1
|
Fink MM, Weaver AA, Parmar D, Paczkowski JE, Li L, Klaers MK, Junker EA, Jarocki EA, Sweedler JV, Shrout JD. Pseudomonas aeruginosa Alkyl Quinolone Response is dampened by Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619906. [PMID: 39484380 PMCID: PMC11527023 DOI: 10.1101/2024.10.23.619906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The bacterium Pseudomonas aeruginosa is an opportunistic pathogen that can cause lung, skin, wound, joint, urinary tract, and eye infections. While P. aeruginosa is known to exhibit a robust competitive response towards other bacterial species, this bacterium is frequently identified in polymicrobial infections where multiple species survive. For example, in prosthetic joint infections (PJIs), P. aeruginosa can be identified along with other pathogenic bacteria including Staphylococcus aureus, Enterococcus faecalis, and Corynebacterium striatum. Here we have explored the survival and behavior of such microbes and find that E. faecalis readily survives culturing with P. aeruginosa while other tested species do not. In each of the tested conditions, E. faecalis growth remained unchanged by the presence of P. aeruginosa, indicating a unique mutualistic interaction between the two species. We find that E. faecalis proximity leads P. aeruginosa to attenuate competitive behaviors as exemplified by reduced production of Pseudomonas quinolone signal (PQS) and pyocyanin. Reduced alkyl quinolones is important to E. faecalis as it will grow in supernatant from a quinolone mutant but not P. aeruginosa wildtype in planktonic culture. The reduced pyocyanin production of P. aeruginosa is attributable to production of ornithine by E. faecalis , which we recapitulate by adding exogenous ornithine to P. aeruginosa mono-cultures. Similarly, co-culture with an ornithine-deficient strain of E. faecalis leads P. aeruginosa to yield near mono-culture amounts of pyocyanin. Here, we directly demonstrate how notorious pathogens such as P. aeruginosa might persist in polymicrobial infections under the influence of metabolites produced by other bacterial species. Importance While we now appreciate that many infections are polymicrobial, we understand little of the specific actions between a given set of microbes to enable combinatorial survival and pathogenesis. The bacteria Pseudomonas aeruginosa and Enterococcus faecalis are both prevalent pathogens in wound, urinary tract, and bacteremic infections. While P. aeruginosa often kills other species in standard laboratory culture conditions, we present here that E. faecalis can be reliably co-cultured with P. aeruginosa. We specifically detail that ornithine produced by E. faecalis reduces the Pseudomonas Quinolone Signal response of P. aeruginosa . This reduction of the Pseudomonas Quinolone Signal response aids E. faecalis growth.
Collapse
|
2
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Sun Y, Qu X, Hu B, Liu M, Zhu X. Risk Factors for Disease Aggravation in Older Patients With Non-communicable Diseases: Interpretive Structural and Hierarchical Holographic Modelling. J Adv Nurs 2024. [PMID: 39373056 DOI: 10.1111/jan.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 08/04/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
AIMS This study aimed to analyse and determine the risk factors of disease aggravation faced by older patients with non-communicable diseases (NCDs) and their interwoven correlations. DESIGN We employed a descriptive and cross-sectional study, which followed the STROBE guidelines for reporting. METHODS We conducted a semi-structured in-depth interview with 26 older patients with NCDs from a hospital in Qingdao, China between July and August 2022 on the basis of the literature review. Then, we analysed data using the directed content analysis and determined risk factors through a focus group discussion and the Delphi consultation. Afterward, we combined interpretive structural modelling and hierarchical holographic modelling to construct a hierarchical structure model and drew relationship framework diagrams to exhibit diversified risk factors and complex interwoven correlations. RESULTS We identified 30 risk factors from individual, interpersonal, organisational, community and policy levels. The hierarchical structure model constructed by interpretive structural modelling demonstrated a four-layer structure, and the individual and interpersonal levels were at the highest layer. The relationship framework diagrams demonstrated the identification process of risk factors and interwoven correlations at individual and organisational levels. CONCLUSIONS Risk factors causing disease aggravation amongst older patients with NCDs are diverse. To delay the progression of NCDs, we should comprehensively explore risk factors, interpret the root causes and effects of risks from multiple perspectives and consider the interaction amongst multi-level risk factors to develop precise measures related to risk control. IMPACT Controlling risk factors is an effective measure to postpone disease aggravation. Through this study, we provide a scientific and comprehensive basis for clinical risk screening so that healthcare providers can sense potential risk factors for disease aggravation in older patients' surroundings and formulate targeted nursing measures according to the risk factors faced by different patients. PATIENT OR PUBLIC CONTRIBUTION Patients participated in interviews to supplement risk factors included in our study. Experts provided opinions on the inclusion, exclusion and modification of risk factors.
Collapse
Affiliation(s)
- Yuanqiu Sun
- Department of Medicine, School of Nursing, Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyan Qu
- Thoracic Surgery Department, Qingdao University Affiliated Municipal Hospital, Qingdao, Shandong Province, China
| | - Bo Hu
- Thoracic Surgery Department, Qingdao University Affiliated Municipal Hospital, Qingdao, Shandong Province, China
| | - Man Liu
- Department of Medicine, School of Nursing, Qingdao University, Qingdao, Shandong Province, China
| | - Xiuli Zhu
- Department of Medicine, School of Nursing, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
4
|
Jeong GJ, Khan F, Tabassum N, Jo DM, Jung WK, Kim YM. Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms. Res Microbiol 2024; 175:104211. [PMID: 38734157 DOI: 10.1016/j.resmic.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces two types of siderophores, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. P. aeruginosa siderophores can serve as virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with P. aeruginosa due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by P. aeruginosa play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of P. aeruginosa siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between P. aeruginosa siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, 33662, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Shin HE, Pan C, Curran DM, Bateman TJ, Chong DHY, Ng D, Shah M, Moraes TF. Prevalence of Slam-dependent hemophilins in Gram-negative bacteria. J Bacteriol 2024; 206:e0002724. [PMID: 38814789 PMCID: PMC11332172 DOI: 10.1128/jb.00027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Iron acquisition systems are crucial for pathogen growth and survival in iron-limiting host environments. To overcome nutritional immunity, bacterial pathogens evolved to use diverse mechanisms to acquire iron. Here, we examine a heme acquisition system that utilizes hemophores called hemophilins which are also referred to as HphAs in several Gram-negative bacteria. In this study, we report three new HphA structures from Stenotrophomonas maltophilia, Vibrio harveyi, and Haemophilus parainfluenzae. Structural determination of HphAs revealed an N-terminal clamp-like domain that binds heme and a C-terminal eight-stranded β-barrel domain that shares the same architecture as the Slam-dependent Neisserial surface lipoproteins. The genetic organization of HphAs consists of genes encoding a Slam homolog and a TonB-dependent receptor (TBDR). We investigated the Slam-HphA system in the native organism or the reconstituted system in Escherichia coli cells and found that the efficient secretion of HphA depends on Slam. The TBDR also played an important role in heme uptake and conferred specificity for its cognate HphA. Furthermore, bioinformatic analysis of HphA homologs revealed that HphAs are conserved in the alpha, beta, and gammaproteobacteria. Together, these results show that the Slam-dependent HphA-type hemophores are prevalent in Gram-negative bacteria and further expand the role of Slams in transporting soluble proteins. IMPORTANCE This paper describes the structure and function of a family of Slam (Type IX secretion System) secreted hemophores that bacteria use to uptake heme (iron) while establishing an infection. Using structure-based bioinformatics analysis to define the diversity and prevalence of this heme acquisition pathway, we discovered that a large portion of gammaproteobacterial harbors this system. As organisms, including Acinetobacter baumannii, utilize this system to facilitate survival during host invasion, the identification of this heme acquisition system in bacteria species is valuable information and may represent a target for antimicrobials.
Collapse
Affiliation(s)
- Hyejin Esther Shin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David M. Curran
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J. Bateman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Grassi L, Asfahl KL, Van den Bossche S, Maenhout I, Sass A, Vande Weygaerde Y, Van Braeckel E, Verhasselt B, Boelens J, Tunney MM, Dandekar AA, Coenye T, Crabbé A. Antibiofilm activity of Prevotella species from the cystic fibrosis lung microbiota against Pseudomonas aeruginosa. Biofilm 2024; 7:100206. [PMID: 38975276 PMCID: PMC11225020 DOI: 10.1016/j.bioflm.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
It is increasingly recognized that interspecies interactions may modulate the pathogenicity of Pseudomonas aeruginosa during chronic lung infections. Nevertheless, while the interaction between P. aeruginosa and pathogenic microorganisms co-infecting the lungs has been widely investigated, little is known about the influence of other members of the lung microbiota on the infection process. In this study, we focused on investigating the impact of Prevotella species isolated from the sputum of people with cystic fibrosis (pwCF) on biofilm formation and virulence factor production by P. aeruginosa. Screening of a representative collection of Prevotella species recovered from clinical samples showed that several members of this genus (8 out 10 isolates) were able to significantly reduce biofilm formation of P. aeruginosa PAO1, without impact on growth. Among the tested isolates, the strongest biofilm-inhibitory activity was observed for Prevotella intermedia and Prevotella nigrescens, which caused a reduction of up to 90% in the total biofilm biomass of several P. aeruginosa isolates from pwCF. In addition, a strain-specific effect of P. nigrescens on the ability of P. aeruginosa to produce proteases and pyocyanin was observed, with significant alterations in the levels of these virulence factors detected in LasR mutant strains. Overall, these results suggest that non-pathogenic bacteria from the lung microbiota may regulate pathogenicity traits of P. aeruginosa, and possibly affect the outcome of chronic lung infections.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Kyle L. Asfahl
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ine Maenhout
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Dong T, Liang Y, Xie J, Fan W, Chen H, Han X. Integrative analyses identify opportunistic pathogens of patients with lower respiratory tract infections based on metagenomic next-generation sequencing. Heliyon 2024; 10:e30896. [PMID: 38765026 PMCID: PMC11097057 DOI: 10.1016/j.heliyon.2024.e30896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
Lower respiratory tract infections (LRTIs) represent some of the most globally prevalent and detrimental diseases. Metagenomic next-generation sequencing (mNGS) technology has effectively addressed the requirement for the diagnosis of clinical infectious diseases. This study aimed at identifying and classifying opportunistic pathogens from the respiratory tract-colonizing microflora in LRTI patients using data acquired from mNGS analyses. A retrospective study was performed employing the mNGS data pertaining to the respiratory samples derived from 394 LRTIs patients. Linear discriminant analysis effect size (LEfSe) analysis was conducted to discern the discriminant bacteria. Receiver operating characteristic curves (ROC) were established to demonstrate discriminant bacterial behavior to distinguish colonization from infection. A total of 443 discriminant bacteria were identified and segregated into three cohorts contingent upon their correlation profiles, detection frequency, and relative abundance in order to distinguish pathogens from colonizing microflora. Among them, 119 emerging opportunistic pathogens (cohort 2) occupied an average area under the curve (AUC) of 0.976 for exhibiting the most prominent predictability in distinguishing colonization from infection, 39 were colonizing bacteria (cohort 1, 0.961), and 285 were rare opportunistic pathogens (cohort 3, 0.887). The LTRIs patients appeared modular in the form of cohorts depicting complex microbial co-occurrence networks, reduced diversity, and a high degree of antagonistic interactions in the respiratory tract microbiome. The study findings indicate that therapeutic interventions should target interaction networks rather than individual microbes, providing an innovative perspective for comprehending and combating respiratory infections. Conclusively, this study reports a profile of LRTIs-associated bacterial colonization and opportunistic pathogens in a relatively large-scale cohort, which might serve as a reference panel for the interpretation of mNGS results in clinical practice.
Collapse
Affiliation(s)
- Tingyan Dong
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- Integrated Diagnostic Centre for Infectious Diseases, Guangzhou Huayin Medical Laboratory Center, Guangzhou, China
| | - Yueming Liang
- Department of Respiratory and Critical Care Medicine, The First People Hospital of Foshan, Foshan, China
| | - Junting Xie
- Department of Respiratory and Critical Care Medicine, The First People Hospital of Foshan, Foshan, China
| | - Wentao Fan
- Integrated Diagnostic Centre for Infectious Diseases, Guangzhou Huayin Medical Laboratory Center, Guangzhou, China
| | - Haitao Chen
- Integrated Diagnostic Centre for Infectious Diseases, Guangzhou Huayin Medical Laboratory Center, Guangzhou, China
| | - Xiaodong Han
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Li J, Xiong A, Wang J, Wu X, Bai L, Zhang L, He X, Li G. Deciphering the microbial landscape of lower respiratory tract infections: insights from metagenomics and machine learning. Front Cell Infect Microbiol 2024; 14:1385562. [PMID: 38846353 PMCID: PMC11153674 DOI: 10.3389/fcimb.2024.1385562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Background Lower respiratory tract infections represent prevalent ailments. Nonetheless, current comprehension of the microbial ecosystems within the lower respiratory tract remains incomplete and necessitates further comprehensive assessment. Leveraging the advancements in metagenomic next-generation sequencing (mNGS) technology alongside the emergence of machine learning, it is now viable to compare the attributes of lower respiratory tract microbial communities among patients across diverse age groups, diseases, and infection types. Method We collected bronchoalveolar lavage fluid samples from 138 patients diagnosed with lower respiratory tract infections and conducted mNGS to characterize the lung microbiota. Employing various machine learning algorithms, we investigated the correlation of key bacteria in patients with concurrent bronchiectasis and developed a predictive model for hospitalization duration based on these identified key bacteria. Result We observed variations in microbial communities across different age groups, diseases, and infection types. In the elderly group, Pseudomonas aeruginosa exhibited the highest relative abundance, followed by Corynebacterium striatum and Acinetobacter baumannii. Methylobacterium and Prevotella emerged as the dominant genera at the genus level in the younger group, while Mycobacterium tuberculosis and Haemophilus influenzae were prevalent species. Within the bronchiectasis group, dominant bacteria included Pseudomonas aeruginosa, Haemophilus influenzae, and Klebsiella pneumoniae. Significant differences in the presence of Pseudomonas phage JBD93 were noted between the bronchiectasis group and the control group. In the group with concomitant fungal infections, the most abundant genera were Acinetobacter and Pseudomonas, with Acinetobacter baumannii and Pseudomonas aeruginosa as the predominant species. Notable differences were observed in the presence of Human gammaherpesvirus 4, Human betaherpesvirus 5, Candida albicans, Aspergillus oryzae, and Aspergillus fumigatus between the group with concomitant fungal infections and the bacterial group. Machine learning algorithms were utilized to select bacteria and clinical indicators associated with hospitalization duration, confirming the excellent performance of bacteria in predicting hospitalization time. Conclusion Our study provided a comprehensive description of the microbial characteristics among patients with lower respiratory tract infections, offering insights from various perspectives. Additionally, we investigated the advanced predictive capability of microbial community features in determining the hospitalization duration of these patients.
Collapse
Affiliation(s)
- Jiahuan Li
- Clinical Medicine Department, North Sichuan Medical College, Nanchong, China
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people’s hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people’s hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Xue Wu
- Clinical Medicine Department, North Sichuan Medical College, Nanchong, China
| | - Lingling Bai
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people’s hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people’s hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoping Li
- Clinical Medicine Department, North Sichuan Medical College, Nanchong, China
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people’s hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| |
Collapse
|
9
|
Nagy-Radványi L, Balázs VL, Kocsis B, Csikós E, Ángyán VD, Szabó P, Biró V, Kocsis M, Farkas Á. Antibacterial activity of Hungarian varietal honeys against respiratory pathogens as a function of storage time. Sci Rep 2024; 14:10200. [PMID: 38702397 PMCID: PMC11068765 DOI: 10.1038/s41598-024-60961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Today, antibiotic therapies that previously worked well against certain bacteria due to their natural sensitivity, are becoming less effective. Honey has been proven to inhibit the biofilm formation of some respiratory bacteria, however few data are available on how the storage time affects the antibacterial effect. The activity of black locust, goldenrod, linden and sunflower honeys from three consecutive years (2020, 2021, 2022) was analyzed in 2022 against Gram-negative (Haemophilus influenzae, H. parainfluenzae, Pseudomonas aeruginosa) and Gram-positive (Streptococcus pneumoniae) bacteria using in vitro microbiological methods. After determining the physicochemical parameters of honey, broth microdilution was applied to determine the minimum inhibitory concentration of each honey type against each bacterium, and crystal violet assay was used to test their antibiofilm effect. The possible mechanism of action was explored with membrane degradation test, while structural changes were illustrated with scanning electron microscopy. Honeys stored for one or two years were darker than fresh honeys, while older honeys had significantly lower antibacterial activity. The most remarkable inhibitory effect was exerted by linden and sunflower honeys, and P. aeruginosa proved to be the most resistant bacterium. Based on our results, honey intended for medicinal purposes should be used as fresh as possible during a treatment.
Collapse
Affiliation(s)
- Lilla Nagy-Radványi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Viktória L Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, 7624, Pécs, Hungary
| | - Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Virág D Ángyán
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Péter Szabó
- Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, 7624, Pécs, Hungary
| | - Viktória Biró
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Marianna Kocsis
- Department of Agricultural Biology, Institute of Biology, University of Pécs, 7624, Pécs, Hungary.
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| |
Collapse
|
10
|
Kakati B, Singh R, Mittal G, Koul N. Comparative performance of biofire pneumonia panel and standard culture-based methods for diagnosing pneumonia in critically ill patients: Impact on antibiotic stewardship. Indian J Med Microbiol 2024; 49:100564. [PMID: 38649113 DOI: 10.1016/j.ijmmb.2024.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Lower respiratory tract infections (LRTIs) are a common cause of morbidity and mortality worldwide. Accurate identification of the pathogens causing LRTIs is crucial for ensuring of diagnostic and antibiotic stewardship. The Biofire Pneumonia Panel (BFPP) is a molecular diagnostic test that allows rapid detection of various bacterial and viral pathogens. In this study, we compared the performance of BFPP with standard culture methods for the detection of pathogens. MATERIALS AND METHODS Respiratory samples from 70 patient with suspected LRTIs were tested using both BFPP and standard culture methods. The distribution of isolated bacterial pathogens was analyzed, and the sensitivity and specificity of BFPP were calculated. Additionally, the performance of BFPP in detecting antimicrobial resistance genes was evaluated. The results were compared with those obtained from VITEK-2 antimicrobial susceptibility testing and culture-based methods. RESULTS Among the suspected LRTI cases, BFPP identified a single pathogen in 32.8% of cases and multiple pathogens in 40% of cases. The standard culture method detected a single pathogen in 47.1% of cases. BFPP showed a sensitivity of 93.9% and a specificity of 45.9% for the total sample. The performance of BFPP in detecting antimicrobial resistance genes varied for different pathogens with overall sensitivity of 40.1% and specificity of 95.9%. CONCLUSION The Biofire Pneumonia Panel (BFPP) demonstrated high sensitivity for several bacterial pathogens, indicating its potential as a rapid diagnostic tool. However, its performance varied for different microorganisms, and it had limitations in detecting certain pathogens and antimicrobial resistance genes for which still required more further studies to explore different resistance gene mechanism that can be incorporated in this panel in future. The BFPP can complement standard culture methods as a rapid tool in the diagnosis of LRTIs.
Collapse
Affiliation(s)
- Barnali Kakati
- Dept. of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, Dehradun, Uttarakhand, India.
| | - Rajender Singh
- Dept. of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, Dehradun, Uttarakhand, India.
| | - Garima Mittal
- Dept. of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, Dehradun, Uttarakhand, India.
| | - Nupur Koul
- Dept. of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, Dehradun, Uttarakhand, India.
| |
Collapse
|
11
|
Wu D, Zhao P, Wang C, Huasai S, Chen H, Chen A. Differences in the intestinal microbiota and association of host metabolism with hair coat status in cattle. Front Microbiol 2024; 15:1296602. [PMID: 38711970 PMCID: PMC11071169 DOI: 10.3389/fmicb.2024.1296602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/11/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction The hair coat status of cattle serves as an easily observed indicator of economic value in livestock production; however, the underlying mechanism remains largely unknown. Therefore, the objective of the current study was to determine differences in the intestinal microbiota and metabolome of cattle based on a division of with either slick and shining (SHC) or rough and dull (MHC) hair coat in Simmental cows. Methods Eight SHC and eight MHC late-pregnancy Simmental cows (with similar parities, body weights, and body conditions) were selected based on their hair coat status, and blood samples (plasma) from coccygeal venipuncture and fecal samples from the rectum were collected. The intestinal microbiota (in the fecal samples) was characterized by employing 16S rRNA gene sequencing targeting the V3-V4 hypervariable region on the Illumina MiSeq PE300 platform, and plasma samples were subjected to LC-MS/MS-based metabolomics with Progenesis QI 2.3. Plasma macromolecular metabolites were examined for differences in the metabolism of lipids, proteins, mineral elements, and hormones. Results Notable differences between the SHC and MHC groups related to host hair coat status were observed in the host metabolome and intestinal microbiota (P < 0.05). The host metabolome was enriched in histidine metabolism, cysteine and methionine metabolism, and purine metabolism in the SHC group, and the intestinal microbiota were also enriched in histidine metabolism (P < 0.05). In the MHC group, the symbiotic relationship transitioned from cooperation to competition in the MHC group, and an uncoupling effect was present in the microbe-metabolite association of intestine microbiota-host interactions. The hubs mediating the relationships between intestinal microbiota and plasma metabolites were the intestinal bacterial genus g__norank_f__Eubacterium_coprostanoligenes_group, plasma inosine, triiodothyronine, and phosphorus, which could be used to differentiate cows' hair coat status (P < 0.05). Conclusion Overall, the present study identified the relationships between the features of the intestinal microbiota and host hair coat status, thereby providing evidence and a new direction (intestine microbiota-host interplay) for future studies aimed at understanding the hair coat status of cattle.
Collapse
Affiliation(s)
- Donglin Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Pengfei Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Simujide Huasai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hao Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
12
|
Bagheri-Hosseinabadi Z, Bahreyni A, Basirat H, Khalili P, Vakilian A, Amin F. Occupational status and chronic respiratory diseases: a cross-sectional study based on the data of the Rafsanjan Cohort Study. BMC Pulm Med 2024; 24:151. [PMID: 38521907 PMCID: PMC10960458 DOI: 10.1186/s12890-024-02916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The aim of the present study was to investigate the possible connection between occupational status and chronic respiratory diseases (CRDs) among the Iranian population. METHODS The present cross-sectional study was conducted on 9934 individuals aged 35-70 years enrolled in the Rafsanjan Cohort Study (RCS), a component of the Prospective Epidemiological Research Studies in Iran (PERSIAN). Detailed questionnaires were used to collect information on various factors, such as occupation, sociodemographic characteristics, medical history, anthropometric measurements, physical activity, cigarette and hookah smoking, opium use, and alcohol consumption. The association between occupational class and CRD was evaluated using logistic regression models for rare events. RESULTS In the present study, 4624 (46.55%) participants were male, and 5310 (53.45%) were female. The prevalence of CRD among all participants was 2.61%. Occupational activities were classified into two categories: In class I, the largest group was the homemaker and unemployment category (41.73%), followed by self-employment (34.39%), employment (13.03%), and retired individuals (10.84%). In class II, there were pistachio farmers (12.61%), copper miners (3.62%), and others in various occupations (83.76%). Subjects with CRD were significantly more likely to be homemakers, unemployed, elderly, female, less educated, and obese. There was no significant relationship between CRD and job type/occupational status after adjusting for some potential confounding variables. CONCLUSIONS There was no significant relationship between CRD and job type/occupational status. However, longitudinal studies are needed to assess the impact of job type/occupational status on the risk of CRD.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Bahreyni
- Medical student, Kerman University of medical Sciences, Kerman, Iran
| | - Hosein Basirat
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parvin Khalili
- Social Determinants of Health Research Centre, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Epidemiology, School of Public Health, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Vakilian
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Neurology Department, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
13
|
Luo M, Li S, Luo W. Comparative analysis of antibiotic susceptibility patterns and clinical features of mucoid and non-mucoid Pseudomonas aeruginosa infections: a retrospective study. Front Public Health 2024; 12:1333477. [PMID: 38389944 PMCID: PMC10881668 DOI: 10.3389/fpubh.2024.1333477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Background Pseudomonas aeruginosa (PA) is a prevalent opportunistic pathogen that has close associations with both acute and chronic infections. However, there exists an insufficiency of accurate and comprehensive data pertaining to the antimicrobial susceptibility patterns and clinical characteristics of both mucoid and non-mucoid strains of PA (mPA and non-mPA, respectively). Methods From January 1, 2021 to December 31, 2022, a thorough retrospective study was carried out to examine and compare the antibiotic susceptibility test outcomes and clinical characteristics of hospitalized patients with mPA and non-mPA infections. Results This study investigated a cohort of 111 patients who were diagnosed with mPA infections, as well as 792 patients diagnosed with non-mPA infections. Significant demographic disparities, including gender (p < 0.001), age (p < 0.001), length of hospital stay (p < 0.001), diabetes (p = 0.043), and hypertension (p < 0.001), are evident between the mPA and non-mPA groups. The mPA group commonly necessitates hospitalization for respiratory system diseases, whereas the non-mPA group is associated with concomitant cardiovascular and cerebrovascular diseases. The mPA group demonstrates lower utilization rates of medical devices, such as Foley catheter (p < 0.001), nasogastric tube (p < 0.001), mechanical ventilation (p < 0.001), tracheostomy (p < 0.001), arterial and venous catheterization (p < 0.001), and exhibits superior organ function status, including lower incidences of hypoalbuminemia (p < 0.001), septic shock (p < 0.001), liver dysfunction (p < 0.001), renal failure (p < 0.001), and respiratory failure (p < 0.001). The non-mPA group is more vulnerable to infection with two or more bacterial pathogens compared to the mPA group, with the non-mPA group frequently resulting in Enterobacteriaceae infections and the mPA group being associated with fungal infections. Variations in antibiotic sensitivity are noted for Amikacin (p < 0.001), Ciprofloxacin (p < 0.001), Cefepime (p = 0.003), and Levofloxacin (p < 0.001) in antibiotic susceptibility testing, with resistance patterns closely tied to specific antibiotic usage. Conclusion There are significant demographic characteristics, clinical manifestations and antibiotic susceptibility between mPA and non-mPA infections. It is crucial to emphasize these characteristics due to their significant role in preventing and treating PA infections.
Collapse
Affiliation(s)
- Maoling Luo
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Si Li
- General Medicine, Clinical Medicine, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Wenying Luo
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
14
|
Dsouza FP, Dinesh S, Sharma S. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: a key to advancing biofilm-targeted therapeutic strategies. Arch Microbiol 2024; 206:85. [PMID: 38300317 DOI: 10.1007/s00203-023-03802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024]
Abstract
Bacterial biofilms can adhere to various surfaces in the environment with human beings being no exception. Enclosed in a self-secreted matrix which contains extracellular polymeric substances, biofilms are intricate communities of bacteria that play a significant role across various sectors and raise concerns for public health, medicine and industries. These complex structures allow free-floating planktonic cells to adopt multicellular mode of growth which leads to persistent infections. This is of great concern as biofilms can withstand external attacks which include antibiotics and immune responses. A more comprehensive and innovative approach to therapy is needed in view of the increasing issue of bacterial resistance brought on by the overuse of conventional antimicrobial medications. Thus, to oppose the challenges posed by biofilm-related infections, innovative therapeutic strategies are being explored which include targeting extracellular polymeric substances, quorum sensing, and persister cells. Biofilm-responsive nanoparticles show promising results by improving drug delivery and reducing the side effects. This review comprehensively examines the factors influencing biofilm formation, host immune defence mechanisms, infections caused by biofilms, diagnostic approaches, and biofilm-targeted therapies.
Collapse
Affiliation(s)
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
15
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Atto B, Anteneh Y, Bialasiewicz S, Binks MJ, Hashemi M, Hill J, Thornton RB, Westaway J, Marsh RL. The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. J Clin Med 2023; 13:171. [PMID: 38202177 PMCID: PMC10779485 DOI: 10.3390/jcm13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Yitayal Anteneh
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Michael J. Binks
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mostafa Hashemi
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
| | - Jane Hill
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
- Spire Health Technology, PBC, Seattle, WA 98195, USA
| | - Ruth B. Thornton
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Jacob Westaway
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4811, Australia
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| |
Collapse
|
17
|
Coenye T. Biofilm antimicrobial susceptibility testing: where are we and where could we be going? Clin Microbiol Rev 2023; 36:e0002423. [PMID: 37812003 PMCID: PMC10732061 DOI: 10.1128/cmr.00024-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Our knowledge about the fundamental aspects of biofilm biology, including the mechanisms behind the reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. However, this knowledge has so far not been translated into major changes in clinical practice. While the biofilm concept is increasingly on the radar of clinical microbiologists, physicians, and healthcare professionals in general, the standardized tools to study biofilms in the clinical microbiology laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, the microenvironment at the site of infection is an important driver for microbial physiology and hence susceptibility; but this is poorly reflected in current AST methods. The goal of this review is to provide an overview of the state of the art concerning biofilm AST and highlight the knowledge gaps in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps needed to get past these bottlenecks, will be discussed.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Billiot CE, Novak L, McDaniel MS, Lindgren NR, Swords WE. Pathogenesis of Achromobacter xylosoxidans respiratory infections: colonization, persistence, and transcriptome profiling in synthetic cystic fibrosis sputum medium. Infect Immun 2023; 91:e0041623. [PMID: 37909751 PMCID: PMC10715085 DOI: 10.1128/iai.00416-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting epithelial ion transport, resulting in thickened mucus and impaired mucociliary clearance. Persons with CF (pwCF) experience life-long infections of the respiratory mucosa caused by a diverse array of opportunists, which are leading causes of morbidity and mortality. In recent years, there has been increased appreciation for the range and diversity of microbes causing CF-related respiratory infections. The introduction of new therapeutics and improved detection methodology has revealed CF-related opportunists such as Achromobacter xylosoxidans (Ax). Ax is a Gram-negative bacterial species which is widely distributed in environmental sources and has been increasingly observed in sputa and other samples from pwCF, typically in patients in later stages of CF disease. In this study, we characterized CF clinical isolates of Ax and tested colonization and persistence of Ax in respiratory infection using immortalized human CF respiratory epithelial cells and BALB/c mice. Genomic analyses of clinical Ax isolates showed homologs for factors including flagellar synthesis, antibiotic resistance, and toxin secretion systems. Ax isolates adhered to polarized cultures of CFBE41o- human immortalized CF bronchial epithelial cells and caused significant cytotoxicity and depolarization of cell layers. Ax colonized and persisted in mouse lungs for up to 72 h post infection, with inflammatory consequences that include increased neutrophil influx in the lung, lung damage, cytokine production, and mortality. We also identified genes that are differentially expressed in synthetic CF sputum media. Based on these results, we conclude that Ax is an opportunistic pathogen of significance in CF.
Collapse
Affiliation(s)
- Caitlin E. Billiot
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lea Novak
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa S. McDaniel
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalie R. Lindgren
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - W. Edward Swords
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Alio I, Moll R, Hoffmann T, Mamat U, Schaible UE, Pappenfort K, Alawi M, Schie M, Thünauer R, Stamm J, Rohde H, Streit WR. Stenotrophomonas maltophilia affects the gene expression profiles of the major pathogens Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro multispecies biofilm model. Microbiol Spectr 2023; 11:e0085923. [PMID: 37819084 PMCID: PMC10714729 DOI: 10.1128/spectrum.00859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the past, studies have focused on bacterial pathogenicity in mono-species infections, in part ignoring the clinical relevance of diseases caused by more than one pathogen (i.e., polymicrobial infections). However, it is now common knowledge that multiple bacteria species are often involved in the course of an infection. For treatment of such infections, it is absolutely important to understand the dynamics of species interactions at possible infection sites and the molecular mechanisms behind these interactions. Here, we studied the impact of Stenotrophomonas maltophilia on its commensals Pseudomonas aeruginosa and Staphylococcus aureus in multispecies biofilms. We analyzed the 3D structural architectures of dual- and triple-species biofilms, niche formation within the biofilms, and the interspecies interactions on a molecular level. RNAseq data identified key genes involved in multispecies biofilm formation and interaction as potential drug targets for the clinical combat of multispecies infection with these major pathogens.
Collapse
Affiliation(s)
- Ifey Alio
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Raphael Moll
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Tim Hoffmann
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Kai Pappenfort
- Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Malik Alawi
- Bioinformatics Core, UKE Hamburg, Hamburg, Germany
| | - Marcel Schie
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Roland Thünauer
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Johanna Stamm
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Ablakimova N, Smagulova GA, Rachina S, Mussina AZ, Zare A, Mussin NM, Kaliyev AA, Shirazi R, Tanideh N, Tamadon A. Bibliometric Analysis of Global Research Output on Antimicrobial Resistance among Pneumonia Pathogens (2013-2023). Antibiotics (Basel) 2023; 12:1411. [PMID: 37760709 PMCID: PMC10525339 DOI: 10.3390/antibiotics12091411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is a pressing global concern, posing significant challenges to the effective treatment of infections, including pneumonia. This bibliometric analysis aims to investigate the research output on AMR among pneumonia pathogens from 2013 to 2023. Data were extracted from the Web of Science Core Collection (WOS-CC) using an inclusive search strategy. The analysis included 152 relevant studies published in 99 different sources, involving 988 authors and yielding an average of 16.33 citations per document over the past decade. The findings reveal a notable increase in research on AMR among pneumonia pathogens, indicating a growing awareness of this critical issue. Collaborative studies were prevalent, with the majority of authors engaging in joint research efforts. Bradford's Law identified twelve core journals that were instrumental in disseminating research in this field, with "Medicine" emerging as the most prolific journal. The USA and China emerged as the leading contributors, while Germany displayed a strong inclination towards collaborative research. Intermountain Medical Center, Saitama Medical University, and Udice-French Research Universities were the most productive institutions, and Yayan J. and Rasche K. were the top authors. Furthermore, the analysis identified commonly encountered microorganisms such as Acinetobacter baumanii and Klebsiella pneumoniae in the context of AMR. Time-based analysis of keywords highlighted the significance of terms like "community-acquired pneumonia" and "ventilator-associated pneumonia". Overall, this comprehensive study sheds light on the global research landscape of AMR among pneumonia pathogens. The insights gained from this analysis are essential for guiding future research priorities and collaborative efforts to combat AMR effectively and improve treatment outcomes for pneumonia and related infections. As the frequency of reports concerning resistance among pneumonia pathogens, notably A. baumannii and K. pneumoniae, continues to rise, there is an immediate requirement for pharmaceutical manufacturers and healthcare providers to respond proactively and ready themselves for the forthcoming implications of this matter. It also underscores the importance of knowledge dissemination and evidence-based interventions to address this growing public health challenge. However, the study acknowledges the limitations associated with using a single publication database and encourages the inclusion of data from other sources in future research.
Collapse
Affiliation(s)
- Nurgul Ablakimova
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan; (G.A.S.); (A.Z.M.)
| | - Gaziza A. Smagulova
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan; (G.A.S.); (A.Z.M.)
| | - Svetlana Rachina
- Hospital Therapy Department No. 2, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| | - Aigul Z. Mussina
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan; (G.A.S.); (A.Z.M.)
| | - Afshin Zare
- PerciaVista R&D Co., Shiraz 73, Iran; (A.Z.); (N.T.); (A.T.)
| | - Nadiar M. Mussin
- Department of Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan; (N.M.M.); (A.A.K.)
| | - Asset A. Kaliyev
- Department of Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan; (N.M.M.); (A.A.K.)
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Biomedical & Health, UNSW Sydney, Sydney 2052, Australia;
| | - Nader Tanideh
- PerciaVista R&D Co., Shiraz 73, Iran; (A.Z.); (N.T.); (A.T.)
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 73, Iran; (A.Z.); (N.T.); (A.T.)
- Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| |
Collapse
|
21
|
González de Aledo M, Blasco L, Lopez M, Ortiz-Cartagena C, Bleriot I, Pacios O, Hernández-García M, Cantón R, Tomas M. Prophage identification and molecular analysis in the genomes of Pseudomonas aeruginosa strains isolated from critical care patients. mSphere 2023; 8:e0012823. [PMID: 37366636 PMCID: PMC10449497 DOI: 10.1128/msphere.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Prophages are bacteriophages integrated into the bacterial host's chromosome. This research aims to analyze and characterize the existing prophages within a collection of 53 Pseudomonas aeruginosa strains from intensive care units (ICUs) in Portugal and Spain. A total of 113 prophages were localized in the collection, with 18 of them being present in more than one strain simultaneously. After annotation, five of them were discarded as incomplete, and the 13 remaining prophages were characterized. Of 13, 10 belonged to the siphovirus tail morphology group, 2 to the podovirus tail morphology group, and 1 to the myovirus tail morphology group. All prophages had a length ranging from 20,199 to 63,401 bp and a GC% between 56.2% and 63.6%. The number of open reading frames (ORFs) oscillated between 32 and 88, and in 3/13 prophages, more than 50% of the ORFs had an unknown function. With our findings, we show that prophages are present in the majority of the P. aeruginosa strains isolated from Portuguese and Spanish critically ill patients, many of them found in more than one circulating strain at the same time and following a similar clonal distribution pattern. Although a great sum of ORFs had an unknown function, number of proteins in relation to viral defense (anti-CRISPR proteins, toxin/antitoxin modules, proteins against restriction-modification systems) as well as to prophage interference into their host's quorum sensing system and regulatory cascades were found. This supports the idea that prophages have an influence in bacterial pathogenesis and anti-phage defense. IMPORTANCE Despite being known for decades, prophages remain understudied when compared to the lytic phages employed in phage therapy. This research aims to shed some light into the nature, composition, and role of prophages found within a set of circulating strains of Pseudomas aeruginosa, with special attention to high-risk clones. Given the fact that prophages can effectively influence bacterial pathogenesis, prophage basic research constitutes a topic of growing interest. Furthermore, the abundance of viral defense and regulatory proteins within prophage genomes detected in this study evidences the importance of characterizing the most frequent prophages in circulating clinical strains and in high-risk clones if phage therapy is to be used.
Collapse
Affiliation(s)
- Manuel González de Aledo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Blasco
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Maria Lopez
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Concha Ortiz-Cartagena
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Inés Bleriot
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Olga Pacios
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Maria Tomas
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| |
Collapse
|
22
|
Wu Y, Zoller BGE, Kamal MAM, Hotop SK, Lehr CM, Brönstrup M, Dersch P, Empting M. Establishment of an In Bacterio Assay for the Assessment of Carbon Storage Regulator A (CsrA) Inhibitors. Chembiochem 2023; 24:e202300369. [PMID: 37435861 DOI: 10.1002/cbic.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
Polymicrobial infections involving various combinations of microorganisms, such as Escherichia, Pseudomonas, or Yersinia, can lead to acute and chronic diseases in for example the gastrointestinal and respiratory tracts. Our aim is to modulate microbial communities by targeting the posttranscriptional regulator system called carbon storage regulator A (CsrA) (or also repressor of secondary metabolites (RsmA)). In previous studies, we identified easily accessible CsrA binding scaffolds and macrocyclic CsrA binding peptides through biophysical screening and phage display technology. However, due to the lack of an appropriate in bacterio assay to evaluate the cellular effects of these inhibitor hits, the focus of the present study is to establish an in bacterio assay capable of probing and quantifying the impact on CsrA-regulated cellular mechanisms. We have successfully developed an assay based on a luciferase reporter gene assay, which in combination with a qPCR expression gene assay, allows for the monitoring of expression levels of different downstream targets of CsrA. The chaperone protein CesT was used as a suitable positive control for the assay, and in time-dependent experiments, we observed a CesT-mediated increase in bioluminescence over time. By this means, the cellular on-target effects of non-bactericidal/non-bacteriostatic virulence modulating compounds targeting CsrA/RsmA can be evaluated.
Collapse
Affiliation(s)
- Yingwen Wu
- Department of Antiviral & Antivirulence Drugs (AVID), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hanover, Germany
| | - Ben G E Zoller
- Department of Antiviral & Antivirulence Drugs (AVID), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123, Saarbrücken, Germany
| | - Mohamed Ashraf Mostafa Kamal
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology, Helmholtz Centre for Infection Research, German Center for Infection Research (DZIF), 38124, Braunschweig, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, German Center for Infection Research (DZIF), 38124, Braunschweig, Germany
| | - Petra Dersch
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149, Münster, Germany
| | - Martin Empting
- Department of Antiviral & Antivirulence Drugs (AVID), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hanover, Germany
| |
Collapse
|
23
|
Wei J, Zhang C, Ma W, Ma J, Liu Z, Ren F, Li N. Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections. Infect Drug Resist 2023; 16:5091-5105. [PMID: 37576521 PMCID: PMC10422991 DOI: 10.2147/idr.s425398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose The drug resistance of Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae has become more and more serious, and it is urgent to seek new antibacterial drugs. In this study, Thesium chinense Turcz. extracts were tested for its potential antibacterial activities. Methods T. chinense powder was extracted with 5 solvents of different polarity (ethyl alcohol, petroleum ether, ethyl acetate, n-butyl alcohol and double distilled water), and their antibacterial activities were tested. The Broth dilution method was used to evaluate the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of highly active plant extracts with a concentration of 1g/mL. The inhibitory activity of this extract on biofilm formation was investigated. Afterwards, we investigated its effect on the transcriptome of S. aureus. Results The ethanol extract coded as BRY, only inhibited S. aureus, whereas the ethyl acetate extract coded as BY2 showed inhibitory effect on all the tested bacteria. The MIC of BRY on S. aureus was 128 mg/mL, and the MBC was 512 mg/mL. The MIC of BY2 against S. aureus, S. pneumoniae, S. pyogenes and H. influenzae were 8 mg/mL, 4 mg/mL, 4 mg/mL, and 4 mg/mL, respectively. The MBC of BY2 for these four bacteria ranged from 4 to 256 mg/mL. Mechanism studies have shown that BRY and BY2 have an impact on anti-formation of biofilms at MIC concentrations. Transcriptome sequencing results showed that 531 genes were up-regulated and 340 genes showed down-regulated expression in S. aureus after BY2 treatment. Conclusion BY2 has a broader antibacterial spectrum than BRY. Meanwhile, the inhibitory effect of BY2 on S. aureus is better than BRY. The mechanism of BY2 against S. aureus may relate to its inhibition of ribosome synthesis, restriction of key enzymes of citric acid cycle, decrease of pathogenicity and influence on biofilm formation. The results confirmed that BY2 was the main antibacterial part of T. chinense, which can be used as a source of antibacterial agents.
Collapse
Affiliation(s)
- Juanru Wei
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Cong Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Wei Ma
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Juncheng Ma
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Zhenzhen Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Fucai Ren
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
24
|
Mazzolini R, Rodríguez-Arce I, Fernández-Barat L, Piñero-Lambea C, Garrido V, Rebollada-Merino A, Motos A, Torres A, Grilló MJ, Serrano L, Lluch-Senar M. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat Biotechnol 2023; 41:1089-1098. [PMID: 36658340 PMCID: PMC10421741 DOI: 10.1038/s41587-022-01584-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Engineered live bacteria could provide a new modality for treating lung infections, a major cause of mortality worldwide. In the present study, we engineered a genome-reduced human lung bacterium, Mycoplasma pneumoniae, to treat ventilator-associated pneumonia, a disease with high hospital mortality when associated with Pseudomonas aeruginosa biofilms. After validating the biosafety of an attenuated M. pneumoniae chassis in mice, we introduced four transgenes into the chromosome by transposition to implement bactericidal and biofilm degradation activities. We show that this engineered strain has high efficacy against an acute P. aeruginosa lung infection in a mouse model. In addition, we demonstrated that the engineered strain could dissolve biofilms formed in endotracheal tubes of patients with ventilator-associated pneumonia and be combined with antibiotics targeting the peptidoglycan layer to increase efficacy against Gram-positive and Gram-negative bacteria. We expect our M. pneumoniae-engineered strain to be able to treat biofilm-associated infections in the respiratory tract.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Irene Rodríguez-Arce
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Laia Fernández-Barat
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Carlos Piñero-Lambea
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Victoria Garrido
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Anna Motos
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Maria Lluch-Senar
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Pulmobiotics Ltd, Barcelona, Spain.
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| |
Collapse
|
25
|
Cocorullo M, Chiarelli LR, Stelitano G. Improving Protection to Prevent Bacterial Infections: Preliminary Applications of Reverse Vaccinology against the Main Cystic Fibrosis Pathogens. Vaccines (Basel) 2023; 11:1221. [PMID: 37515037 PMCID: PMC10384294 DOI: 10.3390/vaccines11071221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reverse vaccinology is a powerful tool that was recently used to develop vaccines starting from a pathogen genome. Some bacterial infections have the necessity to be prevented then treated. For example, individuals with chronic pulmonary diseases, such as Cystic Fibrosis, are prone to develop infections and biofilms in the thick mucus that covers their lungs, mainly caused by Burkholderia cepacia complex, Haemophilus influenzae, Mycobacterium abscessus complex, Pseudomonas aeruginosa and Staphylococcus aureus. These infections are complicated to treat and prevention remains the best strategy. Despite the availability of vaccines against some strains of those pathogens, it is necessary to improve the immunization of people with Cystic Fibrosis against all of them. An effective approach is to develop a broad-spectrum vaccine to utilize proteins that are well conserved across different species. In this context, reverse vaccinology, a method based on computational analysis of the genome of various microorganisms, appears as one of the most promising tools for the identification of putative targets for broad-spectrum vaccine development. This review provides an overview of the vaccines that are under development by reverse vaccinology against the aforementioned pathogens, as well as the progress made so far.
Collapse
Affiliation(s)
- Mario Cocorullo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
26
|
Billiot CE, McDaniel MS, Lindgren NR, Swords WE. Pathogenesis of Achromobacter xylosoxidans respiratory infections: colonization and persistence of airway epithelia and differential gene expression in synthetic cystic fibrosis sputum medium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535650. [PMID: 37066231 PMCID: PMC10104045 DOI: 10.1101/2023.04.04.535650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Cystic fibrosis (CF) is a genetic disease affecting epithelial ion transport, resulting in thickened mucus and impaired mucociliary clearance. Persons with CF (pwCF) experience life-long respiratory mucosal infections caused by a diverse array of opportunists, and these infections are a leading cause of morbidity and mortality for pwCF. In recent years, there has been increased appreciation for the range and diversity of microbes in CF-related respiratory infections. Introduction of new therapeutics and improved detection methodology has revealed CF related opportunists such as Achromobacter xylosoxidans (Ax). Ax is a Gram-negative bacterial species that is widely distributed in the environment and has been increasingly observed in sputa and other samples from pwCF; typically Ax infections occur in patients in later stages of CF disease. In this study, we characterized CF clinical isolates of Ax and tested colonization and persistence of Ax in respiratory infection using immortalized human CF respiratory epithelial cells and BALB/c mice. Genomic analyses of clinical Ax isolates showed homologs for factors involved in flagellar synthesis, antibiotic resistance, and toxin secretion systems. Ax isolates adhered to polarized CFBE14o- human immortalized CF bronchial epithelial cells and caused significant cytotoxicity and depolarization. Ax colonized and persisted in mouse lung for up to 72 hours post infection, with inflammatory consequences that include increased neutrophilia, lung damage, cytokine production, and mortality. Transcript profiling reveled differential expression of Ax genes during growth in SCFM2 synthetic CF sputum media. Based on these results, we conclude that Ax is an opportunistic pathogen of significance in CF.
Collapse
Affiliation(s)
- Caitlin E. Billiot
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine
- Gregory Fleming James Center for Cystic Fibrosis Research University of Alabama at Birmingham
| | - Melissa S. McDaniel
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine
- Gregory Fleming James Center for Cystic Fibrosis Research University of Alabama at Birmingham
| | - Natalie R. Lindgren
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine
- Gregory Fleming James Center for Cystic Fibrosis Research University of Alabama at Birmingham
| | - W. Edward Swords
- Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine
- Gregory Fleming James Center for Cystic Fibrosis Research University of Alabama at Birmingham
| |
Collapse
|
27
|
Kreth J, Merritt J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular ecological studies. FEMS Microbiol Rev 2023; 47:fuac052. [PMID: 36564013 PMCID: PMC9936263 DOI: 10.1093/femsre/fuac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
A more comprehensive understanding of oral diseases like caries and periodontitis is dependent on an intimate understanding of the microbial ecological processes that are responsible for disease development. With this review, we provide a comprehensive overview of relevant molecular ecology techniques that have played critical roles in the current understanding of human oral biofilm development, interspecies interactions, and microbiome biogeography. The primary focus is on relevant technologies and examples available in the oral microbiology literature. However, most, if not all, of the described technologies should be readily adaptable for studies of microbiomes from other mucosal sites in the body. Therefore, this review is intended to serve as a reference guide used by microbiome researchers as they inevitably transition into molecular mechanistic studies of the many significant phenotypes observed clinically.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, MRB433, 3181 SW Sam Jackson Park Rd., #L595, Portland, OR 97239, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, MRB433, 3181 SW Sam Jackson Park Rd., #L595, Portland, OR 97239, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
28
|
Zhang X, Li X, Xu H, Fu Z, Wang F, Huang W, Wu K, Li C, Liu Y, Zou J, Zhu H, Yi H, Kaiming S, Gu M, Guan J, Yin S. Changes in the oral and nasal microbiota in pediatric obstructive sleep apnea. J Oral Microbiol 2023; 15:2182571. [PMID: 36875426 PMCID: PMC9980019 DOI: 10.1080/20002297.2023.2182571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Background Several clinical studies have demonstrated that pediatric obstructive sleep apnea (OSA) is associated with dysbiosis of airway mucosal microbiota. However, how oral and nasal microbial diversity, composition, and structure are altered in pediatric OSA has not been systemically explored. Methods 30 polysomnography-confirmed OSA patients with adenoid hypertrophy, and 30 controls who did not have adenoid hypertrophy, were enrolled. Swabs from four surface oral tissue sites (tongue base, soft palate, both palatine tonsils, and adenoid) and one nasal swab from both anterior nares were collected. The 16S ribosomal RNA (rRNA) V3-V4 region was sequenced to identify the microbial communities. Results The beta diversity and microbial profiles were significantly different between pediatric OSA patients and controls at the five upper airway sites. The abundances of Haemophilus, Fusobacterium, and Porphyromonas were higher at adenoid and tonsils sites of pediatric patients with OSA. Functional analysis revealed that the differential pathway between the pediatric OSA patients and controls involved glycerophospholipids and amino acid metabolism. Conclusions In this study, the oral and nasal microbiome of pediatric OSA patients exhibited certain differences in composition compared with the controls. However, the microbiota data could be useful as a reference for studies on the upper airway microbiome.
Collapse
Affiliation(s)
- Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Li
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Fu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijun Huang
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kejia Wu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Li
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yupu Liu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyin Zou
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaming Zhu
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongliang Yi
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su Kaiming
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meizhen Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Shanghai Key Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Monoclonal antibodies that target extracellular DNABII proteins or the type IV pilus of nontypeable Haemophilus influenzae (NTHI) worked additively to disrupt 2-genera biofilms. Biofilm 2022; 4:100096. [PMID: 36532267 PMCID: PMC9747592 DOI: 10.1016/j.bioflm.2022.100096] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The biofilm state is the preferred lifestyle of bacteria in nature. Within a biofilm, the resident bacteria are protected from environmental stresses, antibiotics and other antimicrobials, including those due to multiple immune effectors of their host during conditions of disease. Thereby, biofilms contribute significantly to pathogenicity, recalcitrance to clearance and chronicity/recurrence of bacterial diseases, including diseases of the respiratory tract. In the absence of highly effective, biofilm-targeted therapeutics, antibiotics are commonly prescribed to attempt to treat these diseases, however, in light of the canonical resistance of biofilm-resident bacteria to antibiotic-mediated killing, this ineffectual practice often fails to resolve the diseased condition and contributes significantly to the global threat of rising antimicrobial resistance. Nontypeable Haemophilus influenzae is a common respiratory tract disease co-pathogen, often present in partnership with other airway pathogens. Herein we aspired to determine whether either of two monoclonal antibodies we developed, one specific for NTHI [directed against the majority subunit (PilA) of the type IV pilus (T4P) of NTHI] and the other able to act agnostically on all bacteria tested to date (directed against a structural protein of the biofilm matrix, a DNABII protein), were able to disrupt 2-genera biofilms wherein NTHI co-partnered with another respiratory tract pathogen. These monoclonals were tested singly as well as when within an antibody cocktail. The monoclonal directed against the NTHI antigen PilA was only effective on single species NTHI biofilms and not on single species biofilms formed by other unrelated species. However, when NTHI co-partnered with any of 5 respiratory tract pathogens tested here (Burkholderia cenocepacia, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae or Moraxella catarrhalis), this exclusively NTHI-directed monoclonal was able to disrupt these 2-genera biofilms. Conversely, the monoclonal antibody directed against protective epitopes of a DNABII protein, significantly disrupted all single species and 2-genera biofilms, which reflected the universal presence of this structural protein in all tested biofilm matrices. However, greatest release of both pathogens from a 2-genera biofilm was uniformly achieved by incubation with a 1:1 cocktail of both monoclonals. These data support the use of an approach wherein patients with respiratory tract disease could be treated with a therapeutic monoclonal antibody cocktail to release NTHI and its common co-pathogens from the protective biofilm to be killed by either traditional antibiotics and/or host immune effectors.
Collapse
|
30
|
Lyon R, Jones RA, Shropshire H, Aberdeen I, Scanlan DJ, Millard A, Chen Y. Membrane lipid renovation in Pseudomonas aeruginosa - implications for phage therapy? Environ Microbiol 2022; 24:4533-4546. [PMID: 35837865 PMCID: PMC9804370 DOI: 10.1111/1462-2920.16136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa is an important Gram-negative pathogen with intrinsic resistance to many clinically used antibiotics. It is particularly troublesome in nosocomial infections, immunocompromised patients, and individuals with cystic fibrosis. Antimicrobial resistance (AMR) is a huge threat to global health, with a predicted 10 million people dying from resistant infections by 2050. A promising therapy for combatting AMR infections is phage therapy. However, more research is required to investigate mechanisms that may influence the efficacy of phage therapy. An important overlooked aspect is the impact of membrane lipid remodelling on phage binding ability. P. aeruginosa undergoes changes in membrane lipids when it encounters phosphorus stress, an environmental perturbation that is likely to occur during infection. Lipid changes include the substitution of glycerophospholipids with surrogate glycolipids and the over-production of ornithine-containing aminolipids. Given that membrane lipids are known to influence the structure and function of membrane proteins, we propose that changes in the composition of membrane lipids during infection may alter phage binding and subsequent phage infection dynamics. Consideration of such effects needs to be urgently prioritised in order to develop the most effective phage therapy strategies for P. aeruginosa infections.
Collapse
Affiliation(s)
- Rhiannon Lyon
- BBSRC Midlands Integrative Biosciences Training PartnershipUniversity of WarwickCoventryUK,School of Life SciencesUniversity of WarwickCoventryUK
| | - Rebekah A. Jones
- School of Life SciencesUniversity of WarwickCoventryUK,MRC Doctoral Training PartnershipUniversity of WarwickCoventryUK
| | - Holly Shropshire
- BBSRC Midlands Integrative Biosciences Training PartnershipUniversity of WarwickCoventryUK,School of Life SciencesUniversity of WarwickCoventryUK
| | - Isabel Aberdeen
- BBSRC Midlands Integrative Biosciences Training PartnershipUniversity of WarwickCoventryUK,School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Andrew Millard
- Department of Genetics and Genome BiologyUniversity of LeicesterUK
| | - Yin Chen
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
31
|
Ma R, Hu X, Zhang X, Wang W, Sun J, Su Z, Zhu C. Strategies to prevent, curb and eliminate biofilm formation based on the characteristics of various periods in one biofilm life cycle. Front Cell Infect Microbiol 2022; 12:1003033. [PMID: 36211965 PMCID: PMC9534288 DOI: 10.3389/fcimb.2022.1003033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are colonies of bacteria embedded inside a complicated self-generating intercellular. The formation and scatter of a biofilm is an extremely complex and progressive process in constant cycles. Once formed, it can protect the inside bacteria to exist and reproduce under hostile conditions by establishing tolerance and resistance to antibiotics as well as immunological responses. In this article, we reviewed a series of innovative studies focused on inhibiting the development of biofilm and summarized a range of corresponding therapeutic methods for biological evolving stages of biofilm. Traditionally, there are four stages in the biofilm formation, while we systematize the therapeutic strategies into three main periods precisely:(i) period of preventing biofilm formation: interfering the colony effect, mass transport, chemical bonds and signaling pathway of plankton in the initial adhesion stage; (ii) period of curbing biofilm formation:targeting several pivotal molecules, for instance, polysaccharides, proteins, and extracellular DNA (eDNA) via polysaccharide hydrolases, proteases, and DNases respectively in the second stage before developing into irreversible biofilm; (iii) period of eliminating biofilm formation: applying novel multifunctional composite drugs or nanoparticle materials cooperated with ultrasonic (US), photodynamic, photothermal and even immune therapy, such as adaptive immune activated by stimulated dendritic cells (DCs), neutrophils and even immunological memory aroused by plasmocytes. The multitargeted or combinational therapies aim to prevent it from developing to the stage of maturation and dispersion and eliminate biofilms and planktonic bacteria simultaneously.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Su
- *Correspondence: Chen Zhu, ; Zheng Su,
| | - Chen Zhu
- *Correspondence: Chen Zhu, ; Zheng Su,
| |
Collapse
|
32
|
Hall-Stoodley L, McCoy KS. Biofilm aggregates and the host airway-microbial interface. Front Cell Infect Microbiol 2022; 12:969326. [PMID: 36081767 PMCID: PMC9445362 DOI: 10.3389/fcimb.2022.969326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are multicellular microbial aggregates that can be associated with host mucosal epithelia in the airway, gut, and genitourinary tract. The host environment plays a critical role in the establishment of these microbial communities in both health and disease. These host mucosal microenvironments however are distinct histologically, functionally, and regarding nutrient availability. This review discusses the specific mucosal epithelial microenvironments lining the airway, focusing on: i) biofilms in the human respiratory tract and the unique airway microenvironments that make it exquisitely suited to defend against infection, and ii) how airway pathophysiology and dysfunctional barrier/clearance mechanisms due to genetic mutations, damage, and inflammation contribute to biofilm infections. The host cellular responses to infection that contribute to resolution or exacerbation, and insights about evaluating and therapeutically targeting airway-associated biofilm infections are briefly discussed. Since so many studies have focused on Pseudomonas aeruginosa in the context of cystic fibrosis (CF) or on Haemophilus influenzae in the context of upper and lower respiratory diseases, these bacteria are used as examples. However, there are notable differences in diseased airway microenvironments and the unique pathophysiology specific to the bacterial pathogens themselves.
Collapse
Affiliation(s)
- Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, United States
- *Correspondence: Luanne Hall-Stoodley,
| | - Karen S. McCoy
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
33
|
Antimicrobial peptides for tackling cystic fibrosis related bacterial infections: a review. Microbiol Res 2022; 263:127152. [DOI: 10.1016/j.micres.2022.127152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
34
|
Pailhoriès H, Herrmann JL, Velo-Suarez L, Lamoureux C, Beauruelle C, Burgel PR, Héry-Arnaud G. Antibiotic resistance in chronic respiratory diseases: from susceptibility testing to the resistome. Eur Respir Rev 2022; 31:31/164/210259. [PMID: 35613743 DOI: 10.1183/16000617.0259-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
The development of resistome analysis, i.e. the comprehensive analysis of antibiotic-resistance genes (ARGs), is enabling a better understanding of the mechanisms of antibiotic-resistance emergence. The respiratory microbiome is a dynamic and interactive network of bacteria, with a set of ARGs that could influence the response to antibiotics. Viruses such as bacteriophages, potential carriers of ARGs, may also form part of this respiratory resistome. Chronic respiratory diseases (CRDs) such as cystic fibrosis, severe asthma, chronic obstructive pulmonary disease and bronchiectasis, managed with long-term antibiotic therapies, lead to multidrug resistance. Antibiotic susceptibility testing provides a partial view of the bacterial response to antibiotics in the complex lung environment. Assessing the ARG network would allow personalised, targeted therapeutic strategies and suitable antibiotic stewardship in CRDs, depending on individual resistome and microbiome signatures. This review summarises the influence of pulmonary antibiotic protocols on the respiratory microbiome, detailing the variable consequences according to antibiotic class and duration of treatment. The different resistome-profiling methods are explained to clarify their respective place in antibiotic-resistance analysis in the lungs. Finally, this review details current knowledge on the respiratory resistome related to therapeutic strategies and provides insight into the application of resistome analysis to counter the emergence of multidrug-resistant respiratory pathogens.
Collapse
Affiliation(s)
- Hélène Pailhoriès
- Laboratoire de Bactériologie, Institut de Biologie en Santé - PBH, CHU Angers, Angers, France.,HIFIH Laboratory UPRES EA3859, SFR ICAT 4208, Angers University, Angers, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection and Inflammation, Montigny-le-Bretonneux, France.,AP-HP, Groupe Hospitalo-Universitaire Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Lourdes Velo-Suarez
- Brest Center for Microbiota Analysis (CBAM), Brest University Hospital, Brest, France
| | - Claudie Lamoureux
- Dept of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Brest, France.,Université de Brest, INSERM, EFS, UMR 1078, GGB, Brest, France
| | - Clémence Beauruelle
- Dept of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Brest, France.,Université de Brest, INSERM, EFS, UMR 1078, GGB, Brest, France
| | - Pierre-Régis Burgel
- Respiratory Medicine and National Cystic Fibrosis Reference Center, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Institut Cochin, INSERM U1016, Paris, France
| | - Geneviève Héry-Arnaud
- Brest Center for Microbiota Analysis (CBAM), Brest University Hospital, Brest, France .,Dept of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Brest, France.,Université de Brest, INSERM, EFS, UMR 1078, GGB, Brest, France
| |
Collapse
|
35
|
Candida Worsens Klebsiella pneumoniae Induced-Sepsis in a Mouse Model with Low Dose Dextran Sulfate Solution through Gut Dysbiosis and Enhanced Inflammation. Int J Mol Sci 2022; 23:ijms23137050. [PMID: 35806054 PMCID: PMC9266745 DOI: 10.3390/ijms23137050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen and a commensal organism that is possibly enhanced in several conditions with gut dysbiosis, and frequently detectable together with Candida overgrowth. Here, K. pneumoniae with or without Candida albicans was daily orally administered for 3 months in 0.8% dextran sulfate solution-induced mucositis mice and also tested in vitro. As such, Candida worsened Klebsiella-DSS-colitis as demonstrated by mortality, leaky gut (FITC-dextran assay, bacteremia, endotoxemia, and serum beta-glucan), gut dysbiosis (increased Deferribacteres from fecal microbiome analysis), liver pathology (histopathology), liver apoptosis (activated caspase 3), and cytokines (in serum and in the internal organs) when compared with Klebsiella-administered DSS mice. The combination of heat-killed Candida plus Klebsiella mildly facilitated inflammation in enterocytes (Caco-2), hepatocytes (HepG2), and THP-1-derived macrophages as indicated by supernatant cytokines or the gene expression. The addition of heat-killed Candida into Klebsiella preparations upregulated TLR-2, reduced Occludin (an intestinal tight junction molecule), and worsened enterocyte integrity (transepithelial electrical resistance) in Caco-2 and enhanced casp8 and casp9 (apoptosis genes) in HepG2 when compared with heat-killed Klebsiella alone. In conclusion, Candida enhanced enterocyte inflammation (partly through TLR-2 upregulation and gut dysbiosis) that induced gut translocation of endotoxin and beta-glucan causing hyper-inflammatory responses, especially in hepatocytes and macrophages.
Collapse
|
36
|
Di Domenico EG, Oliva A, Guembe M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022; 10:microorganisms10071259. [PMID: 35888978 PMCID: PMC9322301 DOI: 10.3390/microorganisms10071259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm is the trigger for the majority of infections caused by the ability of microorganisms to adhere to tissues and medical devices. Microbial cells embedded in the biofilm matrix are highly tolerant to antimicrobials and escape the host immune system. Thus, the refractory nature of biofilm-related infections (BRIs) still represents a great challenge for physicians and is a serious health threat worldwide. Despite its importance, the microbiological diagnosis of a BRI is still difficult and not routinely assessed in clinical microbiology. Moreover, biofilm bacteria are up to 100–1000 times less susceptible to antibiotics than their planktonic counterpart. Consequently, conventional antibiograms might not be representative of the bacterial drug susceptibility in vivo. The timely recognition of a BRI is a crucial step to directing the most appropriate biofilm-targeted antimicrobial strategy.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-914-269-595
| |
Collapse
|
37
|
Adolf LA, Heilbronner S. Nutritional Interactions between Bacterial Species Colonising the Human Nasal Cavity: Current Knowledge and Future Prospects. Metabolites 2022; 12:489. [PMID: 35736422 PMCID: PMC9229137 DOI: 10.3390/metabo12060489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
The human nasal microbiome can be a reservoir for several pathogens, including Staphylococcus aureus. However, certain harmless nasal commensals can interfere with pathogen colonisation, an ability that could be exploited to prevent infection. Although attractive as a prophylactic strategy, manipulation of nasal microbiomes to prevent pathogen colonisation requires a better understanding of the molecular mechanisms of interaction that occur between nasal commensals as well as between commensals and pathogens. Our knowledge concerning the mechanisms of pathogen exclusion and how stable community structures are established is patchy and incomplete. Nutrients are scarce in nasal cavities, which makes competitive or mutualistic traits in nutrient acquisition very likely. In this review, we focus on nutritional interactions that have been shown to or might occur between nasal microbiome members. We summarise concepts of nutrient release from complex host molecules and host cells as well as of intracommunity exchange of energy-rich fermentation products and siderophores. Finally, we discuss the potential of genome-based metabolic models to predict complex nutritional interactions between members of the nasal microbiome.
Collapse
Affiliation(s)
- Lea A. Adolf
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
| | - Simon Heilbronner
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| |
Collapse
|
38
|
De Wit G, Svet L, Lories B, Steenackers HP. Microbial Interspecies Interactions and Their Impact on the Emergence and Spread of Antimicrobial Resistance. Annu Rev Microbiol 2022; 76:179-192. [PMID: 35609949 DOI: 10.1146/annurev-micro-041320-031627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria are social organisms that commonly live in dense communities surrounded by a multitude of other species. The competitive and cooperative interactions between these species not only shape the bacterial communities but also influence their susceptibility to antimicrobials. While several studies have shown that mixed-species communities are more tolerant toward antimicrobials than their monospecies counterparts, only limited empirical data are currently available on how interspecies interactions influence resistance development. We here propose a theoretic framework outlining the potential impact of interspecies social behavior on different aspects of resistance development. We identify factors by which interspecies interactions might influence resistance evolution and distinguish between their effect on (a) the emergence of a resistant mutant and (b) the spread of this resistance throughout the population. Our analysis indicates that considering the social life of bacteria is imperative to the rational design of more effective antibiotic treatment strategies with a minimal hazard for resistance development. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gitta De Wit
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Luka Svet
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| |
Collapse
|
39
|
Lin H, Jia Y, Kong X, Wang S, Liu X, Liu Y, Deng Y. In Vivo Evaluation of Cefuroxime Axetil-Loaded Bioadhesive Nanoparticles to Treat Haemophilus influenzae-Induced Otitis Media. Front Bioeng Biotechnol 2022; 10:884797. [PMID: 35573224 PMCID: PMC9099258 DOI: 10.3389/fbioe.2022.884797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Otitis media (OM) is a common disease in children. One of the most common pathogens causing OM is non-typeable Haemophilus influenzae (NTHi). NTHi in the middle ear can be successfully eradicated by a regimen of oral antibiotics sustained for 7–10 days (e.g., cefuroxime axetil 250 mg/day for patients aged 3 months to 2 years and 500 mg/day for patients ages ≥2 years). However, lack of compliance is relevant to treatment failure or early relapse. In order to overcome these challenges, we have developed antibiotics-loaded bioadhesive nanoparticles (BNPs) that can adhere to the epidermis of the middle ear after local administration and significantly prolong the release time of antibiotics in the middle ear. Compared with oral administration of CA, local delivery of free antibiotic cefuroxime axetil (CA), and CA loaded non-bioadhesive nanoparticles (CA/NNPs), BNPs loaded with cefuroxime axetil (CA/BNPs) showed significantly longer retention time in the middle ear, resulting in continuous release of the drug and higher therapeutic efficacy against OM with only a single dosage. CA concentrations were maintained above the minimum inhibitory concentration (MIC) for NTHi throughout 7 days’ treatment. NTHi OM in a mouse model was successfully eradicated without causing tissue toxicity. CA/BNPs minimize systemic drug exposure through local administration, as demonstrated by undetectable levels in the blood.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Liu
- *Correspondence: Yang Liu, ; Yang Deng,
| | - Yang Deng
- *Correspondence: Yang Liu, ; Yang Deng,
| |
Collapse
|
40
|
Clearance of mixed biofilms of Streptococcus pneumoniae and methicillin-susceptible/resistant Staphylococcus aureus by antioxidants N-acetyl-L-cysteine and cysteamine. Sci Rep 2022; 12:6668. [PMID: 35461321 PMCID: PMC9035182 DOI: 10.1038/s41598-022-10609-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Biofilm-associated infections are of great concern because they are associated with antibiotic resistance and immune evasion. Co-colonization by Staphylococcus aureus and Streptococcus pneumoniae is possible and a threat in clinical practice. We investigated the interaction between S. aureus and S. pneumoniae in mixed biofilms and tested new antibiofilm therapies with antioxidants N-acetyl-l-cysteine (NAC) and cysteamine (Cys). We developed two in vitro S. aureus–S. pneumoniae mixed biofilms in 96-well polystyrene microtiter plates and we treated in vitro biofilms with Cys and NAC analyzing their effect by CV staining and viable plate counting. S. pneumoniae needed a higher proportion of cells in the inoculum and planktonic culture to reach a similar population rate in the mixed biofilm. We demonstrated the effect of Cys in preventing S. aureus biofilms and S. aureus–S. pneumoniae mixed biofilms. Moreover, administration of 5 mg/ml of NAC nearly eradicated the S. pneumoniae population and killed nearly 94% of MSSA cells and 99% of MRSA cells in the mixed biofilms. The methicillin resistance background did not change the antioxidants effect in S. aureus. These results identify NAC and Cys as promising repurposed drug candidates for the prevention and treatment of mixed biofilms by S. pneumoniae and S. aureus.
Collapse
|
41
|
Kim SK, Hong SJ, Yoo DM, Min C, Choi HG. Association between asthma or chronic obstructive pulmonary disease and chronic otitis media. Sci Rep 2022; 12:4228. [PMID: 35273329 PMCID: PMC8913729 DOI: 10.1038/s41598-022-08287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
We hypothesized that asthma/chronic obstructive pulmonary disease (COPD) might increase the risk of chronic otitis media (COM), as asthma or COPD affects other diseases. The aim of this research was to investigate whether the incidence of COM is affected by a diagnosis of asthma or COPD in patients compared to matched controls from the national health screening cohort. A COM group (n = 11,587) and a control group that was 1:4 matched for age, sex, income, and residence area (n = 46,348) were selected. The control group included participants who never received treatment for COM from Korean National Health Insurance Service-Health Screening Cohort from 2002 to 2015. The crude and adjusted odds ratios (ORs) of previous asthma/COPD before the index date for COM were analyzed using conditional logistic regression. The analyses were stratified by age, sex, income, and region of residence. The period prevalence of asthma (17.5% vs. 14.3%, p < 0.001) and COPD (6.6% vs. 5.0%, p < 0.001) were significantly higher in the COM group than in the control group. In addition, the odds of asthma and COPD were significantly higher in the COM group than in the control group. Both asthma (adjusted OR 1.23, 95% confidence interval [CI] 1.16-1.31, p < 0.001) and COPD (adjusted OR 1.23, 95% CI 1.13-1.35, p < 0.001) increased the ORs for COM. This positive association between asthma/COPD and COM indicates that asthma/COPD might increase the incidence of COM.
Collapse
Affiliation(s)
- Sung Kyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Dongtan, Korea.,Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, Korea
| | - Seok Jin Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Dongtan, Korea
| | - Dae Myoung Yoo
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea
| | - Chanyang Min
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea.,Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Hyo Geun Choi
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea. .,Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170, Anyang, Gyeonggi, 14068, Republic of Korea.
| |
Collapse
|
42
|
Perry EK, Meirelles LA, Newman DK. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 2022; 20:129-142. [PMID: 34531577 PMCID: PMC8857043 DOI: 10.1038/s41579-021-00620-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Secondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes. In this Review, we explore which types of secondary metabolite alter antimicrobial susceptibility, as well as how and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric pathogens either generate themselves or are exposed to from their neighbours, and the nuanced impacts these molecules can have on tolerance and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
43
|
Kamel NA, Alshahrani MY, Aboshanab KM, El Borhamy MI. Evaluation of the BioFire FilmArray Pneumonia Panel Plus to the Conventional Diagnostic Methods in Determining the Microbiological Etiology of Hospital-Acquired Pneumonia. BIOLOGY 2022; 11:biology11030377. [PMID: 35336751 PMCID: PMC8945136 DOI: 10.3390/biology11030377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/13/2023]
Abstract
Hospital-acquired pneumonia (HAP) is a substantial public health issue that is associated with high mortality rates and is complicated by an arsenal of microbial etiologies, expressing multidrug-resistant phenotypes, rendering relatively limited therapeutic options. BioFire FilmArray Pneumonia Panel plus (BFPP) is a simple multiplexed PCR system that integrates sample preparation, nucleic acid extraction, amplification, and analysis of microbial etiology, with a turnaround time of about one hour. In comparison to standard culture methods, BFPP is simpler, easier to perform, and can simultaneously detect the most common pathogens involved in lower respiratory tract infections (34 targets). Accordingly, we evaluated the diagnostic performance of the multiplexed BFPP for the rapid detection of 27 clinically relevant respiratory pathogens and 7 genetic markers among 50 HAP cases admitted to the intensive care unit (ICU), who submitted mini-bronchoalveolar (mBAL) specimens. In comparison to standard culture methods, BFPP showed an overall sensitivity of 100% [95% CI; 90-100] and overall specificity of 90% [95% CI; 87.4-92.5] among all the tested bacterial targets. BFPP identified 11 viral targets (22%) among the tested specimens. The BFPP semi-quantitative analysis showed a concordance rate of 47.4% among positive culture specimens. For the investigation of the antibiotic resistance genes, BFPP showed a positive percent agreement (PPA), a negative percent agreement (NPA), and an overall percent agreement (OPA), reaching 97% [95% CI; 90-100], 95% [95% CI; 91.5-97], and 95% [95% CI; 93-97], respectively, with standard antibiotic sensitivity testing. In conclusion, BFPP has the potential to enhance the rapid microbiological diagnosis of HAP cases, and could aid in tailoring appropriate antibiotic therapies.
Collapse
Affiliation(s)
- Noha A. Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo P.O. Box 19648, Egypt; (N.A.K.); (M.I.E.B.)
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, Cairo P.O. Box 11566, Egypt
- Correspondence: ; Tel.:+20-1007582620
| | - Mervat I. El Borhamy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo P.O. Box 19648, Egypt; (N.A.K.); (M.I.E.B.)
- International Medical Center, Clinical Microbiology Laboratory, Cairo P.O. Box 11451, Egypt
| |
Collapse
|
44
|
Cantón R, Barberán J, Linares M, Molero JM, Rodríguez-González-Moro JM, Salavert M, González Del Castillo J. Decalogue for the selection of oral antibiotics for lower respiratory tract infections. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35:16-29. [PMID: 35041328 PMCID: PMC8790641 DOI: 10.37201/req/172.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/28/2022]
Abstract
Lower respiratory tract infections, including chronic obstructive pulmonary disease exacerbations (COPD-E) and community acquired pneumonia (CAP), are one of the most frequent reasons for consultation in primary care and hospital emergency departments, and are the cause of a high prescription of antimicrobial agents. The selection of the most appropriate oral antibiotic treatment is based on different aspects and includes to first consider a bacterial aetiology and not a viral infection, to know the bacterial pathogen that most frequently cause these infections and the frequency of their local antimicrobial resistance. Treatment should also be prescribed quickly and antibiotics should be selected among those with a quicker mode of action, achieving the greatest effect in the shortest time and with the fewest adverse effects (toxicity, interactions, resistance and/or ecological impact). Whenever possible, antimicrobials should be rotated and diversified and switched to the oral route as soon as possible. With these premises, the oral treatment guidelines for mild or moderate COPD-E and CAP in Spain include as first options beta-lactam antibiotics (amoxicillin and amoxicillin-clavulanate and cefditoren), in certain situations associated with a macrolide, and relegating fluoroquinolones as an alternative, except in cases where the presence of Pseudomonas aeruginosa is suspected.
Collapse
Affiliation(s)
- R Cantón
- Rafael Cantón. Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid. Spain.
| | | | | | | | | | | | - J González Del Castillo
- Juan Gonzalez del Castillo. Servicio de Urgencias, Hospital Clínico San Carlos and Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
45
|
Association between pneumonia and chronic otitis media: A nested case-control study using a national health screening cohort. Int J Infect Dis 2022; 118:54-61. [DOI: 10.1016/j.ijid.2022.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
|
46
|
|
47
|
Mixed Populations and Co-Infection: Pseudomonas aeruginosa and Staphylococcus aureus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:397-424. [DOI: 10.1007/978-3-031-08491-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Narendrakumar L, Ray A. Respiratory tract microbiome and pneumonia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:97-124. [DOI: 10.1016/bs.pmbts.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Tümmler B. What Makes Pseudomonas aeruginosa a Pathogen? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:283-301. [DOI: 10.1007/978-3-031-08491-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Predictors of the Development of Protracted Bacterial Bronchitis following Presentation to Healthcare for an Acute Respiratory Illness with Cough: Analysis of Three Cohort Studies. J Clin Med 2021; 10:jcm10245735. [PMID: 34945030 PMCID: PMC8707704 DOI: 10.3390/jcm10245735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 01/26/2023] Open
Abstract
We describe the prevalence and risk factors for protracted bacterial bronchitis (PBB) following healthcare presentation for an acute cough illness in children. Data from three studies of the development of chronic cough (CC) in children were combined. PBB was defined as a wet cough of at least 4-weeks duration with no identified specific cause of cough that resolved following 2–4 weeks of appropriate antibiotics. Anterior nasal swabs were tested for 17 viruses and bacteria by polymerase chain reaction. The study included 903 children. Childcare attendance (adjusted relative risk (aRR) = 2.32, 95% CI 1.48–3.63), prior history of chronic cough (aRR = 2.63, 95% CI 1.72–4.01) and age <2-years (<12-months: aRR = 4.31, 95% CI 1.42–13.10; 12-<24 months: aRR = 2.00, 95% CI 1.35–2.96) increased risk of PBB. Baseline diagnoses of asthma/reactive airways disease (aRR = 0.30, 95% CI 0.26–0.35) or bronchiolitis (aRR = 0.15, 95% CI 0.06–0.38) decreased risk. M. catarrhalis was the most common organism (52.4%) identified in all children (PBB = 72.1%; no PBB = 50.2%, p < 0.001). We provide the first data on risks for PBB in children following acute illness and a hypothesis for studies to further investigate the relationship with wheeze-related illnesses. Clinicians and parents/guardians should be aware of these risks and seek early review if a wet cough lasting more than 4-weeks develops the post-acute illness.
Collapse
|