1
|
Yang T, Wang X, Ng HY, Huang S, Zheng X, Bi X. Airborne antibiotic resistome from sludge dewatering systems: Mobility, pathogen accessibility, cross-media migration propensity, impacting factors, and risks. WATER RESEARCH 2024; 267:122552. [PMID: 39362131 DOI: 10.1016/j.watres.2024.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Bioaerosol contamination was considered as a potential health threat in sludge dewatering systems (SDSs), while emission and risk of airborne antibiotic resistome remain largely unclear. Herein, seasonal investigations of fine particulate matter (PM2.5) were conducted using metagenomics-based methods within and around different SDSs, together with an analysis of sewage sludge. Featured with evident seasonality, antibiotic resistance genes (ARGs) in SDS-PM2.5 also possessed greater accumulation, transfer, and pathogen accessibility than those in ambient air PM2.5. Mobile ARGs in SDS-PM2.5 mainly encoded resistance to tetracycline, and most were flanked by integrase. Some pathogenic antibiotic resistant bacteria (PARB), including Enterobacter asburiae, Escherichia coli, Enterococcus faecium, and Staphylococcus aureus, also carried mobile genetic elements in SDS-PM2.5. Dewatering behavior actuated > 50.56% of ARG subtypes and > 42.86% of PARB in sewage sludge to aerosolize into air. Relative humidity, temperature, and PM2.5 concentration collectively drove the evolution of bacterial community and indirectly promoted the antibiotic resistance of SDS-PM2.5. SDS-PM2.5 posed more serious resistome risks than sewage sludge and ambient air PM2.5, and the highest levels were discovered in winter. These findings underline the role of dewatering behavior in facilitating resistome's aerosolization, and the need to mitigate this potential air pollution.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China.
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| |
Collapse
|
2
|
Bardhan A, Abraham TJ, Sar TK, Rajisha R, Panda SK, Patil PK. Pharmacokinetics and residues of florfenicol in Nile tilapia (Oreochromis niloticus) post-oral gavage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104471. [PMID: 38763438 DOI: 10.1016/j.etap.2024.104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
In the study on Oreochromis niloticus, singular oral gavage of florfenicol (FFC) at 15 mg/kg biomass/day was conducted, mimicking approved aquaculture dosing. Samples of plasma, bile, muscle, intestine, skin, liver, kidney, gill, and brain tissues were collected at 0, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, and 128 hours (h) after oral gavage. LC-MS/MS analysis revealed FFC concentrations peaked at 12.15 μg/mL in plasma and 77.92 μg/mL in bile, both at 24 hours. Elimination half-lives were 28.17 h (plasma) and 26.88 h (bile). The residues of FFC ranked muscle>intestine>skin>liver>kidney>gill. In contrast, the residues of florfenicol amine (FFA) ranked kidney>skin>liver>muscle>gill>intestine>brain, particularly notable in tropical summer conditions. The minimum inhibitory concentration of FFC was elucidated against several bacterial pathogens revealing its superior efficacy. Results highlight bile's crucial role in FFC elimination. Further investigation, especially during winter when fish susceptibility to infections rises, is warranted.
Collapse
Affiliation(s)
- Avishek Bardhan
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700094, India; Department of Aquatic Animal Health Management, The Neotia University, Sarisha, 743368, India.
| | - Thangapalam Jawahar Abraham
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700094, India
| | - Tapas Kumar Sar
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Ravindran Rajisha
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willington Island, Cochin 682029, India
| | - Satyen Kumar Panda
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willington Island, Cochin 682029, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| |
Collapse
|
3
|
Zhang T, Nickerson R, Zhang W, Peng X, Shang Y, Zhou Y, Luo Q, Wen G, Cheng Z. The impacts of animal agriculture on One Health-Bacterial zoonosis, antimicrobial resistance, and beyond. One Health 2024; 18:100748. [PMID: 38774301 PMCID: PMC11107239 DOI: 10.1016/j.onehlt.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Yu Shang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Tan BSY, Mohan L, Watthanaworawit W, Ngamprasertchai T, Nosten FH, Ling C, Bifani P. Detection of florfenicol resistance in opportunistic Acinetobacter spp. infections in rural Thailand. Front Microbiol 2024; 15:1368813. [PMID: 38765680 PMCID: PMC11099283 DOI: 10.3389/fmicb.2024.1368813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/01/2024] [Indexed: 05/22/2024] Open
Abstract
Florfenicol (Ff) is an antimicrobial agent belonging to the class amphenicol used for the treatment of bacterial infections in livestock, poultry, and aquaculture (animal farming). It inhibits protein synthesis. Ff is an analog of chloramphenicol, an amphenicol compound on the WHO essential medicine list that is used for the treatment of human infections. Due to the extensive usage of Ff in animal farming, zoonotic pathogens have developed resistance to this antimicrobial agent. There are numerous reports of resistance genes from organisms infecting or colonizing animals found in human pathogens, suggesting a possible exchange of genetic materials. One of these genes is floR, a gene that encodes for an efflux pump that removes Ff from bacterial cells, conferring resistance against amphenicol, and is often associated with mobile genetic elements and other resistant determinants. In this study, we analyzed bacterial isolates recovered in rural Thailand from patients and environmental samples collected for disease monitoring. Whole genome sequencing was carried out for all the samples collected. Speciation and genome annotation was performed revealing the presence of the floR gene in the bacterial genome. The minimum inhibitory concentration (MIC) was determined for Ff and chloramphenicol. Chromosomal and phylogenetic analyses were performed to investigate the acquisition pattern of the floR gene. The presence of a conserved floR gene in unrelated Acinetobacter spp. isolated from human bacterial infections and environmental samples was observed, suggesting multiple and independent inter-species genetic exchange of drug-resistant determinants. The floR was found to be in the variable region containing various mobile genetic elements and other antibiotic resistance determinants; however, no evidence of HGT could be found. The floR gene identified in this study is chromosomal for all isolates. The study highlights a plausible impact of antimicrobials used in veterinary settings on human health. Ff shares cross-resistance with chloramphenicol, which is still in use in several countries. Furthermore, by selecting for floR-resistance genes, we may be selecting for and facilitating the zoonotic and reverse zoonotic exchange of other flanking resistance markers between human and animal pathogens or commensals with detrimental public health consequences.
Collapse
Affiliation(s)
- Bernice Siu Yan Tan
- ASTAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lalit Mohan
- ASTAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wanitda Watthanaworawit
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Thundon Ngamprasertchai
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois H. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Pablo Bifani
- ASTAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
5
|
Abdelrahim A, Harrell E, Fedorka-Cray PJ, Jacob M, Thakur S. Phenotypic and Genotypic Characterizations of Antimicrobial-Resistant Escherichia coli Isolates from Diverse Retail Meat Samples in North Carolina During 2018-2019. Foodborne Pathog Dis 2024; 21:211-219. [PMID: 38197854 DOI: 10.1089/fpd.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Surveillance of antimicrobial-resistant pathogens in U.S. retail meats is conducted to identify potential risks of foodborne illness. In this study, we conducted a phenotypic and genotypic analysis of Escherichia coli recovered from a diverse range of retail meat types during 2018-2019 in North Carolina. The investigation was conducted as part of the National Antimicrobial Resistance Monitoring System (NARMS). Retail meat sampling and E. coli isolation were performed in accordance with NARMS retail meat isolation protocols. We used the Sensititre™ broth microdilution system to determine phenotypic resistance to 14 antimicrobial agents and the Illumina next-generation sequencing platform for genotypic resistance profiling. The highest prevalence of E. coli isolates was found in ground turkey (n = 57, 42.9%) and chicken (n = 27, 20.3%), followed by ground beef (n = 25, 18.9%) and pork (n = 24, 18%). The isolates were divided into seven different phylogroups using the Clermont typing tool, with B1 (n = 59, 44.4%) and A (n = 39, 29.3%) being the most dominant, followed by B2 (n = 14, 10.5%), D (n = 7, 5.3%), F (n = 6, 4.5%), E (n = 3, 2.3%), and C (n = 2, 1.5%). Using multilocus sequence typing (MLST), 128 Sequence types (STs) were identified indicating high diversity. Phenotypic and genotypic resistance was observed toward aminoglycosides, sulfonamides, beta-lactams, macrolides, tetracyclines, phenicols, and fluoroquinolones. Ground turkey samples were more resistant to the panel of tested antimicrobials than chicken, beef, or pork (p < 0.05). All isolates were found to be susceptible to meropenem. A high percentage of turkey isolates (n = 16, 28%) were multidrug-resistant (MDR) compared with 18.5% of chicken (n = 5), 8.4% of pork (n = 2), and 8% of beef isolates (n = 2). This study highlights the benefit of surveillance to identify MDR E. coli for epidemiologic tracking and is a comprehensive report of the phenotypic and genotypic characterization of E. coli isolated from retail meats in North Carolina.
Collapse
Affiliation(s)
- Afaf Abdelrahim
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Megan Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Pino-Otín MR, Valenzuela A, Gan C, Lorca G, Ferrando N, Langa E, Ballestero D. Ecotoxicity of five veterinary antibiotics on indicator organisms and water and soil communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116185. [PMID: 38489906 DOI: 10.1016/j.ecoenv.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
This study explores the environmental effects of five common veterinary antibiotics widely detected in the environment, (chlortetracycline,CTC; oxytetracycline,OTC; florfenicol,FF; neomycin, NMC; and sulfadiazine, SDZ) on four bioindicators: Daphnia magna, Vibrio fischeri, Eisenia fetida, and Allium cepa, representing aquatic and soil environments. Additionally, microbial communities characterized through 16 S rRNA gene sequencing from a river and natural soil were exposed to the antibiotics to assess changes in population growth and metabolic profiles using Biolog EcoPlates™. Tetracyclines are harmful to Vibrio fisheri (LC50 ranges of 15-25 µg/mL), and the other three antibiotics seem to only affect D. magna, especially, SDZ. None of the antibiotics produced mortality in E. fetida at concentrations below 1000 mg/kg. NMC and CTC had the highest phytotoxicities in A. cepa (LC50 = 97-174 µg/mL, respectively). Antibiotics significantly reduced bacterial metabolism at 0.1-10 µg/mL. From the highest to the lowest toxicity on aquatic communities: OTC > FF > SDZ ≈ CTC > NMC and on edaphic communities: CTC ≈ OTC > FF > SDZ > NMC. In river communities, OTC and FF caused substantial decreases in bacterial metabolism at low concentrations (0.1 µg/mL), impacting carbohydrates, amino acids (OTC), and polymers (FF). At 10 µg/mL and above, OTC, CTC, and FF significantly decreased metabolizing all tested metabolites. In soil communities, a more pronounced decrease in metabolizing ability, detectable at 0.1 µg/mL, particularly affected amines/amides and carboxylic and ketonic acids (p < 0.05). These new ecotoxicity findings underscore that the concentrations of these antibiotics in the environment can significantly impact both aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | | | - Cristina Gan
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Guillermo Lorca
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Natalia Ferrando
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Elisa Langa
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| |
Collapse
|
7
|
Guo X, Chen H, Tong Y, Wu X, Tang C, Qin X, Guo J, Li P, Wang Z, Liu W, Mo J. A review on the antibiotic florfenicol: Occurrence, environmental fate, effects, and health risks. ENVIRONMENTAL RESEARCH 2024; 244:117934. [PMID: 38109957 DOI: 10.1016/j.envres.2023.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Florfenicol, as a replacement for chloramphenicol, can tightly bind to the A site of the 23S rRNA in the 50S subunit of the 70S ribosome, thereby inhibiting protein synthesis and bacterial proliferation. Due to the widespread use in aquaculture and veterinary medicine, florfenicol has been detected in the aquatic environment worldwide. Concerns over the effects and health risks of florfenicol on target and non-target organisms have been raised in recent years. Although the ecotoxicity of florfenicol has been widely reported in different species, no attempt has been made to review the current research progress of florfenicol toxicity, hormesis, and its health risks posed to biota. In this study, a comprehensive literature review was conducted to summarize the effects of florfenicol on various organisms including bacteria, algae, invertebrates, fishes, birds, and mammals. The generation of antibiotic resistant bacteria and spread antibiotic resistant genes, closely associated with hormesis, are pressing environmental health issues stemming from overuse or misuse of antibiotics including florfenicol. Exposure to florfenicol at μg/L-mg/L induced hormetic effects in several algal species, and chromoplasts might serve as a target for florfenicol-induced effects; however, the underlying molecular mechanisms are completely lacking. Exposure to high levels (mg/L) of florfenicol modified the xenobiotic metabolism, antioxidant systems, and energy metabolism, resulting in hepatotoxicity, renal toxicity, immunotoxicity, developmental toxicity, reproductive toxicity, obesogenic effects, and hormesis in different animal species. Mitochondria and the associated energy metabolism are suggested to be the primary targets for florfenicol toxicity in animals, albeit further in-depth investigations are warranted for revealing the long-term effects (e.g., whole-life-cycle impacts, multigenerational effects) of florfenicol, especially at environmental levels, and the underlying mechanisms. This will facilitate the evaluation of potential hormetic effects and construction of adverse outcome pathways for environmental risk assessment and regulation of florfenicol.
Collapse
Affiliation(s)
- Xingying Guo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Haibo Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Can Tang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China.
| |
Collapse
|
8
|
Halleran J, Sylvester H, Jacob M, Callahan B, Baynes R, Foster D. Impact of florfenicol dosing regimen on the phenotypic and genotypic resistance of enteric bacteria in steers. Sci Rep 2024; 14:4920. [PMID: 38418677 PMCID: PMC10901817 DOI: 10.1038/s41598-024-55591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
The food animal sector's use of antimicrobials is heavily critiqued for its role in allowing resistance to develop against critically important antimicrobials in human health. The WHO recommends using lower tier antimicrobials such as florfenicol for disease treatment. The primary objective of this study was to assess the differences in resistance profiles of enteric microbes following administration of florfenicol to steers using both FDA-approved dosing regimens and two different detection methods. Our hypothesis was that we would identify an increased prevalence of resistance in the steers administered the repeated, lower dose of florfenicol; additionally, we hypothesized resistance profiles would be similar between both detection methods. Twelve steers were administered either two intramuscular (20 mg/kg q 48 h; n = 6) or a single subcutaneous dose (40 mg/kg, n = 6). Fecal samples were collected for 38 days, and E. coli and Enterococcus were isolated and tested for resistance. Fecal samples were submitted for metagenomic sequencing analysis. Metagenomics revealed genes conferring resistance to aminoglycosides as the most abundant drug class. Most multidrug resistance genes contained phenicols. The genotypic and phenotypic patterns of resistance were not similar between drug classes. Observed increases in resistant isolates and relative abundance of resistance genes peaked after drug administration and returned to baseline by the end of the sampling period. The use of a "lower tier" antimicrobial, such as florfenicol, may cause an increased amount of resistance to critically important antimicrobials for a brief period, but these changes largely resolve by the end of the drug withdrawal period.
Collapse
Affiliation(s)
- Jennifer Halleran
- Department of Population Health and Pathobiology, Center of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Hannah Sylvester
- Department of Population Health and Pathobiology, Center of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Megan Jacob
- Department of Population Health and Pathobiology, Center of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Benjamin Callahan
- Department of Population Health and Pathobiology, Center of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ronald Baynes
- Department of Population Health and Pathobiology, Center of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Derek Foster
- Department of Population Health and Pathobiology, Center of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Gao FZ, He LY, Liu YS, Zhao JL, Zhang T, Ying GG. Integrating global microbiome data into antibiotic resistance assessment in large rivers. WATER RESEARCH 2024; 250:121030. [PMID: 38113599 DOI: 10.1016/j.watres.2023.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Rivers are important in spreading antimicrobial resistance (AMR). Assessing AMR risk in large rivers is challenged by large spatial scale and numerous contamination sources. Integrating river resistome data into a global framework may help addressing this difficulty. Here, we conducted an omics-based assessment of AMR in a large river (i.e. the Pearl River in China) with global microbiome data. Results showed that antibiotic resistome in river water and sediment was more diversified than that in other rivers, with contamination levels in some river reaches higher than global baselines. Discharge of WWTP effluent and landfill waste drove AMR prevalence in the river, and the resistome level was highly associated with human and animal sources. Detection of 54 risk rank I ARGs and emerging mobilizable mcr and tet(X) highlighted AMR risk in the river reaches with high human population density and livestock pollution. Florfenicol-resistant floR therein deserved priority concerns due to its high detection frequency, dissimilar phylogenetic distance, mobilizable potential, and presence in multiple pathogens. Co-sharing of ARGs across taxonomic ranks implied their transfer potentials in the community. By comparing with global genomic data, we found that Burkholderiaceae, Enterobacteriaceae, Moraxellaceae and Pseudomonadaceae were important potential ARG-carrying bacteria in the river, and WHO priority carbapenem-resistant Enterobacteriaceae, A. baumannii and P. aeruginosa should be included in future surveillance. Collectively, the findings from this study provide an omics-benchmarked assessment strategy for public risk associated with AMR in large rivers.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China.
| |
Collapse
|
10
|
Lysitsas M, Triantafillou E, Spyrou V, Billinis C, Valiakos G. Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Vet Sci 2024; 11:71. [PMID: 38393089 PMCID: PMC10892669 DOI: 10.3390/vetsci11020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents.
Collapse
Affiliation(s)
- Marios Lysitsas
- Faculty of Veterinary Science, University of Thessaly, 431 00 Karditsa, Greece; (M.L.); (C.B.)
| | | | - Vassiliki Spyrou
- Department of Animal Science, University of Thessaly, 413 34 Larissa, Greece;
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 431 00 Karditsa, Greece; (M.L.); (C.B.)
| | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 431 00 Karditsa, Greece; (M.L.); (C.B.)
| |
Collapse
|
11
|
Trif E, Cerbu C, Astete CE, Libi S, Pall E, Tripon S, Olah D, Potârniche AV, Witkowski L, Brudască GF, Spînu M, Sabliov CM. Delivery of florfenicol in veterinary medicine through a PLGA-based nanodelivery system: improving its performance and overcoming some of its limitations. Vet Res Commun 2024; 48:259-269. [PMID: 37648880 DOI: 10.1007/s11259-023-10205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
As is the case with other veterinary antibiotics, florfenicol (FFC) faces certain limitations, such as low solubility in water, or the fact that it is reported to interfere with the immune response after some immunoprofilactic actions in livestock. Aiming to improve its efficacy and overall performance, FFC was loaded into a polymeric nanobased delivery system by succesfully using the emulsion-evaporation technique. The poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with FFC were characterized in terms of size (101 ± 0.52 nm), zeta potential (26.80 ± 1.30 mV) and poly-dispersity index (0.061 ± 0.019). The achieved loading was 2.24 μg FFC/mg of NPs, with an entrapment efficiency of 7.9%. The antimicrobial effect, the anti-biofilm formation and the cytotoxicity properties of the NPs were evaluated. The results indicated a MIC decreased by ~97.13% for S. aureus, 99.33% for E.coli and 64.1% for P. aeruginosa when compared to free FFC. The minimum inhibitory concentration (MIC) obtained indicated the potential for using a significantly lower dose of florfenicol. The delivery system produced biofilm inhibition while showing no cytotoxic effects when tested on porcine primary fibroblasts and horse mesenchymal stem cells. These findings suggest that florfenicol can be improved and formulations optimized for use in veterinary medicine through its incorporation into a nanobased delivery system designed to release in a controlled manner over time.
Collapse
Affiliation(s)
- Emilia Trif
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Constantin Cerbu
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Carlos E Astete
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sumit Libi
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Emoke Pall
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Septimiu Tripon
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Diana Olah
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Adrian Valentin Potârniche
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Lucjan Witkowski
- Laboratory of Veterinary Epidemiology and Economic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Gheorghe Florinel Brudască
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Marina Spînu
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Cristina M Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
12
|
Saha M, Pragasam AK, Kumari S, Verma J, Das B, Bhadra RK. Genomic and functional insights into antibiotic resistance genes floR and strA linked with the SXT element of Vibrio cholerae non-O1/non-O139. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001424. [PMID: 38180462 PMCID: PMC10866021 DOI: 10.1099/mic.0.001424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
The emergence and spread of antibiotic-resistant bacterial pathogens are a critical public health concern across the globe. Mobile genetic elements (MGEs) play an important role in the horizontal acquisition of antimicrobial resistance genes (ARGs) in bacteria. In this study, we have decoded the whole genome sequences of multidrug-resistant Vibrio cholerae clinical isolates carrying the ARG-linked SXT, an integrative and conjugative element, in their large chromosomes. As in others, the SXT element has been found integrated into the 5'-end of the prfC gene (which encodes peptide chain release factor 3 involved in translational regulation) on the large chromosome of V. cholerae non-O1/non-O139 strains. Further, we demonstrate the functionality of SXT-linked floR and strAB genes, which confer resistance to chloramphenicol and streptomycin, respectively. The floR gene-encoded protein FloR belongs to the major facilitator superfamily efflux transporter containing 12 transmembrane domains (TMDs). Deletion analysis confirmed that even a single TMD of FloR is critical for the export function of chloramphenicol. The floR gene has two putative promoters, P1 and P2. Sequential deletions reveal that P2 is responsible for the expression of the floR. Deletion analysis of the N- and/or C-terminal coding regions of strA established their importance for conferring resistance against streptomycin. Interestingly, qPCR analysis of the floR and strA genes indicated that both of the genes are constitutively expressed in V. cholerae cells. Further, whole genome-based global phylogeography confirmed the presence of the integrative and conjugative element SXT in non-O1/non-O139 strains despite being non-multidrug resistant by lacking antimicrobial resistance (AMR) gene cassettes, which needs monitoring.
Collapse
Affiliation(s)
- Mousumi Saha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata-700032, India
| | - Agila Kumari Pragasam
- Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Shashi Kumari
- Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Jyoti Verma
- Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Bhabatosh Das
- Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Rupak K. Bhadra
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata-700032, India
| |
Collapse
|
13
|
Nicolosi D, Petronio Petronio G, Russo S, Di Naro M, Cutuli MA, Russo C, Di Marco R. Innovative Phospholipid Carriers: A Viable Strategy to Counteract Antimicrobial Resistance. Int J Mol Sci 2023; 24:15934. [PMID: 37958915 PMCID: PMC10648799 DOI: 10.3390/ijms242115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The overuse and misuse of antibiotics have led to the emergence and spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria strains, usually associated with poorer patient outcomes and higher costs. In order to preserve the usefulness of these life-saving drugs, it is crucial to use them appropriately, as also recommended by the WHO. Moreover, innovative, safe, and more effective approaches are being investigated, aiming to revise drug treatments to improve their pharmacokinetics and distribution and to reduce the onset of drug resistance. Globally, to reduce the burden of antimicrobial resistance (AMR), guidelines and indications have been developed over time, aimed at narrowing the use and diminishing the environmental spread of these life-saving molecules by optimizing prescriptions, dosage, and times of use, as well as investing resources into obtaining innovative formulations with better pharmacokinetics, pharmacodynamics, and therapeutic results. This has led to the development of new nano-formulations as drug delivery vehicles, characterized by unique structural properties, biocompatible natures, and targeted activities such as state-of-the-art phospholipid particles generally grouped as liposomes, virosomes, and functionalized exosomes, which represent an attractive and innovative delivery approach. Liposomes and virosomes are chemically synthesized carriers that utilize phospholipids whose nature is predetermined based on their use, with a long track record as drug delivery systems. Exosomes are vesicles naturally released by cells, which utilize the lipids present in their cellular membranes only, and therefore, are highly biocompatible, with investigations as a delivery system having a more recent origin. This review will summarize the state of the art on microvesicle research, liposomes, virosomes, and exosomes, as useful and effective tools to tackle the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Stefano Russo
- Division of Biochemistry, Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University (HBIGS), 68167 Mannheim, Germany
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Marco Alfio Cutuli
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
- Consorzio Interuniversitario in Ingegneria e Medicina (COIIM), Azienda Sanitaria Regionale del Molise ASReM, UOC Governance del Farmaco, 86100 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| |
Collapse
|
14
|
Liang C, Cui H, Chen L, Zhang H, Zhang C, Liu J. Identification, Typing, and Drug Resistance Analysis of Escherichia coli in Two Different Types of Broiler Farms in Hebei Province. Animals (Basel) 2023; 13:3194. [PMID: 37893917 PMCID: PMC10603750 DOI: 10.3390/ani13203194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hebei Province is an important area for breeding broiler chickens in China, but the antimicrobial resistance and prevalence of Escherichia coli (E. coli) are still unclear. A total of 180 cloacal samples from broiler farms in Hebei Province were collected and used for the isolation and identification of E. coli. The isolates were subjected to resistance phenotyping, resistance profiling, and genotyping, and some multiresistant strains were subjected to multilocus sequence typing (MLST). The results showed that 175 strains were isolated. Among both types of broiler farms, the ampicillin resistance rate was the highest, and the meropenem resistance rate was the lowest. Serious multiresistance was present in both types of broiler farms. Thirty strains of multidrug-resistant E. coli were typed by MLST to obtain a total of 18 ST types, with ST10 being the most prevalent. This study was to simply analyze the antimicrobial resistance and prevalence of E. coli in broiler chickens in Hebei Province after the implementation of the pilot work program of action to reduce the use of veterinary antimicrobials in standard farms (SFs) and nonstandard farms (NSFs). This study will provide a research basis and data support for the prevention and control of E. coli in Hebei.
Collapse
Affiliation(s)
| | | | | | | | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
15
|
Espinoza LL, Huamán DC, Cueva CR, Gonzales CD, León YI, Espejo TS, Monge GM, Alcántara RR, Hernández LM. Genomic analysis of multidrug-resistant Escherichia coli strains carrying the mcr-1 gene recovered from pigs in Lima-Peru. Comp Immunol Microbiol Infect Dis 2023; 99:102019. [PMID: 37473695 DOI: 10.1016/j.cimid.2023.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance is a current problem that significantly impacts overall health. The dissemination of antibiotic resistance genes (ARGs) to urban areas primarily occurs through ARG-carrying bacteria present in the gut microbiota of animals raised in intensive farming settings, such as pig production. Hence, this study aimed to isolate and analyzed 87 Escherichia coli strains from pig fecal samples obtained from intensive farms in Lima Department. The isolates were subjected to Kirby-Bauer-Disk Diffusion Test and PCR for mcr-1 gene identification. Disk-diffusion assay revealed a high level of resistance among these isolates to oxytetracycline, ampicillin, cephalothin, chloramphenicol, ciprofloxacin, and doxycycline. PCR analysis identified the mcr-1 gene in 8% (7/87) E. coli isolates. Further, whole genome sequencing was conducted on 17 isolates, including multidrug resistance (MDR) E. coli and/or mcr-1 gene carriers. This analysis unveiled a diverse array of ARGs. Alongside the mcr-1 gene, the blaCTX-M55 gene was particularly noteworthy as it confers resistance to third generation cephalosporins, including ceftriaxone. MDR E. coli genomes exhibited other ARGs encoding resistance to fosfomycin (fosA3), quinolones (qnrB19, qnrS1, qnrE1), tetracyclines (tetA, tetB, tetD, tetM), sulfonamides (sul1, sul2, sul3), amphenicols (cmlA1, floR), lincosamides (inuE), as well as various aminoglycoside resistance genes. Additionally, Multi Locus Sequence Typing (MLST) revealed a high diversity of E. coli strains, including ST10, a pandemic clone. This information provides evidence of the dissemination of highly significant ARGs in public health. Therefore, it is imperative to implement measures aimed at mitigating and preventing the transmission of MDR bacteria carrying ARGs to urban environments.
Collapse
Affiliation(s)
- Luis Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Dennis Carhuaricra Huamán
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru; Programa de Pós-Graduação Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, Brazil
| | - Carmen Rodríguez Cueva
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Carla Durán Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Yennifer Ignación León
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Thalía Silvestre Espejo
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Geraldine Marcelo Monge
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Raúl Rosadio Alcántara
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Lenin Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru.
| |
Collapse
|
16
|
Trif E, Cerbu C, Olah D, Zăblău SD, Spînu M, Potârniche AV, Pall E, Brudașcă F. Old Antibiotics Can Learn New Ways: A Systematic Review of Florfenicol Use in Veterinary Medicine and Future Perspectives Using Nanotechnology. Animals (Basel) 2023; 13:ani13101695. [PMID: 37238125 DOI: 10.3390/ani13101695] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Florfenicol is a broad-spectrum bacteriostatic antibiotic used exclusively in veterinary medicine in order to treat the pathology of farm and aquatic animals. It is a synthetic fluorinated analog of thiamphenicol and chloramphenicol that functions by inhibiting ribosomal activity, which disrupts bacterial protein synthesis and has shown over time a strong activity against Gram-positive and negative bacterial groups. Florfenicol was also reported to have anti-inflammatory activity through a marked reduction in immune cell proliferation and cytokine production. The need for improvement came from (1) the inappropriate use (to an important extent) of this antimicrobial, which led to serious concerns about florfenicol-related resistance genes, and (2) the fact that this antibiotic has a low water solubility making it difficult to formulate an aqueous solution in organic solvents, and applicable for different routes of administration. This review aims to synthesize the various applications of florfenicol in veterinary medicine, explore the potential use of nanotechnology to improve its effectiveness and analyze the advantages and limitations of such approaches. The review is based on data from scientific articles and systematic reviews identified in several databases.
Collapse
Affiliation(s)
- Emilia Trif
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Constantin Cerbu
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Diana Olah
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Sergiu Dan Zăblău
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Marina Spînu
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Adrian Valentin Potârniche
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Emoke Pall
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| | - Florinel Brudașcă
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur nr. 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Shoaib M, Xu J, Meng X, Wu Z, Hou X, He Z, Shang R, Zhang H, Pu W. Molecular epidemiology and characterization of antimicrobial-resistant Staphylococcus haemolyticus strains isolated from dairy cattle milk in Northwest, China. Front Cell Infect Microbiol 2023; 13:1183390. [PMID: 37265496 PMCID: PMC10230075 DOI: 10.3389/fcimb.2023.1183390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Non-aureus Staphylococcus (NAS) species are currently the most commonly identified microbial agents causing sub-clinical infections of the udder and are also deemed as opportunistic pathogens of clinical mastitis in dairy cattle. More than 10 NAS species have been identified and studied but little is known about S. haemolyticus in accordance with dairy mastitis. The present study focused on the molecular epidemiology and genotypic characterization of S. haemolyticus isolated from dairy cattle milk in Northwest, China. Methods In this study, a total of 356 milk samples were collected from large dairy farms in three provinces in Northwest, China. The bacterial isolation and presumptive identification were done by microbiological and biochemical methods following the molecular confirmation by 16S rRNA gene sequencing. The antimicrobial susceptibility testing (AST) was done by Kirby-Bauer disk diffusion assay and antibiotic-resistance genes (ARGs) were identified by PCR. The phylogenetic grouping and sequence typing was done by Pulsed Field Gel Electrophoresis (PFGE) and Multi-Locus Sequence Typing (MLST) respectively. Results In total, 39/356 (11.0%) were identified as positive for S. haemolyticus. The overall prevalence of other Staphylococcus species was noted to be 39.6% (141/356), while the species distribution was as follows: S. aureus 14.9%, S. sciuri 10.4%, S. saprophyticus 7.6%, S. chromogenes 4.2%, S. simulans 1.4%, and S. epidermidis 1.1%. The antimicrobial susceptibility of 39 S. haemolyticus strains exhibited higher resistance to erythromycin (92.3%) followed by trimethoprim-sulfamethoxazole (51.3%), ciprofloxacin (43.6%), florfenicol (30.8%), cefoxitin (28.2%), and gentamicin (23.1%). All of the S. haemolyticus strains were susceptible to tetracycline, vancomycin, and linezolid. The overall percentage of multi-drug resistant (MDR) S. haemolyticus strains was noted to be 46.15% (18/39). Among ARGs, mphC was identified as predominant (82.05%), followed by ermB (33.33%), floR (30.77%), gyrA (30.77%), sul1 (28.21%), ermA (23.08%), aadD (12.82%), grlA (12.82%), aacA-aphD (10.26%), sul2 (10.26%), dfrA (7.69%), and dfrG (5.13%). The PFGE categorized 39 S. haemolyticus strains into A-H phylogenetic groups while the MLST categorized strains into eight STs with ST8 being the most predominant while other STs identified were ST3, ST11, ST22, ST32, ST19, ST16, and ST7. Conclusion These findings provided new insights into our understanding of the epidemiology and genetic characteristics of S. haemolyticus in dairy farms to inform interventions limiting the spread of AMR in dairy production.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Jie Xu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiaoqin Meng
- Lanzhou Center for Animal Disease Control and Prevention, Lanzhou, China
| | - Zhongyong Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiao Hou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Zhuolin He
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| |
Collapse
|
18
|
Yang J, Shan G, Yu G, Wei J, Zhang Q, Su W, Lin Q, Zheng Z, Wu G, Li G, Chang Q, Yuan H, He Y, Chen Y, Zhang Y, Huang H, Hu W, Song R, Weng Y, Li X, Liu S. Whole genome sequencing of multidrug-resistant Proteus mirabilis strain PM1162 recovered from a urinary tract infection in China. J Glob Antimicrob Resist 2023; 33:44-50. [PMID: 36870531 DOI: 10.1016/j.jgar.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/26/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
OBJECTIVES Proteus mirabilis is an important opportunistic Gram-negative pathogen. This study reports the whole genome sequence of multidrug-resistant (MDR) P. mirabilis PM1162 and explores its antibiotic resistance genes (ARGs) and their genetic environments. METHODS P. mirabilis PM1162 was isolated from a urinary tract infection in China. Antimicrobial susceptibility was determined, and whole genome sequencing (WGS) was performed. ARGs, insertion sequence (IS) elements, and prophages were identified using ResFinder, ISfinder, and PHASTER software, respectively. Sequence comparisons and map generation were performed using BLAST and Easyfig, respectively. RESULTS On its chromosome, P. mirabilis PM1162 harboured 15 ARGs, including cat, tet(J), blaCTX-M-14 (three copies), aph(3')-Ia, qnrB4, blaDHA-1, qacE, sul1, armA, msr(E), mph(E), aadA1, and dfrA1. We focused our analysis on the four related MDR regions: (1) genetic contexts associated with blaCTX-M-14; (2) the prophage containing blaDHA-1, qnrB4, and aph(3')-Ia; (3) genetic environments associated with mph(E), msr(E), armA, sul, and qacE; and (4) the class II integron harbouring dfrA1, sat2, and aadA1. CONCLUSION This study reported the whole genome sequence of MDR P. mirabilis PM1162 and the genetic context of its ARGs. This comprehensive genomic analysis of MDR P. mirabilis PM1162 provides a deeper understanding of its MDR mechanism and elucidates the horizontal spread of its ARGs, thus providing a basis for the containment and treatment of the bacteria.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pulmonary and Critical Care Medicine, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Ge Shan
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, China
| | - Guangchao Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, China
| | - Qinghuan Zhang
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, China
| | - Wen Su
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, China
| | - Qiuping Lin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, China
| | - Zhixiong Zheng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, China
| | - Guangliang Wu
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, China
| | - Guangtian Li
- Department of Anesthesiology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, China
| | - Qing Chang
- Medical Department, Hengqin Branch of Zhuhai People's Hospital, Zhuhai, China
| | - Hong Yuan
- Department of Pulmonary and Critical Care Medicine, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Yanju He
- Department of Pulmonary and Critical Care Medicine, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Yanling Chen
- Department of Pulmonary and Critical Care Medicine, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Haile Huang
- Department of Pulmonary and Critical Care Medicine, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Wan Hu
- Department of Pulmonary and Critical Care Medicine, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Rongqing Song
- Department of Pulmonary and Critical Care Medicine, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Yuqing Weng
- Department of Pulmonary and Critical Care Medicine, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China.
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, China.
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
19
|
Morris C, Wickramasingha D, Abdelfattah EM, Pereira RV, Okello E, Maier G. Prevalence of antimicrobial resistance in fecal Escherichia coli and Enterococcus spp. isolates from beef cow-calf operations in northern California and associations with farm practices. Front Microbiol 2023; 14:1086203. [PMID: 36910206 PMCID: PMC9996069 DOI: 10.3389/fmicb.2023.1086203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Antimicrobials are necessary for the treatment of bacterial infections in animals, but increased antimicrobial resistance (AMR) is becoming a concern for veterinarians and livestock producers. This cross-sectional study was conducted on cow-calf operations in northern California to assess prevalence of AMR in Escherichia coli and Enterococcus spp. shed in feces of beef cattle of different life stages, breeds, and past antimicrobial exposures and to evaluate if any significant factors could be identified that are associated with AMR status of the isolates. A total of 244 E. coli and 238 Enterococcus isolates were obtained from cow and calf fecal samples, tested for susceptibility to 19 antimicrobials, and classified as resistant or non-susceptible to the antimicrobials for which breakpoints were available. For E. coli, percent of resistant isolates by antimicrobial were as follows: ampicillin 100% (244/244), sulfadimethoxine 25.4% (62/244), trimethoprim-sulfamethoxazole 4.9% (12/244), and ceftiofur 0.4% (1/244) while percent of non-susceptible isolates by antimicrobial were: tetracycline 13.1% (32/244), and florfenicol 19.3% (47/244). For Enterococcus spp., percent of resistant isolates by antimicrobial were as follows: ampicillin 0.4% (1/238) while percent of non-susceptible isolates by antimicrobial were tetracycline 12.6% (30/238) and penicillin 1.7% (4/238). No animal level or farm level management practices, including antimicrobial exposures, were significantly associated with differences in isolate resistant or non-susceptible status for either E. coli or Enterococcus isolates. This is contrary to the suggestion that administration of antibiotics is solely responsible for development of AMR in exposed bacteria and demonstrates that there are other factors involved, either not captured in this study or not currently well understood. In addition, the overall use of antimicrobials in this cow-calf study was lower than other sectors of the livestock industry. Limited information is available on cow-calf AMR from fecal bacteria, and the results of this study serve as a reference for future studies to support a better understanding and estimation of drivers and trends for AMR in cow-calf operations.
Collapse
Affiliation(s)
- Celeste Morris
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Devinda Wickramasingha
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Essam M Abdelfattah
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Animal Hygiene, and Veterinary Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Richard V Pereira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Emmanuel Okello
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gabriele Maier
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Wang S, Xie H, Chen Y, Liu L, Fang M, Sun D, Xu L, Bi Z, Sun G, Li Y, Yu X, Zhang H, Kou Z, Zheng B. Intestinal colonization with ESBL-producing Klebsiella pneumoniae in healthy rural villager: A genomic surveillance study in China, 2015-2017. Front Public Health 2022; 10:1017050. [PMID: 36589964 PMCID: PMC9798286 DOI: 10.3389/fpubh.2022.1017050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background The worldwide emergence and diffusion of extended-spectrum β-lactamase-K. pneumoniae (ESBL-KP) is of particular concern. Although ESBL-KP can inhabit the human gut asymptomatically, colonization with ESBL-KP is associated with an increased risk of ESBL-KP infection and mortality. In this study, we investigated the prevalence and characteristics of ESBL-KP in fecal samples from healthy persons in 12 villages in Shandong Province, China. Methods Screening for ESBL-KP in fecal samples was performed by selective cultivation. The bacterial species were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rDNA sequence analysis. Minimum inhibitory concentrations (MICs) of 16 antibiotics were determined by the agar dilution method. Plasmid replicons, antimicrobial resistance genes and Sequence types (STs) of the isolates were determined by whole-genome sequencing (WGS). Genetic relatedness of ESBL-KP isolates was determined by the single nucleotide polymorphisms (SNP). The S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE) was used to characterize the plasmids carried by ESBL-KP isolates. Conjugation assays was used to verify the transferability of bla CTX - M. Results ESBL-KP prevalence rates increased from 12.0% in 2015 to 27.5% in 2017. The experimental results showed that 97% of isolates had multi-drug resistance. Multiple ESBL resistance genotypes were commonly detected in the isolates. STs among the ESBL-KP isolates were diverse. All 69 bla CTX-M-3-positive isolates were located on plasmids, and these genes could be transferred with plasmids between different strains. Phylogenetic analysis showed the possibility of transmission among some isolates. Conclusion This study obtained the drug resistance patterns, the drug resistance phenotype and molecular characteristics of fecal-derived ESBL-KP in rural communities in Shandong Province, China. We report a rapid increase in occurrence of ESBL-KP among fecal samples collected from healthy rural residents of Shandong Province from 2015 to 2017. The carriage rate of multidrug-resistant bacteria in healthy residents is increasing. Thus, a need for further monitoring and possible interventions of ESBL-KP in this region is warranted.
Collapse
Affiliation(s)
- Shuang Wang
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Hengjie Xie
- Department of Supervise Sampling, Shandong Institute for Food and Drug Control, Jinan, Shandong, China
| | - Yuzhen Chen
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Lu Liu
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Ming Fang
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Dapeng Sun
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Liuchen Xu
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Zhenqiang Bi
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Gaoxiang Sun
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yan Li
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaolin Yu
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Huaning Zhang
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China,*Correspondence: Huaning Zhang ✉
| | - Zengqiang Kou
- Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China,Zengqiang Kou ✉
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Jinan Microecological Biomedicine Shandong Laboratory, Department of Structure and Morphology, Jinan, Shandong, China,Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China,Beiwen Zheng ✉
| |
Collapse
|
21
|
Dreyer S, Globig A, Bachmann L, Schütz AK, Schaufler K, Homeier-Bachmann T. Longitudinal Study on Extended-Spectrum Beta-Lactamase- E. coli in Sentinel Mallard Ducks in an Important Baltic Stop-Over Site for Migratory Ducks in Germany. Microorganisms 2022; 10:1968. [PMID: 36296245 PMCID: PMC9612239 DOI: 10.3390/microorganisms10101968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 08/17/2023] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health threat with extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales as the most critical ones. Studies on AMR in wild birds imply a possible dissemination function and indicate their potential role as sentinel animals. This study aimed to gain a deeper insight into the AMR burden of wild waterfowl by sampling semi-wild mallard ducks used as sentinels and to identify if AMR bacteria could be recommended to be added to the pathogens of public health risks to be screened for. In total, 376 cloacal and pooled fecal samples were collected from the sentinel plant over a period of two years. Samples were screened for ESBL-carrying E. coli and isolates found further analyzed using antimicrobial susceptibility testing and whole-genome sequencing. Over the sampling period, 4.26% (16/376) of the samples were positive for ESBL-producing E. coli. BlaCTX-M-1 and blaCTX-M-32 were the most abundant CTX-M types. Although none of the top global sequence types (ST) could be detected, poultry-derived ST115 and non-poultry-related STs were found and could be followed over time. The current study revealed low cases of ESBL-producing E. coli in semi-wild mallard ducks, which proves the suitability of sentinel surveillance for AMR detection in water-associated wildlife.
Collapse
Affiliation(s)
- Sylvia Dreyer
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Lisa Bachmann
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, 17033 Neubrandenburg, Germany
| | - Anne K. Schütz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | | |
Collapse
|
22
|
Tang B, Ni J, Lin J, Sun Y, Lin H, Wu Y, Yang H, Yue M. Genomic characterization of multidrug-resistance gene cfr in Escherichia coli recovered from food animals in Eastern China. Front Microbiol 2022; 13:999778. [PMID: 36160268 PMCID: PMC9493366 DOI: 10.3389/fmicb.2022.999778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
The plasmid-borne cfr gene, mediating multiple drug resistance (MDR), has been observed in many Gram-positive bacteria. The prevalence of cfr and its co-occurrence with additional antimicrobial resistance (AMR) determinants in Escherichia coli is an ongoing issue. Additionally, the prevalence and transfer mechanism of the cfr gene remain partially investigated. Here, eight cfr-positive E. coli strains were screened using PCR from an extensive collection of E. coli (n = 2,165) strains isolated from pigs and chickens in 2021 in China, with a prevalence rate of 0.37%. All of them were MDR and resistant to florfenicol and tetracycline. These strains can transfer the cfr gene to E. coli J53 by conjugation (1.05 × 10−1 – 1.01 × 10−6). Moreover, the IncX4 plasmid p727A3-62 K-cfr (62,717 bp) harboring cfr in strain EC727A3 was confirmed using Oxford Nanopore Technology. The unknown type plasmid p737A1-27K-cfr (27,742 bp) harboring cfr in strain EC737A1 was also identified. Notably, it was verified by PCR that three of the eight E. coli strains were able to form the cfr-IS26 circular intermediate. It was 2,365 bp in length in strains EC727A3 and ECJHZ21-173, and 2,022 bp in length in EC737A1. Collectively, this study demonstrated that IS26 plays a vital role in transmitting the MDR gene cfr in E. coli via conjugation and provided updated knowledge regarding cfr in E. coli in Eastern China.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Academy of Agricultural Sciences, Hangzhou, China
| | - Juan Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Academy of Agricultural Sciences, Hangzhou, China
- School of Food and Pharmacy, Ningbo University, Ningbo, China
| | - Jiahui Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yangying Sun
- School of Food and Pharmacy, Ningbo University, Ningbo, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Academy of Agricultural Sciences, Hangzhou, China
| | - Yuehong Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Hua Yang,
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Min Yue,
| |
Collapse
|
23
|
Screening of Single-Stranded DNA Aptamer Specific for Florfenicol and Application in Detection of Food Safety. BIOSENSORS 2022; 12:bios12090701. [PMID: 36140086 PMCID: PMC9496042 DOI: 10.3390/bios12090701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 01/08/2023]
Abstract
In this work, the single-stranded DNA (ssDNA) aptamers specific to florfenicol (FF) and having a high binding affinity were prepared using the magnetic bead-based systematic evolution of ligands by the exponential enrichment technique (MB-SELEX). After 10 rounds of the MB-SELEX screening, aptamers that can simultaneously recognize FF and its metabolite florfenicol amine (FFA) were obtained. The aptamer with the lowest dissociation constant (Kd) was truncated and optimized based on a secondary structure analysis. The optimal aptamer selected was Apt-14t, with a length of 43 nt, and its dissociation constant was 4.66 ± 0.75 nM, which was about 7 times higher than that of the full-length sequence. The potential binding sites and interactions with FF were demonstrated by molecular docking simulations. In addition, a colorimetric strategy for nanogold aptamers was constructed. The linear detection range of this method was 0.00128–500 ng/mL and the actual detection limit was 0.00128 ng/mL. Using this strategy to detect florfenicol in actual milk and eggs samples, the spiked recoveries were 88.9–123.1% and 84.0–112.2%, respectively, and the relative standard deviation was less than 5.6%, showing high accuracy.
Collapse
|
24
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
25
|
Li P, Gao M, Feng C, Yan T, Sheng Z, Shi W, Liu S, Zhang L, Li A, Lu J, Lin X, Li K, Xu T, Bao Q, Sun C. Molecular characterization of florfenicol and oxazolidinone resistance in Enterococcus isolates from animals in China. Front Microbiol 2022; 13:811692. [PMID: 35958123 PMCID: PMC9360786 DOI: 10.3389/fmicb.2022.811692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Florfenicol is widely used for the treatment of bacterial infections in domestic animals. The aim of this study was to analyze the molecular mechanisms of florfenicol and oxazolidinone resistance in Enterococcus isolates from anal feces of domestic animals. The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method. Polymerase chain reaction (PCR) was performed to analyze the distribution of the resistance genes. Whole-genome sequencing and comparative plasmid analysis was conducted to analyze the resistance gene environment. A total of 351 non-duplicated enteric strains were obtained. Among these isolates, 22 Enterococcus isolates, including 19 Enterococcus. faecium and 3 Enterococcus. faecalis, were further studied. 31 florfenicol resistance genes (13 fexA, 3 fexB, 12 optrA, and 3 poxtA genes) were identified in 15 of the 19 E. faecium isolates, and no florfenicol or oxazolidinone resistance genes were identified in 3 E. faecalis isolates. Whole-genome sequencing of E. faecium P47, which had all four florfenicol and oxazolidinone resistance genes and high MIC levels for both florfenicol (256 mg/L) and linezolid (8 mg/L), revealed that it contained a chromosome and 3 plasmids (pP47-27, pP47-61, and pP47-180). The four florfenicol and oxazolidinone resistance genes were all related to the insertion sequences IS1216 and located on two smaller plasmids. The genes fexB and poxtA encoded in pP47-27, while fexA and optrA encoded in the conjugative plasmid pP47-61. Comparative analysis of homologous plasmids revealed that the sequences with high identities were plasmid sequences from various Enterococcus species except for the Tn6349 sequence from a Staphylococcus aureus chromosome (MH746818.1). The current study revealed that florfenicol and oxazolidinone resistance genes (fexA, fexB, poxtA, and optrA) were widely distributed in Enterococcus isolates from animal in China. The mobile genetic elements, including the insertion sequences and conjugative plasmid, played an important role in the horizontal transfer of florfenicol and oxazolidinone resistance.
Collapse
Affiliation(s)
- Pingping Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Zhoukou Maternal and Child Health Hospital, Zhoukou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tielun Yan
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiqiong Sheng
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Anqi Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
- Teng Xu,
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Qiyu Bao,
| | - Caixia Sun
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Caixia Sun,
| |
Collapse
|
26
|
Zhang Y, Zhang R, Sy SKB, Li Z, Zhu S, Zhou M, Song C, Zhang J, Lv Z, Liu J, Qin L, Yu M. Florfenicol/Chlortetracycline Effect on Pharmacodynamic Indices for Mutant Selection of Riemerella anatipestifer in Ducks. Microb Drug Resist 2022; 28:832-840. [PMID: 35723674 DOI: 10.1089/mdr.2022.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Riemerella anatipestifer can cause septicemia and death in ducks and geese, leading to significant economic losses to animal farms. The emergence of resistance of R. anatipestifer to commonly used antibiotics increases the difficulty of treating R. anatipestifer infection. The aim of this study was to evaluate the utility of antibiotic combination to restrict mutant selection of multidrug-resistant (MDR) R. anatipestifer isolates. Pharmacokinetics of florfenicol and chlortetracycline in Pekin ducks were evaluated using both noncompartmental analysis and population pharmacokinetic models. The areas under the curve of florfenicol and chlortetracycline after single 20 and 10 mg/kg oral administration were 49.3 and 6.84 mg*h/L, respectively. Chlortetracycline exhibited high apparent clearance and low systemic exposure. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) values of the two antibiotics were determined in 10 and 2 MDR R. anatipestifer isolates, respectively, to derive fTMSW (the fraction of time over 24 hours wherein the free drug concentration was within the mutant selection window [MSW]) and fT>MPC (the fraction of time that the free drug concentration was above the MPC). Both fTMSW and fT>MPC were estimated from simulated concentration-time profiles relative to MIC and MPC. Florfenicol and chlortetracycline combination have additive activities against R. anatipestifer in majority of isolates and could significantly decrease monotherapy MPC of florfenicol and chlortetracycline, as well as optimize both fTMSW and fT>MPC parameters, provided that the bioavailability of chlortetracycline is improved. The application of pharmacokinetic/pharmacodynamic analyses to MPC concepts to restrict selection of mutant bacterial strains can help improve short- and long-term outcomes of antibiotic treatment in animal farms.
Collapse
Affiliation(s)
- Yicong Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Ruili Zhang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, P.R. China.,Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao, P.R. China
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Brazil
| | - Zhizhong Li
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, P.R. China.,Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao, P.R. China
| | - Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Meichen Zhou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Chu Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, P.R. China
| | - Jinsong Liu
- Zhejiang Vegamax Biological Technology Co., Ltd., Hangzhou, China
| | - Liting Qin
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, P.R. China.,Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao, P.R. China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, P.R. China
| |
Collapse
|
27
|
Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol. Antibiotics (Basel) 2022; 11:antibiotics11040443. [PMID: 35453195 PMCID: PMC9029715 DOI: 10.3390/antibiotics11040443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Large quantities of the antibiotic florfenicol are used in animal farming and aquaculture, contaminating the ecosystem with antibiotic residues and promoting antimicrobial resistance, ultimately leading to untreatable multidrug-resistant pathogens. Florfenicol-resistant bacteria often activate export mechanisms that result in resistance to various structurally unrelated antibiotics. We devised novel strategies for the enzymatic inactivation of florfenicol in different media, such as saltwater or milk. Using a combinatorial approach and selection, we optimized a hydrolase (EstDL136) for florfenicol cleavage. Reaction kinetics were followed by time-resolved NMR spectroscopy. Importantly, the hydrolase remained active in different media, such as saltwater or cow milk. Various environmentally-friendly application strategies for florfenicol inactivation were developed using the optimized hydrolase. As a potential filter device for cost-effective treatment of waste milk or aquacultural wastewater, the hydrolase was immobilized on Ni-NTA agarose or silica as carrier materials. In two further application examples, the hydrolase was used as cell extract or encapsulated with a semi-permeable membrane. This facilitated, for example, florfenicol inactivation in whole milk, which can help to treat waste milk from medicated cows, to be fed to calves without the risk of inducing antibiotic resistance. Enzymatic inactivation of antibiotics, in general, enables therapeutic intervention without promoting antibiotic resistance.
Collapse
|
28
|
Rattanapanadda P, Kuo HC, Chang SK, Tell LA, Shia WY, Chou CC. Effect of Carbonyl Cyanide Chlorophenylhydrazone on Intrabacterial Concentration and Antimicrobial Activity of Amphenicols against Swine Resistant Actinobacillus pleuropneumoniae and Pasteurella multocida. Vet Res Commun 2022; 46:903-916. [PMID: 35322371 DOI: 10.1007/s11259-022-09917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Effects and mechanism of carbonyl cyanide chlorophenylhydrazone (CCCP) on antimicrobial activity of florfenicol (FF) and thiamphenicol (TAP) were investigated against amphenicol-resistant Actinobacillus pleuropneumoniae and Pasteurella multocida isolated from diseased swine. Broth microdilution and time-kill assays indicated that CCCP dose-dependently and substantially (4-32 fold MIC reduction) improved amphenicol antimicrobial activity. When combined with CCCP at the lowest literature reported dose (2-5 μg/mL), 85% FF resistant A. pleuropneumoniae and 92% resistant P. multocida showed significantly reduced FF MICs (≥ 4-fold). In contrast, none or few of the susceptible A. pleuropneumoniae and P. multocida had FF MICs reduction ≥ 4-fold. 90% FF resistant A. pleuropneumoniae and 96% resistant P. multocida carried the floR gene, indicating strong association with the FloR efflux pump. With CCCP, the intracellular FF concentration increased by 71% in floR+ resistant A. pleuropneumoniae and 156% in floR+ resistant P. multocida strains but not the susceptible strains. The degree of reduction in TAP MICs was found consistently in parallel to FF for both bacteria. Taken together, partially attributed to blockage of drug-efflux, the combination of FF or TAP with CCCP at sub-cytotoxic concentrations was demonstrated and showed feasibility to combat amphenicol-resistant A. pleuropneumoniae and P. multocida isolated from diseased swine.
Collapse
Affiliation(s)
- Porjai Rattanapanadda
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, 402.,Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok, 10400, Thailand
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan, 600
| | - Shao-Kuang Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, 106
| | - Lisa Ann Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Wei-Yau Shia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, 402
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, 402.
| |
Collapse
|
29
|
Ramírez C, Gutiérrez MS, Venegas L, Sapag C, Araya C, Caruffo M, López P, Reyes-Jara A, Toro M, González-Rocha G, Yáñez JM, Navarrete P. Microbiota composition and susceptibility to florfenicol and oxytetracycline of bacterial isolates from mussels (Mytilus spp.) reared on different years and distance from salmon farms. ENVIRONMENTAL RESEARCH 2022; 204:112068. [PMID: 34547250 DOI: 10.1016/j.envres.2021.112068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Chilean aquaculture mainly produces salmonids and molluscs. Salmonid production has been questioned by its excessive use of antimicrobials. This study aimed to investigate the bacterial microbiota composition of Mytilus spp. cultivated near salmonid farms and to determine the minimum inhibitory concentration (MIC) to florfenicol and oxytetracycline of its culturable bacteria. Seven Mytilus farming sites classified according to their proximity to salmon farms as close (CSF) or distant (DSF) were sampled in two years. We analyzed Mytilus microbiota composition through culture-independent methods, and isolated culturable bacteria, and identified those isolates with MIC values ≥ 64 μg mL-1 to florfenicol or oxytetracycline. Results revealed that the alpha diversity was affected by sampling year but not by Mytilus farming site location or its interaction. Nevertheless, in 2018, we observed a significant negative correlation between the alpha diversity of Mytilus microbiota in each farm sites and the tonnes of florfenicol reported for each phytosanitary management area. We detected significant differences in beta diversity and relative abundance of specific bacterial taxa in Mytilus microbiota depending on the proximity to salmon farms and years. A higher proportion of isolates with MIC values ≥ 64 μg mL-1 to both antibiotics was detected in 2019 compared to 2018, but not significant differences were detected according to Mytilus farming site location. However, in 2019, isolates from CSF sites showed higher MIC values for both antibiotics than those from DSF. Bacterial genera corresponding to isolates with MIC values ≥ 64 μg mL-1 represented a low proportion of Mytilus microbiota identified with the culture-independent approach, reflecting the need to implement new methodologies in the study of antimicrobial resistance. These results suggest that the proximity to salmonid farms and sampling year influence the Mytilus microbiota and MIC values of their bacterial isolates; however, other environmental variables should be considered in further studies.
Collapse
Affiliation(s)
- Carolina Ramírez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Chile
| | - Lucas Venegas
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | | | - Carolina Araya
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Mario Caruffo
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Paulina López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Angélica Reyes-Jara
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Magaly Toro
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - José Manuel Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Núcleo Milenio INVASAL, Concepción, Chile
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Chile.
| |
Collapse
|
30
|
Zheng X, Ma J, Lu Y, Sun D, Yang H, Xia F, Tang B. Detection of tet(X6) variant-producing Proteus terrae subsp. cibarius from animal cecum in Zhejiang, China. J Glob Antimicrob Resist 2022; 29:124-130. [PMID: 35218939 DOI: 10.1016/j.jgar.2022.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES The prevalence of tet(X) genes threatens the clinical use of last-line tigecycline. tet(X6) gene has been reported in Proteus strains, but its genetic context is rarely reported. This study aimed to investigate the prevalence and genetic contexts of tet(X6) gene in Proteus spp. METHODS A tet(X6) variant-bearing P. terrae subsp. cibarius strain was subjected to susceptibility testing, determination of growth curves, scanning electron microscopy, transmission electron microscopy and whole-genome sequencing (WGS). The genomic contexts of the tet(X6)-positive strain were analyzed by sequence comparison and annotation. RESULTS ZJ19PC, a P. terrae subsp. cibarius strain harboring the tet(X6) variant, was isolated from 20 cecum samples collected in Zhejiang, China. The chromosome size of ZJ19PC was 3,952,084 bp and that the GC content was 38.2%, and hugA, sul2, tet(H), floR, dfra1, aadA1, aac(3)-IV, and aph(4)-la were found in addition to the tet(X6) variant. Proteus spp. could be classified into three groups based on the tet(X6) gene contexts. Strain ZJ19PC belongs to Group 1 (sra-sul2-ISCR2-floR-ISCR2-floR-ISCR2- tet(X6)_variant-tnpA-ISEc59-aph(4)-la-aac(3)-Iva-IS26), and this region of Group 1 was inserted between modA and guaA. The common antimicrobial resistance (AMR) genes of the three types of AMR gene islands were sul2, floR, tet(X6) and aac(3). The tet(X6) gene contexts and SNP tree showed that ZJ19PC was homologous to HNCF44W and HNCF43W, which indicated that these strains may be clonally transmitted. CONCLUSION This study analyzed the genetic contexts of the tet(X6) gene in Proteus spp., and highlighted the significance of monitoring tigecycline-resistant P. terrae subsp. cibarius.
Collapse
Affiliation(s)
- Xue Zheng
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xian 610041, Shaanxi, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition; Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition; Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yalan Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition; Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Fei Xia
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xian 610041, Shaanxi, China.
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition; Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
31
|
Müller A, Sakurai K, Seinige D, Nishino K, Kehrenberg C. Mutations in the Phenicol Exporter Gene fexA Impact Resistance Levels in Three Bacterial Hosts According to Susceptibility Testing and Protein Modeling. Front Microbiol 2022; 12:794435. [PMID: 35069492 PMCID: PMC8777102 DOI: 10.3389/fmicb.2021.794435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
The prototype fexA gene confers combined resistance to chloramphenicol and florfenicol. However, fexA variants mediating resistance only to chloramphenicol have been identified, such as in the case of a Staphylococcus aureus isolate recovered from poultry meat illegally imported to Germany. The effects of the individual mutations detected in the fexA sequence of this isolate were investigated in this study. A total of 11 fexA variants, including prototype fexA and variants containing the different previously described mutations either alone or in different combinations, were generated by on-chip gene synthesis and site-directed mutagenesis. The constructs were inserted into a shuttle vector and transformed into three recipient strains (Escherichia coli, Staphylococcus aureus, and Salmonella Typhimurium). Subsequently, minimal inhibitory concentrations (MIC) of florfenicol and chloramphenicol were determined. In addition, protein modeling was used to predict the structural effects of the mutations. The lack of florfenicol-resistance mediating properties of the fexA variants could be attributed to the presence of a C110T and/or G98C mutation. Transformants carrying fexA variants containing either of these mutations, or both, showed a reduction of florfenicol MICs compared to those transformants carrying prototype fexA or any of the other variants. The significance of these mutations was supported by the generated protein models, indicating a substitution toward more voluminous amino-acids in the substrate-binding site of FexA. The remaining mutations, A391G and C961A, did not result in lower florfenicol-resistance compared to prototype fexA.
Collapse
Affiliation(s)
- Anja Müller
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Giessen, Germany
| | - Keisuke Sakurai
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Diana Seinige
- Lower Saxony State Office for Consumer Protection and Food Safety, Wardenburg, Germany
| | - Kunihiko Nishino
- SANKEN, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
32
|
Bello A, Poźniak B, Smutkiewicz A, Świtała M. The influence of the site of drug administration on florfenicol pharmacokinetics in turkeys. Poult Sci 2022; 101:101536. [PMID: 34784513 PMCID: PMC8591492 DOI: 10.1016/j.psj.2021.101536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 10/27/2022] Open
Abstract
Florfenicol is a broad-spectrum antibacterial drug used in the treatment of farm animals, including poultry. This drug is poorly soluble in water, therefore, administration in drinking water may lead to high variability of concentrations in treated individuals. The use of injection preparations, however, requires individual administration and may have a negative effect on the quality of the carcass. In addition, the renal portal system in birds may reduce the bioavailability of the drug administered in the caudofemoral region of the body. The aim of this study was to compare the pharmacokinetics of florfenicol in turkeys after a single intravenous, intramuscular, and subcutaneous administration at a dose of 15 mg/kg body weight. Additionally, to evaluate the effect of renal portal system on drug kinetics, the intramuscular administration was divided into pectoral and caudofemoral administration. The study showed that the area under the concentration-time curve (AUC) was similar regardless of the route of administration. The mean values for clearance and volume of distribution were 0.33 L/kg/h and 0.92 L/kg, respectively. The mean residence time (MRT) was 2.87 h for an intravenous bolus, while for the extravascular administrations it was approx. 5.5 h. The elimination half-life was approx. 4 h regardless of the route of administration. The maximum plasma concentration did not differ statistically between intramuscular (approx. 6.8 mg/L) and subcutaneous (8.2 mg/L) administrations, while the time to appear for this concentration was the longest for caudofemoral administration (1.5 h). The bioavailability was 88.64% for subcutaneous administration, 77.95% for pectoral administration and 85.30% for caudofemoral administration. Overall, all 3 routes of extravascular administration allowed for efficient drug absorption. There was no evidence of an influence of the renal portal system on the kinetic parameters of the drug administered to the lower extremities of the body.
Collapse
Affiliation(s)
- A Bello
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland
| | - B Poźniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland..
| | - A Smutkiewicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland
| | - M Świtała
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland
| |
Collapse
|
33
|
Wu LT, Wu XX, Ke SC, Lin YP, Wu YC, Chen TH, Chen CM. Antimicrobial resistance genes and genetic characteristics of multidrug-resistant Escherichia coli in a veterinary hospital in Taiwan. J Med Microbiol 2021; 70. [PMID: 34779761 DOI: 10.1099/jmm.0.001453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Antimicrobial resistance associated with animal hosts is easily transmitted to humans either by direct contact with resistant organisms or by transferring resistance genes into human pathogens.Gap statement. There are limited studies on antimicrobial resistance genes and genetic elements of multidrug-resistant (MDR) Escherichia coli in veterinary hospitals in Taiwan.Aim. The aim of this study was to investigate antimicrobial resistance genes in multidrug-resistant Escherichia coli from animals.Methodology. Between January 2014 and August 2015, 95 multidrug-resistant Escherichia coli isolates were obtained from pigs (n=66), avians (n=18), and other animals (n=11) in a veterinary hospital in Taiwan. Susceptibility testing to 24 antimicrobial agents of 14 antimicrobial classes was performed. Antimicrobial resistance genes, integrons, and insertion sequences were analysed by polymerase chain reaction and nucleotide sequencing. Pulsed-field gel electrophoresis (PFGE), and multi-locus sequence typing were used to explore the clonal relatedness of the study isolates.Results. Different antimicrobial resistance genes found in these isolates were associated with resistance to β-lactams, tetracycline, phenicols, sulfonamides, and aminoglycosides. Fifty-five of 95 E. coli isolates (55/95, 57.9 %) were not susceptible to extended-spectrum cephalosporins, and bla CTX-M-55 (11/55, 20.0 %) and bla CMY-2 (40/55, 72.7 %) were the most common extended-spectrum β-lactamase (ESBL) and AmpC genes, respectively. Both bla CTX-M and bla CMY-2 were present on conjugative plasmids that contained the insertion sequence ISEcp1 upstream of the bla genes. Plasmid-mediated FOX-3 β-lactamase-producing E. coli was first identified in Taiwan. Forty isolates (40/95, 42 %) with class 1 integrons showed seven resistance phenotypes. Genotyping of 95 E. coli isolates revealed 91 different XbaI pulsotypes and 52 different sequence types. PFGE analysis revealed no clonal outbreaks in our study isolates.Conclusion. This study showed a high diversity of antimicrobial resistance genes and genotypes among MDR E. coli isolated from diseased livestock in Taiwan. To our knowledge, this is the first report of plasmid-mediated ESBL in FOX-3 β-lactamase-producing E. coli isolates in Taiwan. MDR E. coli isolates from animal origins may contaminate the environment, resulting in public health concerns, indicating that MDR isolates from animals need to be continuously investigated.
Collapse
Affiliation(s)
- Lii-Tzu Wu
- Institute of Medical Science and Department of Microbiology, China Medical University Hospital, Taiwan, ROC
| | - Xin-Xia Wu
- RBC bioscience Corp, Xindian District, New Taipei City, Taiwan, ROC
| | - Se-Chin Ke
- Infection Control Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC.,Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan, ROC
| | - Yi-Pei Lin
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC
| | - Ying-Chen Wu
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chih-Ming Chen
- Division of Infectious Diseases, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC.,Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan, ROC
| |
Collapse
|
34
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
35
|
Meneguzzi M, Pissetti C, Rebelatto R, Trachsel J, Kuchiishi SS, Reis AT, Guedes RMC, Leão JA, Reichen C, Kich JD. Re-Emergence of Salmonellosis in Hog Farms: Outbreak and Bacteriological Characterization. Microorganisms 2021; 9:947. [PMID: 33925758 PMCID: PMC8146755 DOI: 10.3390/microorganisms9050947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
Clinical salmonellosis has been increasing significantly in Brazil in recent years. A total of 130 outbreaks distributed among 10 swine-producing states were investigated. One representative Salmonella isolate from each outbreak was characterized through serotyping, antimicrobial resistance profiles, PFGE, and WGS. From 130 outbreaks: 50 were enteric, 48 were septicemic, 17 cases were characterized as hepato-biliary invasive, 13 as nodal and two were not classified. The most prevalent serovars were a monophasic variant of S. typhimurium (55/130), Choleraesuis (46/130), and Typhimurium (14/130). Most of the strains (86.92%) demonstrated a high rate of multi-drug resistance. The identification of a major Choleraesuis clonal group in several Brazilian states sharing the same resistance genes suggested that these strains were closely related. Six strains from this clonal group were sequenced, revealing the same ST-145 and 11 to 47 different SNPs. The detected plasmid type showed multiple marker genes as RepA_1_pKPC-CAV1321, the first to be reported in Salmonella. All AMR genes detected in the genomes were likely present on plasmids, and their phenotype was related to genotypic resistance genes. These findings reveal that salmonellosis is endemic in the most important pig-producing states in Brazil, emphasizing the need to make data available to aid in reducing its occurrence.
Collapse
Affiliation(s)
- Mariana Meneguzzi
- Curso de Medicina Veterinária, Instituto Federal Catarinense, Concórdia 89703-720, SC, Brazil; (M.M.); (C.R.)
| | - Caroline Pissetti
- Departamento de Medicina Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil;
| | - Raquel Rebelatto
- Embrapa Suínos e Aves, Empresa Brasileira de Pesquisa Agropecuária, Concórdia 89715-899, SC, Brazil;
| | - Julian Trachsel
- National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA;
| | | | - Adrienny Trindade Reis
- Centro de Diagnóstico e Monitoramento Animal, CDMA, Belo Horizonte 30411-191, MG, Brazil;
| | - Roberto Maurício Carvalho Guedes
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | | | - Caroline Reichen
- Curso de Medicina Veterinária, Instituto Federal Catarinense, Concórdia 89703-720, SC, Brazil; (M.M.); (C.R.)
| | - Jalusa Deon Kich
- Embrapa Suínos e Aves, Empresa Brasileira de Pesquisa Agropecuária, Concórdia 89715-899, SC, Brazil;
| |
Collapse
|
36
|
Wu C, Zhang X, Liang J, Li Q, Lin H, Lin C, Liu H, Zhou D, Lu W, Sun Z, Lin X, Zhang H, Li K, Xu T, Bao Q, Lu J. Characterization of florfenicol resistance genes in the coagulase-negative Staphylococcus (CoNS) isolates and genomic features of a multidrug-resistant Staphylococcus lentus strain H29. Antimicrob Resist Infect Control 2021; 10:9. [PMID: 33413633 PMCID: PMC7791814 DOI: 10.1186/s13756-020-00869-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background With the wide use of florfenicol to prevent and treat the bacterial infection of domestic animals, the emergence of the florfenicol resistance bacteria is increasingly serious. It is very important to elucidate the molecular mechanism of the bacteria’s resistance to florfenicol. Methods The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method, and polymerase chain reaction was conducted to analyze the distribution of florfenicol resistance genes in 39 CoNS strains isolated from poultry and livestock animals and seafood. The whole genome sequence of one multidrug resistant strain, Staphylococcus lentus H29, was characterized, and comparative genomics analysis of the resistance gene-related sequences was also performed. Results As a result, the isolates from the animals showed a higher resistance rate (23/28, 82.1%) and much higher MIC levels to florfenicol than those from seafood. Twenty-seven animal isolates carried 37 florfenicol resistance genes (including 26 fexA, 6 cfr and 5 fexB genes) with one carrying a cfr gene, 16 each harboring a fexA gene, 5 with both a fexA gene and a fexB gene and the other 5 with both a fexA gene and a cfr gene. On the other hand, all 11 isolates from seafood were sensitive to florfenicol, and only 3 carried a fexA gene each. The whole genome sequence of S. lentus H29 was composed of a chromosome and two plasmids (pH29-46, pH29-26) and harbored 11 resistance genes, including 6 genes [cfr, fexA, ant(6)-Ia, aacA-aphD, mecA and mph(C)] encoded on the chromosome, 4 genes [cfr, fexA, aacA-aphD and tcaA] on pH29-46 and 1 gene (fosD) on pH29-26. We found that the S. lentus H29 genome carried two identical copies of the gene arrays of radC-tnpABC-hp-fexA (5671 bp) and IS256-cfr (2690 bp), of which one copy of the two gene arrays was encoded on plasmid pH29-46, while the other was encoded on the chromosome. Conclusions The current study revealed the wide distribution of florfenicol resistance genes (cfr, fexA and fexB) in animal bacteria, and to the best of our knowledge, this is the first report that one S. lentus strain carried two identical copies of florfenicol resistance-related gene arrays.
Collapse
Affiliation(s)
- Chongyang Wu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueya Zhang
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jialei Liang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Qiaoling Li
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hailong Lin
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chaoqin Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hongmao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Danying Zhou
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China
| | - Wei Lu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China
| | - Zhewei Sun
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China
| | - Xi Lin
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Kewei Li
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, 014040, China.
| | - Qiyu Bao
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China.
| | - Junwan Lu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
37
|
Molecular analysis of florfenicol-resistant bacteria isolated from drinking water distribution systems in Southwestern Nigeria. J Glob Antimicrob Resist 2020; 23:340-344. [PMID: 33166759 DOI: 10.1016/j.jgar.2020.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Use of chloramphenicol or its veterinary analogue florfenicol can selectively favour antibiotic-resistant bacteria. Understanding how resistance is mobilised and disseminated among pathogens is vital in knowing how different bacterial taxa might serve as reservoirs of these genes for pathogenic bacteria. METHODS Bacterial isolates (n=30) were selected on the basis of multidrug resistance and resistance to florfenicol from among 296 bacteria originally isolated from drinking water distribution systems in Southwestern Nigeria. Bacterial identification, minimum inhibitory concentration (MIC) determination for florfenicol, PCR detection of florfenicol resistance genes (floR, fexA and cfx) and sequence analysis were employed to characterise the isolates. RESULTS According to sequence data (16S rDNA, v2-v3 region), 30strains were selected, includingPseudomonas spp. (43.3%), Serratia spp. (13.3%), Proteus spp. (26.7%), Acinetobacter spp. (13.3%) and Providencia rettgeri (3.3%). MICs ranged between >16μg/mL and >1024μg/mL. floR was the only resistance gene detected (11/30; 36.7%). The majority of floR-positive isolates (8/11; 72.7%) were Proteus spp. All floR sequences shared 100% identity and 1-2 synonymous substitutions relative to other published sequences. CONCLUSIONS floR-positive strains in this study were originally selected randomly without antibiotics. Finding floR in four genera without selective enrichment is consistent with widespread distribution of this resistance trait in drinking water systems in Nigeria. Further work is needed to determine whether human and veterinary antibiotic use practices in Nigeria are contributing to proliferation of this important antibiotic resistance trait and to determine whether the presence of floR-producing strains is compromising human and animal health.
Collapse
|