao, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,*Correspondence: Qiwei Qin, ; Jingguang Wei,
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Department of Biological Sciences, National University of Singapore, Singapore, Singapore,*Correspondence: Qiwei Qin, ; Jingguang Wei,
| |
Collapse
|
6
|
Wang Y, Xu S, Han C, Huang Y, Wei J, Wei S, Qin Q. Modulatory effects of curcumin on Singapore grouper iridovirus infection-associated apoptosis and autophagy in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 131:84-94. [PMID: 36206994 DOI: 10.1016/j.fsi.2022.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Singapore grouper iridovirus (SGIV) with high pathogenicity can cause great economic losses to aquaculture industry. Thus, it is of urgency to find effective antiviral strategies to combat SGIV. Curcumin has been demonstrated effective antiviral activity on SGIV infection. However, the molecular mechanism behind this action needs to be further explanations. In view of the fact that apoptosis (type I programmed cell death) and autophagy (type II programmed cell death) were key regulators during SGIV infection, we aimed to investigate the relevance between antiviral activity of curcumin and SGIV-associated programmed and clarify the role of potential signaling pathways. Our results showed that curcumin suppressed SGIV-induced apoptosis. At the same time, the activities of caspase-3/8/9 and activating protein-1 (AP-1), P53, nuclear factor-κB (NF-ΚB) promoters were inhibited. Besides, the activation of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen activate protein kinase (p38 MAPK) signal pathways were suppressed in curcumin-treated cells. On the other hand, curcumin down-regulated protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway to promote autophagy representing by increased LC3 II and Beclin1 expression. Curcumin also hindered the transition of cells from G1 to S phase, as well as down-regulating the expression of CyclinD1. Our findings revealed the resistance curcumin induced to the effects of DNA virus on cell apoptosis and autophagy and the insights gained from this study may be of assistance to understand the molecular mechanism of curcumin against DNA virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
7
|
Gao M, Zhu H, Guo J, Lei Y, Sun W, Lin H. Tannic acid through ROS/TNF-α/TNFR 1 antagonizes atrazine induced apoptosis, programmed necrosis and immune dysfunction of grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 131:312-322. [PMID: 36220537 DOI: 10.1016/j.fsi.2022.09.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATR) is a commonly used triazine herbicide, which will remain in the water source, soil and biological muscle tissue for a long time, threatening the survival of related organisms and future generations. Tannic acid (TAN), a glucosyl compound found in gallnuts, has previously been shown to antagonize heavy metal toxicity, antioxidant activity, and inflammation. However, it is unclear whether TAN can antagonize ATR-induced Grass carp hepatocytes (L8824 cells) cytotoxicity. Therefore, we treated L8824 cells with 3 μg mL-1 ATR for 24 h to establish a toxic group model. The experimental data of flow cytometry and AO/EB staining together showed that the ratio of apoptosis and necrosis in L8824 cells after ATR exposure was significantly higher than that in the control group. Furthermore, RT-qPCR showed that inflammatory factors (TNF-α, IL-1β, IL-6, INF-γ) were up-regulated and antimicrobial peptides (hepcidin, β-defensin and LEAP2) were induced down-regulated in L8824 cells, leading to immune dysfunction. The measurement results of oxidative stress-related indicators showed that the levels of ROS and MDA increased after ATR exposure, the overall anti-oxidative system was down-regulated. Western blotting confirmed that TNF-α/TNFR 1-related genes were also up-regulated. This indicates that ATR stimulates oxidative stress in L8824 cells, which in turn promotes the binding of TNF-α to TNFR 1. In addition, TRADD, FADD, Caspase-3, P53, RIP1, RIP3 and MLKL were found to be significantly up-regulated by Western blotting and RT-qPCR. Conditioned after ATR exposure compared to controls. It indicates that ATR activates apoptosis and necrosis of TNF-α/TNFR 1 pathway by inducing oxidative stress in L8824 cells. Furthermore, the use of TAN (5 μM) significantly alleviated the toxic effects of ATR on L8824 cells mentioned above. In conclusion, TAN restrains ATR-induced apoptosis, programmed necrosis and immune dysfunction through the ROS/TNF-α/TNFR 1 pathway.
Collapse
Affiliation(s)
- Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijun Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongiiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
8
|
Li X, Huang J, Liu C, Chen J, Wang S, Wei S, Yang M, Qin Q. Grouper ATF1 plays an antiviral role in response to iridovirus and nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:380-390. [PMID: 36150412 DOI: 10.1016/j.fsi.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Transcription factor ATF1 is a member of the ATF/CREB family of the CREB subfamily and is involved in physiological processes such as tumorigenesis, organ development, reproduction, cell survival, and apoptosis in mammals. However, studies on ATF1 in fish have been relatively poorly reported, especially on its role in antiviral immunity in fish. In this study, ATF1 from orange-spotted grouper (named EcATF1) were cloned and characterized. Molecular characterization analysis showed that EcATF1 encodes a 307-amino-acid protein, containing PKID and bZIP_CREB1 domains. Homology analysis showed that had the highest homology with E. lanceolatus(88.93%). Tissue expression pattern showed that EcATF1 was extensively distributed in twelve selected tissues, with higher expression in the skin, gill, liver and spleen. Subcellular localization analysis showed that EcATF1 was distributed in the nucleus of GS cells. EcATF1 overexpression inhibits Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) replication, as evidenced by a diminished degree of CPE induced by SGIV and RGNNV and a reduction in the level of viral gene transcription and viral capsid protein expression. Furthermore, EcATF1 overexpression upregulated interferon pathway-related genes and proinflammatory factors, and increased the promoter activities of IFN, IFN stimulated response element (ISRE), and nuclear factor κB(NFκB). Meanwhile, EcATF1 overexpression positive regulate the MHC-I signaling pathway, and upregulated the promoter activity of MHC-I. Collectively, these data demonstrate that EcATF1 plays an important role during the host antiviral immune response. This study provides insights into the function of ATF1 in the immune system of lower vertebrates.
Collapse
Affiliation(s)
- Xinshuai Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianling Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Cuiyu Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
9
|
Pan Y, Liu K, Huang J, Cheng A, Wang M, Chen S, Yang Q, Wu Y, Sun D, Mao S, Zhu D, Liu M, Zhao X, Zhang S, Gao Q, Ou X, Tian B, Yin Z, Jia R. Molecular cloning, functional characterization of duck TRADD and its effect on infection with duck Tembusu virus. Vet Microbiol 2022; 274:109573. [PMID: 36116188 DOI: 10.1016/j.vetmic.2022.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) associated death domain protein (TRADD) is a pivotal adaptor in TNF signaling pathway and plays an important role in apoptosis and immune regulation. The function of TRADD has been investigated extensively in mammals, however, the role of TRADD in ducks remains obscure. To reveal the function of duck TRADD (duTRADD) in the apoptosis and innate immune response, the TRADD homologue of mallard (Anas platyrhynchos) has been cloned and the function of duTRADD is investigated in this study. We conducted sequence analysis of the duTRADD, the open reading frame (ORF) region of duTRADD gene was 1065 bp, encoding 354 amino acids (aa), which shares similar functional domain to its mammalian counterpart. Tissue distribution profile of duTRADD in 7-day-old ducklings showed that the expression level of the gene was the highest in heart, followed by liver and brain. Accordingly, duck Tembusu virus (DTMUV) has been shown to decrease duTRADD expression, while overexpression of duTRADD inhibited DTMUV replication in a dose-dependent manner. Furthermore, duTRADD activated the transcriptional activity of caspase-3/8/9, the flow cytometry showed that duTRADD significantly induced apoptosis. However, duTRADD showed hardly any effect on the transcriptional activity of IFN-α/β and its downstream interferon-stimulated genes (ISGs). The current data support the conclusion that duTRADD is a novel pro-apoptotic protein with a critical role in defense against DTMUV invasion. These results lay the theoretical foundation for the development of new anti-DTMUV strategies.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Ke Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
10
|
Wang Y, Han H, Zhu K, Xu S, Han C, Jiang Y, Wei S, Qin Q. Functional Analysis of the Cathepsin D Gene Response to SGIV Infection in the Orange-Spotted Grouper, Epinephelus coioides. Viruses 2022; 14:v14081680. [PMID: 36016302 PMCID: PMC9413388 DOI: 10.3390/v14081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Lysosomal aspartic protease Cathepsin D (CD) is a key regulator and signaling molecule in various biological processes including activation and degradation of intracellular proteins, the antigen process and programmed cell death. However, the function of fish CD in virus infection remains largely unknown. (2) Methods: The functions of the CD gene response to SGIV infection was determined with light microscopy, reverse transcription quantitative PCR, Western blot and flow cytometry. (3) Results: In this study, Ec-Cathepsin D (Ec-CD) was cloned and identified from the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of Ec-CD consisted of 1191 nucleotides encoding a 396 amino acid protein with a predicted molecular mass of 43.17 kDa. Ec-CD possessed typical CD structural features including an N-terminal signal peptide, a propeptide region and a mature domain including two glycosylation sites and two active sites, which were conserved in other CD sequences. Ec-CD was predominantly expressed in the spleen and kidneys of healthy groupers. A subcellular localization assay indicated that Ec-CD was mainly distributed in the cytoplasm. Ec-CD expression was suppressed by SGIV stimulation and Ec-CD-overexpressing inhibited SGIV replication, SGIV-induced apoptosis, caspase 3/8/9 activity and the activation of reporter gene p53 and activating protein-1 (AP-1) in vitro. Simultaneously, Ec-CD overexpression obviously restrained the activated mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). In addition, Ec-CD overexpression negatively regulated the transcription level of pro-inflammatory cytokines and activation of the NF-κB promotor. (4) Conclusions: Our findings revealed that the Ec-CD possibly served a function during SGIV infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Honglin Han
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Suifeng Xu
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Chengzong Han
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Yunxiang Jiang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Shina Wei
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
- Correspondence: (S.W.); (Q.Q.); Tel.: +86-20-87577692 (Q.Q.); Fax: +86-20-87577692 (Q.Q.)
| | - Qiwei Qin
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 528478, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence: (S.W.); (Q.Q.); Tel.: +86-20-87577692 (Q.Q.); Fax: +86-20-87577692 (Q.Q.)
| |
Collapse
|
11
|
Li PH, He JY, Cai YJ, Wei YS, Zhu XL, Yang JDH, Yang SQ, Zhou S, Qin QW, Sun HY. Molecular cloning, inducible expression and function analysis of Epinephelus coioides Sec6 response to SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:462-471. [PMID: 35483595 DOI: 10.1016/j.fsi.2022.04.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Exocyst complex component 3 Sec6 of mammals, one of the components of the exocyst complex, participates in numerous cellular functions, such as promoting cell migration and inhibiting apoptosis. In this study, the Sec6 was obtained from Epinephelus coioides, an economically important cultured fish. The full length of E. coioides Sec6 was 2655 bp including a 245 bp 5' UTR, a 154 bp 3' UTR, and a 2256 bp open reading frame (ORF) encoding 751 amino acids, with a molecular mass of 86.76 kDa and a theoretical pI of 5.57. Sec6 mRNA was detected in all the tissues examined, but the expression level is different in these tissues. Using fluorescence microscopy, Sec6 were distributed in both the nucleus and the cytoplasm. After SGIV infection, the expression of E. coioides Sec6 was significantly up-regulated in both trunk kidney and spleen response to Singapore grouper iridovirus (SGIV), an important pathogens of E. coioides. Sec6 could increase the SGIV-induced cytopathic effects (CPE), the expression of the SGIV genes VP19, LITAF, MCP, ICP18 and MCP, and the viral titers. Besides, E. coioides Sec6 significantly downregulated the promoter of NF-κB and AP-1, and inhibited the SGIV-induced apoptosis. The results demonstrated that E. coioides Sec6 might play important roles in SGIV infection.
Collapse
Affiliation(s)
- Pin-Hong Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Jia-Yang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yi-Jie Cai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yu-Si Wei
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiang-Long Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jia-Deng-Hui Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shi-Qi Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Sheng Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Qi-Wei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| | - Hong-Yan Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
12
|
Zhang L, Kang S, Chen H, Liao J, Sun M, Wu S, Xu Z, Xu L, Zhang X, Qin Q, Wei J. The roles of grouper TAK1 in regulating the infection of Singapore grouper iridovirus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:164-173. [PMID: 35398221 DOI: 10.1016/j.fsi.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Transforming growth factor-β activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase family. It is an upstream factor of the IκB kinase, which activates IKKα and IKKβ. TAK1 is a key factor in the induction of nuclear factor κB (NF-κB) and plays a crucial role in the activation of inflammatory responses. However, the roles of TAK1 during viral infection in teleost fish are largely unknown. In this study, we cloned a TAK1 homolog (HgTAK1) from the hybrid grouper (Epinephelus fuscoguttatus♂ × Epinephelus lanceolatus♀). The open reading frame of HgTAK1 consists of 1728 nucleotides encoding 575 amino acids, and the predicted molecular weight is 64.32 kDa HgTAK1 has an S_TKc domain, which consists of a serine/threonine protein kinase and a catalytic domain. Expression pattern analysis showed that HgTAK1 was distributed in all tested tissues, with abundant contents in the heart, head kidney, and blood. Additionally, HgTAK1 was distributed in the cytoplasm of grouper spleen (GS) cells. After Singapore grouper iridovirus (SGIV) infection, the expression of HgTAK1 increased in GS cells. Overexpression of HgTAK1 could promote the replication of SGIV in GS cells and inhibit the activation of NF-κB and IFN stimulated response elements (ISRE) in reporter assay. When co-expressed with IRF3 or HgIRF7 in GS cells, HgTAK1 obviously down-regulated IRF3- or IRF7-mediated the NF-κB and ISRE promoter induction. The interaction between HgTAK1 and IRF3 or IRF7 has been identified by co-immunoprecipitation assay. These findings provide a basis for understanding the innate immune mechanism of the grouper response to viral infection.
Collapse
Affiliation(s)
- Luhao Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaozhu Kang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hong Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaming Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Mengshi Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Siting Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhuqing Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Linting Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiwei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China.
| | - Jingguang Wei
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
13
|
Chen J, Wang L, Huang J, Li X, Guan L, Wang Q, Yang M, Qin Q. Functional analysis of a novel MHC-Iα genotype in orange-spotted grouper: Effects on Singapore grouper iridovirus (SGIV) replication and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:487-497. [PMID: 35077868 DOI: 10.1016/j.fsi.2022.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The classical major histocompatibility complex class I (MHC-Ⅰ) molecule plays a key role in vertebrate immune response for its important functions in antigen presentation and immune regulation. MHC pathway is closely related to many diseases involving autoimmunity, antigen intrusion and inflammation. However, rare literatures about the effect of MHC-I on fish cells apoptosis were reported. In this study, a novel type of MHC-Ⅰα genotype from orange-spotted grouper (named EcMHC-ⅠA*01) were cloned and characterized. It shared a 77% identity to its Epinephelus coioides MHC-Iα homology that has been uploaded to NCBI (ACZ97571.1). Molecular characterization analysis showed that EcMHC-ⅠA*01 encodes a 357-amino-acid protein, containing a signal peptide,α1,α2,α3, Cytoplasmic (Cyt) and Transmembrane (TM) domains. Tissue expression pattern showed that EcMHC-ⅠA*01 was extensively distributed in twelve selected tissues, with higher expression in the gill, intestine and skin. The expression of EcMHC-ⅠA*01 in grouper liver and spleen tissues were significantly induced by different stimuli (Zymosan A, LPS, Ploy I:C, RGNNV and SGIV). Comparing with the EcMHC-ⅠA*01 expression levels induced by Zymosan A, Ploy I:C and RGNNV, the effects induced by SGIV and LPS were more significant. Subcellular localization analysis showed that EcMHC-ⅠA*01 localizes throughout the cytoplasm appeared both diffuse and focal intracellular expression pattern. Overexpression of EcMHC-ⅠA*01 inhibited the CPE progression, the mRNA expression of the SGIV related genes (MCP, LITAF, ICP-18 and VP19) and the protein expression of MCP. Meanwhile, qRT-PCR result showed that EcMHC-ⅠA*01 overexpression upregulated the expression of interferon signaling molecules (IFN-γ, ISG56, MDA5 and MXI) and inflammatory cytokines (IL-1β, IL-6, TNF-α and TRAF6). In addition, our results showed that overexpression of EcMHC-ⅠA*01 promoted the apoptosis of normal fathead minnow (FHM) cells as well as the apoptosis of FHM cells induced by SGIV. However, there was no significant change in the activity of caspase 3 between control group and EcMHC-ⅠA*01 overexpression group, suggesting that EcMHC-ⅠA*01-induced apoptosis may not depend on the caspase 3 pathway. Taken together, these data in our study provide new insights into the role of MHC-I in antiviral immune response and apoptosis in fish.
Collapse
Affiliation(s)
- Jinpeng Chen
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liqun Wang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jianling Huang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinshuai Li
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lingfeng Guan
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Min Yang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| | - Qiwei Qin
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
14
|
Wang Z, Zheng N, Liang J, Wang Q, Zu X, Wang H, Yuan H, Zhang R, Guo S, Liu Y, Zhou J. Emodin resists to Cyprinid herpesvirus 3 replication via the pathways of Nrf2/Keap1-ARE and NF-κB in the ornamental koi carp (Cyprinus carpio haematopterus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109023. [PMID: 33647480 DOI: 10.1016/j.cbpc.2021.109023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) causes high mortality in carp. Emodin has been shown of the effects of antioxidant, anti-inflammatory and antiviral. In present study, we investigated the preventive effects and mechanism of emodin on CyHV-3 infection. The ornamental koi carp (Cyprinus carpio haematopterus) were intraperitoneally injected with emodin (10 mg/kg, 20 mg/kg, or 40 mg/kg). 72 h later, an intraperitoneal injection of CyHV-3 was administered, and collected the samples one week later to detect the antioxidant parameters, antioxidant genes, inflammatory genes and to perform histopathology assays. The results showed that emodin significantly suppressed CyHV-3 replication (P < 0.05), improved the koi survival rate and slowed the damage caused by CyHV-3. Emodin treatment increased the antioxidant activity and decreased the lipid peroxidation level of the koi. Compared to the CyHV-3 group, emodin treatment resulted in the same antioxidant parameters after CyHV-3 infection. Emodin treatment activated the Nuclear factorery throid 2-related factor 2/Kelch-like ECH-associated protein 1-antioxidatant response element (Nrf2/Keap1-ARE) pathway and upregulated the expression of heme oxygenase 1 (HO-1), superoxide dismutase (SOD), and catalase (CAT) in the hepatopancreas after CyHV-3 infection. Emodin activated the nuclear factor kappa-B (NF-κB) pathway and decreased the expression of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour necrosis factor-α (TNF-α) in the koi induced by CyHV-3. In conclusion, emodin treatment can suppress CyHV-3 replication and reduce the mortality of koi caused by CyHV-3. Emodin improves antioxidant function, relieves oxidative stress and inflammation cytokines via Nrf2/Keap1-ARE and NF-κB pathways, and protects against the adverse effects induced by CyHV-3.
Collapse
Affiliation(s)
- Zhuoyu Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Nan Zheng
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jie Liang
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Qiuju Wang
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiujie Zu
- Jilin Academy of Fishery Sciences, Changchun, Jilin 130033, China
| | - Hao Wang
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Haiyan Yuan
- Jilin Province Fishery Technology Extension Station, Jilin 130012, China
| | - Ruixue Zhang
- Jilin Province Fishery Technology Extension Station, Jilin 130012, China
| | - Shanshan Guo
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yanhui Liu
- Jilin Academy of Fishery Sciences, Changchun, Jilin 130033, China
| | - Jingxiang Zhou
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
15
|
Li W, Cao Y, Chen Z, Tan Y, Dai Y, Wei J, Xiao J, Feng H. Black carp TRADD suppresses MAVS/IFN signaling during the innate immune activation. FISH & SHELLFISH IMMUNOLOGY 2021; 111:83-93. [PMID: 33513437 DOI: 10.1016/j.fsi.2021.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) associated death domain protein (TRADD) is a pivotal adaptor in TNF signaling pathway and up-regulates MAVS/IFN signaling pathway in human and mammal. However, the role of TRADD in teleost fish remains obscure. To reveal the function of teleost TRADD in the innate immune response, the TRADD homologue (bcTRADD) of black carp (Mylopharyngodon piceus) has been cloned and the function of bcTRADD is investigated in this study, which shares similar functional domain to its mammalian counterpart. bcTRADD mRNA expression level increased in response to different stimuli, including LPS, poly (I:C) and virus infection in host cells. bcTRADD activated the transcriptional activity of NF-κB promoter in the reporter assay; however, showed hardly any effect on the transcriptional activity of IFN promoter. It was interesting that black carp mitochondria antiviral signaling protein (bcMAVS)-activated IFN promoter transcription were dramatically depressed by bcTRADD and the C-terminal death domain of bcTRADD was indispensable for its regulation of bcMAVS. Accordingly, the plaque assay result showed that EPC cells co-expressing bcMAVS and bcTRADD presented much attenuated antiviral activity than EPC cells expressing bcMAVS alone. Knockdown of bcTRADD slightly promoted the antiviral ability of the host cells against SVCV. The current data support the conclusion that bcTRADD suppresses MAVS-mediated antiviral signaling, which is different to its mammalian counterpart.
Collapse
Affiliation(s)
- Wanzhen Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yingyi Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhaoyuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuhan Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jing Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
16
|
Lu C, Liu Y, Wang X, Jiang H, Liu Z. Tumor necrosis factor receptor type 1-associated death domain (TRADD) regulates epithelial-mesenchymal transition (EMT), M1/M2 macrophage polarization and ectopic endometrial cysts formation in endometriosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:148. [PMID: 33569450 PMCID: PMC7867941 DOI: 10.21037/atm-20-7866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Endometriosis is a gynecological non-malignant disease that is manifested by the presence of extrauterine ectopic endometrial cells and stroma. The aim of current study was to explore the role of tumor necrosis factor receptor type 1-associated death domain (TRADD) protein in endometriosis. Methods Cell migration, invasion, and the expression of epithelial-mesenchymal transition (EMT) inducers in TRADD silencing or overexpression in eutopic endometrial stromal cells (EuSCs) and ectopic endometrial stromal cells (EcSCs) were analyzed by wound healing assay, transwell assay, quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting and rat endometriosis model. A cell line derived from THP-1 macrophages was used to measure M1/M2 polarization in endometriosis by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Results The mRNA level and protein expression of TRADD, keratin, E-cadherin, N-cadherin, vascular endothelial growth factor, matrix metalloproteinase-9, CD40, and CD206 were abnormally expressed in ectopic endometrial tissues and EcSCs. TRADD silencing promoted migration, invasion, and EMT in EuSCs, while TRADD overexpression restrained migration, invasion, and EMT in EcSCs. TRADD knockdown prohibited M1/M2 polarization in normal endometrial homogenization-treated THP-1-derived macrophages, whereas TRADD upregulation facilitated M1/M2 polarization in patients with endometrial homogenization-treated THP-1-derived macrophages. In addition, TRADD overexpression suppressed ectopic endometrial cysts formation in a rat endometriosis model. TRADD overexpression activated NF-κB and MAPK signaling in EcSCs and rat models. Conclusions Our results indicated that the overexpression of TRADD prohibited migration, invasion, EMT, M1/M2 polarization and ectopic endometrial cysts formation in endometriosis, and this might due to regulating NF-κB and MAPK signaling.
Collapse
Affiliation(s)
- Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yong Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiaodan Wang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Haili Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Wei J, Li C, Ou J, Zhang X, Liu Z, Qin Q. The roles of grouper TANK in innate immune defense against iridovirus and nodavirus infections. FISH & SHELLFISH IMMUNOLOGY 2020; 104:506-516. [PMID: 32585359 DOI: 10.1016/j.fsi.2020.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The TRAF family member-associated nuclear factor (NF)-κB activator (TANK) was first identified as a TRAF-binding protein with both stimulatory and inhibitory properties in host innate immune activation. To elucidate the roles of TANK in teleosts, we cloned and characterized the TANK homologue of orange-spotted grouper (Epinephelus coioides). The open reading frame (ORF) of EcTANK consists of 1026 nucleotides encoding a 342 amino acid protein with a predicted molecular mass of 38.24 kDa. EcTANK shares 89.47% and 88.89% identity with Larimichthys crocea TANK and Lates calcarifer TANK, respectively. EcTANK was distributed in all 11 examined tissues. The expression of EcTANK in the spleen increased after infection with Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV). EcTANK was mainly located in the cytoplasm of grouper spleen cells. EcTANK enhanced SGIV and RGNNV replication during viral infection in vitro. Overexpression EcTANK decreased the expression levels of interferon-associated cytokines and pro-inflammatory factors, and enhanced activation of NF-κB. Taken together, these results suggest that EcTANK may play an important role in antiviral innate immune activation in grouper.
Collapse
Affiliation(s)
- Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Jisheng Ou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Zetian Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
18
|
Zhang X, Liu Z, Wu S, Sun M, Wei J, Qin Q. Fish RIP1 Mediates Innate Antiviral Immune Responses Induced by SGIV and RGNNV Infection. Front Immunol 2020; 11:1718. [PMID: 32849607 PMCID: PMC7417445 DOI: 10.3389/fimmu.2020.01718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Receptor interacting protein 1 (RIP1) is an essential sensor of cellular stress, which may respond to apoptosis or cell survival and participate in antiviral pathways. To investigate the roles of fish RIP1 in Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) infection, a RIP1 homolog from orange-spotted grouper (Epinephelus coioides) (EcRIP1) was cloned and characterized. EcRIP1 encoded a 679 amino acid protein that shares 83.28% identity with that of Perca flavescens and contained a homologous N-terminal kinase (S-TKc) domain, a RIP isotype interaction motif (RHIM), and a C-terminal domain (DD). EcRIP1 was predominantly detected in immune tissues, and its expression was induced by RGNNV or SGIV infection in vitro. Subcellular localization showed that EcRIP1 was distributed in the cytoplasm with point-like uniform and dot-like aggregation forms. Overexpression of EcRIP1 inhibited SGIV and RGNNV replication and positively regulated the expression levels of interferon (IFN) and IFN-stimulated genes and pro-inflammatory factors. EcRIP1 may interact with grouper tumor necrosis factor receptor type 1-associated DEATH domain protein (EcTRADD) to promote SGIV-induced apoptosis, and interact with grouper Toll/interleukin-1 receptor (TIR) domain containing adapter inducing interferon-β (EcTRIF) and participate in Myeloid Differentiation Factor 88 (MyD88)-independent toll-like receptor (TLR) signaling. EcRIP1 may also interact with grouper tumor necrosis factor receptor-associated factors (TRAFs) as intracellular linker proteins and mediate the signaling of various downstream signaling pathways, including NF-κB and IFN. These results suggest that EcRIP1 may inhibit SGIV and RGNNV infection by regulating apoptosis and various signaling molecules. Our study offers new insights into the regulatory mechanism of RIP1-related signaling, and provides a novel perspective on fish diseases mediated by RIP1.
Collapse
Affiliation(s)
- Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zetian Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siting Wu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mengshi Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|