1
|
Zarzecka U, Skorko-Glonek J. Intricate Structure-Function Relationships: The Case of the HtrA Family Proteins from Gram-Negative Bacteria. Int J Mol Sci 2024; 25:13182. [PMID: 39684892 DOI: 10.3390/ijms252313182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Proteolytic enzymes play key roles in living organisms. Because of their potentially destructive action of degrading other proteins, their activity must be very tightly controlled. The evolutionarily conserved proteins of the HtrA family are an excellent example illustrating strategies for regulating enzymatic activity, enabling protease activation in response to an appropriate signal, and protecting against uncontrolled proteolysis. Because HtrA homologs play key roles in the virulence of many Gram-negative bacterial pathogens, they are subject to intense investigation as potential therapeutic targets. Model HtrA proteins from bacterium Escherichia coli are allosteric proteins with reasonably well-studied properties. Binding of appropriate ligands induces very large structural changes in these enzymes, including changes in the organization of the oligomer, which leads to the acquisition of the active conformation. Properly coordinated events occurring during the process of HtrA activation ensure proper functioning of HtrA and, consequently, ensure fitness of bacteria. The aim of this review is to present the current state of knowledge on the structure and function of the exemplary HtrA family proteins from Gram-negative bacteria, including human pathogens. Special emphasis is paid to strategies for regulating the activity of these enzymes.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Omole Z, Dorrell N, Elmi A, Nasher F, Gundogdu O, Wren BW. Pathogenicity and virulence of Campylobacter jejuni: What do we really know? Virulence 2024; 15:2436060. [PMID: 39648291 PMCID: PMC11633169 DOI: 10.1080/21505594.2024.2436060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis and is a major public health concern worldwide. Despite its importance, our understanding of how C. jejuni causes diarrhoea and interacts with its hosts is limited due to the absence of appropriate infection models and established virulence factors found in other enteric pathogens. Additionally, despite its genetic diversity, non-pathogenic C. jejuni strains are unknown. Regardless of these limitations, significant progress has been made in understanding how C. jejuni uses a complex array of factors which aid the bacterium to survive and respond to host defences. This review provides an update on fitness and virulence determinants of this important pathogen and questions our knowledge on these determinants that are often based on inferred genomics knowledge and surrogate infection models.
Collapse
Affiliation(s)
- Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
3
|
Kumari P, Yadav S, Sarkar S, Satheeshkumar PK. Cleavage of cell junction proteins as a host invasion strategy in leptospirosis. Appl Microbiol Biotechnol 2024; 108:119. [PMID: 38204132 PMCID: PMC10781872 DOI: 10.1007/s00253-023-12945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extracellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/therapeutic aspects of leptospirosis will also be discussed. KEY POINTS: • The review focussed on the cell junction cleavage proteins in bacterial pathogenesis • Cell junction disruptors from Leptospira genome are identified using bioinformatics • The review provides insights into the therapeutic/diagnostic interventions possible.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suhani Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sresha Sarkar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Malet-Villemagne J, Vidic J. Extracellular vesicles in the pathogenesis of Campylobacter jejuni. Microbes Infect 2024; 26:105377. [PMID: 38866352 DOI: 10.1016/j.micinf.2024.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Bacteria in genus Campylobacter are the leading cause of foodborne infections worldwide. Here we describe the roles of extracellular vesicles in the pathogenesis of these bacteria and current knowledge of vesicle biogenesis. We also discuss the advantages of this alternative secretion pathway for bacterial virulence.
Collapse
Affiliation(s)
- Jeanne Malet-Villemagne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350, Jouy en Josas, France.
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350, Jouy en Josas, France.
| |
Collapse
|
5
|
Zang X, Zhang J, Jiang Y, Feng T, Cui Y, Wang H, Cui Z, Dang G, Liu S. Serine protease Rv2569c facilitates transmission of Mycobacterium tuberculosis via disrupting the epithelial barrier by cleaving E-cadherin. PLoS Pathog 2024; 20:e1012214. [PMID: 38722857 PMCID: PMC11081392 DOI: 10.1371/journal.ppat.1012214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Epithelial cells function as the primary line of defense against invading pathogens. However, bacterial pathogens possess the ability to compromise this barrier and facilitate the transmigration of bacteria. Nonetheless, the specific molecular mechanism employed by Mycobacterium tuberculosis (M.tb) in this process is not fully understood. Here, we investigated the role of Rv2569c in M.tb translocation by assessing its ability to cleave E-cadherin, a crucial component of cell-cell adhesion junctions that are disrupted during bacterial invasion. By utilizing recombinant Rv2569c expressed in Escherichia coli and subsequently purified through affinity chromatography, we demonstrated that Rv2569c exhibited cell wall-associated serine protease activity. Furthermore, Rv2569c was capable of degrading a range of protein substrates, including casein, fibrinogen, fibronectin, and E-cadherin. We also determined that the optimal conditions for the protease activity of Rv2569c occurred at a temperature of 37°C and a pH of 9.0, in the presence of MgCl2. To investigate the function of Rv2569c in M.tb, a deletion mutant of Rv2569c and its complemented strains were generated and used to infect A549 cells and mice. The results of the A549-cell infection experiments revealed that Rv2569c had the ability to cleave E-cadherin and facilitate the transmigration of M.tb through polarized A549 epithelial cell layers. Furthermore, in vivo infection assays demonstrated that Rv2569c could disrupt E-cadherin, enhance the colonization of M.tb, and induce pathological damage in the lungs of C57BL/6 mice. Collectively, these results strongly suggest that M.tb employs the serine protease Rv2569c to disrupt epithelial defenses and facilitate its systemic dissemination by crossing the epithelial barrier.
Collapse
Affiliation(s)
- Xinxin Zang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jiajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanyan Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Tingting Feng
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yingying Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Ziyin Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guanghui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
6
|
Sharafutdinov I, Tegtmeyer N, Rohde M, Olofsson A, Rehman ZU, Arnqvist A, Backert S. Campylobacter jejuni Surface-Bound Protease HtrA, but Not the Secreted Protease nor Protease in Shed Membrane Vesicles, Disrupts Epithelial Cell-to-Cell Junctions. Cells 2024; 13:224. [PMID: 38334616 PMCID: PMC10854787 DOI: 10.3390/cells13030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Fundamental functions of the intestinal epithelium include the digestion of food, absorption of nutrients, and its ability to act as the first barrier against intruding microbes. Campylobacter jejuni is a major zoonotic pathogen accounting for a substantial portion of bacterial foodborne illnesses. The germ colonizes the intestines of birds and is mainly transmitted to humans through the consumption of contaminated poultry meat. In the human gastrointestinal tract, the bacterium triggers campylobacteriosis that can progress to serious secondary disorders, including reactive arthritis, inflammatory bowel disease and Guillain-Barré syndrome. We recently discovered that C. jejuni serine protease HtrA disrupts intestinal epithelial barrier functions via cleavage of the tight and adherens junction components occludin, claudin-8 and E-cadherin. However, it is unknown whether epithelial damage is mediated by the secreted soluble enzyme, by HtrA contained in shed outer-membrane vesicles (OMVs) or by another mechanism that has yet to be identified. In the present study, we investigated whether soluble recombinant HtrA and/or purified OMVs induce junctional damage to polarized intestinal epithelial cells compared to live C. jejuni bacteria. By using electron and confocal immunofluorescence microscopy, we show that HtrA-expressing C. jejuni bacteria trigger efficient junctional cell damage, but not soluble purified HtrA or HtrA-containing OMVs, not even at high concentrations far exceeding physiological levels. Instead, we found that only bacteria with active protein biosynthesis effectively cleave junctional proteins, which is followed by paracellular transmigration of C. jejuni through the epithelial cell layer. These findings shed new light on the pathogenic activities of HtrA and virulence strategies of C. jejuni.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Annelie Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Zia ur Rehman
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| |
Collapse
|
7
|
Tokumon R, Sebastián I, Humbel BM, Okura N, Yamanaka H, Yamashiro T, Toma C. Degradation of p0071 and p120-catenin during adherens junction disassembly by Leptospira interrogans. Front Cell Infect Microbiol 2023; 13:1228051. [PMID: 37795382 PMCID: PMC10545952 DOI: 10.3389/fcimb.2023.1228051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Leptospira interrogans disseminates hematogenously to reach the target organs by disrupting epithelial adherens junctions (AJs), thus causing leptospirosis, which is a globally neglected zoonotic disease. L. interrogans induces E-cadherin (E-cad) endocytosis and cytoskeletal rearrangement during AJ disassembly, but the detailed mechanism remains unknown. Elucidation of AJ disassembly mechanisms will guide new approaches to developing vaccines and diagnostic methods. In this study, we combine proteomic and imaging analysis with chemical inhibition studies to demonstrate that disrupting the AJs of renal proximal tubule epithelial cells involves the degradation of two armadillo repeat-containing proteins, p0071 and p120-catenin, that stabilize E-cad at the plasma membrane. Combining proteasomal and lysosomal inhibitors substantially prevented p120-catenin degradation, and monolayer integrity destruction without preventing p0071 proteolysis. In contrast, the pan-caspase inhibitor Z-VAD-FMK inhibited p0071 proteolysis and displacement of both armadillo repeat-containing proteins from the cell-cell junctions. Our results show that L. interrogans induces p120-catenin and p0071 degradation, which mutually regulates E-cad stability by co-opting multiple cellular degradation pathways. This strategy may allow L. interrogans to disassemble AJs and disseminate through the body efficiently.
Collapse
Affiliation(s)
- Romina Tokumon
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Isabel Sebastián
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Bruno M. Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Microscopy Center, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hidenori Yamanaka
- Environmental Technology Department, Chemicals Evaluation and Research Institute, Saitama, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Claudia Toma
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
8
|
Sharafutdinov I, Tegtmeyer N, Linz B, Rohde M, Vieth M, Tay ACY, Lamichhane B, Tuan VP, Fauzia KA, Sticht H, Yamaoka Y, Marshall BJ, Backert S. A single-nucleotide polymorphism in Helicobacter pylori promotes gastric cancer development. Cell Host Microbe 2023; 31:1345-1358.e6. [PMID: 37490912 DOI: 10.1016/j.chom.2023.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) in various human genes are key factors in carcinogenesis. However, whether SNPs in bacterial pathogens are similarly crucial in cancer development is unknown. Here, we analyzed 1,043 genomes of the stomach pathogen Helicobacter pylori and pinpointed a SNP in the serine protease HtrA (position serine/leucine 171) that significantly correlates with gastric cancer. Our functional studies reveal that the 171S-to-171L mutation triggers HtrA trimer formation and enhances proteolytic activity and cleavage of epithelial junction proteins occludin and tumor-suppressor E-cadherin. 171L-type HtrA, but not 171S-HtrA-possessing H. pylori, inflicts severe epithelial damage, enhances injection of oncoprotein CagA into epithelial cells, increases NF-κB-mediated inflammation and cell proliferation through nuclear accumulation of β-catenin, and promotes host DNA double-strand breaks, collectively triggering malignant changes. These findings highlight the 171S/L HtrA mutation as a unique bacterial cancer-associated SNP and as a potential biomarker for risk predictions in H. pylori infections.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Alfred Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia
| | - Binit Lamichhane
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia
| | - Vo Phuoc Tuan
- Department of Endoscopy, Choray Hospital, Ho Chi Minh, Vietnam; Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan; Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barry J Marshall
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia; University of Western Australia, Marshall Centre, M504, Crawley, WA, Australia; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
9
|
Kato I, Minkevitch J, Sun J. Oncogenic potential of Campylobacter infection in the gastrointestinal tract: narrative review. Scand J Gastroenterol 2023; 58:1453-1465. [PMID: 37366241 DOI: 10.1080/00365521.2023.2228954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of zoonotic gastroenteritis. The other emerging group of Campylobacters spp. are part of human oral commensal, represented by C. concisus (CC), which has been recently linked to non-oral conditions. Although long-term gastrointestinal (GI) complications from these two groups of Campylobacters have been previously reviewed individually, overall impact of Campylobacter infection on GI carcinogenesis and their inflammatory precursor lesions has not been assessed collectively. AIMS To evaluate the available evidence concerning the association between Campylobacter infection/colonization and inflammatory bowel disease (IBD), reflux esophagitis/metaplasia colorectal cancer (CRC) and esophageal cancer (EC). METHODS We performed a comprehensive literature search of PubMed for relevant original publications and systematic reviews/meta-analyses of epidemiological and clinical studies. In addition, we gathered additional information concerning microbiological data, animal models and mechanistic data from in vitro studies. RESULTS Both retrospective and prospective studies on IBD showed relatively consistent increased risk associated with Campylobacter infection. Despite lack of supporting prospective studies, retrospective studies based on tissue/fecal microbiome revealed consistent enrichment of Campylobacter in CRC samples. Studies on EC precursor lesions (esophagitis and metaplasia) were generally supportive for the association with Campylobacter, while inconsistent observations on EC. Studies on both IBD and EC precursors suggested the predominant role of CC, but studies on CRC were not informative of species. CONCLUSIONS There is sufficient evidence calling for concerted effort in unveiling direct and indirect connection of this organism to colorectal and esophageal cancer in humans.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julia Minkevitch
- Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jun Sun
- Department of Microbiology/Immunology, University of Illinois at Chicago (UIC), Chicago, IL, USA
- UIC Cancer Center, Chicago, IL, USA
| |
Collapse
|
10
|
Shu LZ, Ding YD, Xue QM, Cai W, Deng H. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol 2023; 16:17562848231176427. [PMID: 37274298 PMCID: PMC10233627 DOI: 10.1177/17562848231176427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Bacterial translocation is a pathological process involving migration of pathogenic bacteria across the intestinal barrier to enter the systemic circulation and gain access to distant organs. This phenomenon has been linked to a diverse range of diseases including inflammatory bowel disease, pancreatitis, and cancer. The intestinal barrier is an innate structure that maintains intestinal homeostasis. Pathogenic infections and dysbiosis can disrupt the integrity of the intestinal barrier, increasing its permeability, and thereby facilitating pathogen translocation. As translocation represents an essential step in pathogenesis, a clear understanding of how barrier integrity is disrupted and how this disruption facilitates bacterial translocation could identify new routes to effective prophylaxis and therapy. In this comprehensive review, we provide an in-depth analysis of bacterial translocation and intestinal barrier function. We discuss currently understood mechanisms of bacterial-enterocyte interactions, with a focus on tight junctions and endocytosis. We also discuss the emerging concept of bidirectional communication between the intestinal microbiota and other body systems. The intestinal tract has established 'axes' with various organs. Among our regulatory systems, the nervous, immune, and endocrine systems have been shown to play pivotal roles in barrier regulation. A mechanistic understanding of intestinal barrier regulation is crucial for the development of personalized management strategies for patients with bacterial translocation-related disorders. Advancing our knowledge of barrier regulation will pave the way for future research in this field and novel clinical intervention strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Wei Cai
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
- Department of Pathology, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated
Hospital of Nanchang University, No. 133 South Guangchang Road, Nanchang
330003, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang
University, Nanchang, China
| |
Collapse
|
11
|
Gong J, Yu J, Yin S, Ke J, Wu J, Liu C, Luo Z, Cheng WM, Xie Y, Chen Y, He Z, Lan P. Mesenteric Adipose Tissue-Derived Klebsiella variicola Disrupts Intestinal Barrier and Promotes Colitis by Type VI Secretion System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205272. [PMID: 36802200 PMCID: PMC10131791 DOI: 10.1002/advs.202205272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Mesenteric adipose tissue (MAT) in Crohn's disease (CD) is associated with transmural inflammation. Extended mesenteric excision can reduce surgical recurrence and improve long-term outcomes, indicating that MAT plays an important role in the pathogenesis of CD. Bacterial translocation has been reported to occur in the MAT of patients with CD (CD-MAT), but the mechanisms by which translocated bacteria lead to intestinal colitis remain unclear. Here it is shown that members of Enterobacteriaceae are highly enriched in CD-MAT compared with non-CD controls. Viable Klebsiella variicola in Enterobacteriaceae is isolated exclusively in CD-MAT and can induce a pro-inflammatory response in vitro and exacerbates colitis both in dextran sulfate sodium (DSS)-induced colitis mice model and IL-10-/- spontaneous colitis mice model. Mechanistically, active type VI secretion system (T6SS) is identified in the genome of K. variicola, which can impair the intestinal barrier by inhibiting the zonula occludens (ZO-1) expression. Dysfunction of T6SS by CRISPR interference system alleviates the inhibitory effect of K. variicola on ZO-1 expression and attenuated colitis in mice. Overall, these findings demonstrate that a novel colitis-promoting bacteria exist in the mesenteric adipose tissue of CD, opening a new therapeutic avenue for colitis management.
Collapse
Affiliation(s)
- Junli Gong
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Jing Yu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Shengmei Yin
- School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Jia Ke
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jinjie Wu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Chen Liu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Wai Ming Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Yaozu Xie
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Yuan Chen
- School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Zhen He
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Ping Lan
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| |
Collapse
|
12
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
13
|
Molecular Targets in Campylobacter Infections. Biomolecules 2023; 13:biom13030409. [PMID: 36979344 PMCID: PMC10046527 DOI: 10.3390/biom13030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Human campylobacteriosis results from foodborne infections with Campylobacter bacteria such as Campylobacter jejuni and Campylobacter coli, and represents a leading cause of bacterial gastroenteritis worldwide. After consumption of contaminated poultry meat, constituting the major source of pathogenic transfer to humans, infected patients develop abdominal pain and diarrhea. Post-infectious disorders following acute enteritis may occur and affect the nervous system, the joints or the intestines. Immunocompromising comorbidities in infected patients favor bacteremia, leading to vascular inflammation and septicemia. Prevention of human infection is achieved by hygiene measures focusing on the reduction of pathogenic food contamination. Molecular targets for the treatment and prevention of campylobacteriosis include bacterial pathogenicity and virulence factors involved in motility, adhesion, invasion, oxygen detoxification, acid resistance and biofilm formation. This repertoire of intervention measures has recently been completed by drugs dampening the pro-inflammatory immune responses induced by the Campylobacter endotoxin lipo-oligosaccharide. Novel pharmaceutical strategies will combine anti-pathogenic and anti-inflammatory effects to reduce the risk of both anti-microbial resistance and post-infectious sequelae of acute enteritis. Novel strategies and actual trends in the combat of Campylobacter infections are presented in this review, alongside molecular targets applied for prevention and treatment strategies.
Collapse
|
14
|
Linz B, Sharafutdinov I, Tegtmeyer N, Backert S. Evolution and Role of Proteases in Campylobacter jejuni Lifestyle and Pathogenesis. Biomolecules 2023; 13:biom13020323. [PMID: 36830692 PMCID: PMC9953165 DOI: 10.3390/biom13020323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Infection with the main human food-borne pathogen Campylobacter jejuni causes campylobacteriosis that accounts for a substantial percentage of gastrointestinal infections. The disease usually manifests as diarrhea that lasts for up to two weeks. C. jejuni possesses an array of peptidases and proteases that are critical for its lifestyle and pathogenesis. These include serine proteases Cj1365c, Cj0511 and HtrA; AAA+ group proteases ClpP, Lon and FtsH; and zinc-dependent protease PqqE, proline aminopeptidase PepP, oligopeptidase PepF and peptidase C26. Here, we review the numerous critical roles of these peptide bond-dissolving enzymes in cellular processes of C. jejuni that include protein quality control; protein transport across the inner and outer membranes into the periplasm, cell surface or extracellular space; acquisition of amino acids and biofilm formation and dispersal. In addition, we highlight their role as virulence factors that inflict intestinal tissue damage by promoting cell invasion and mediating cleavage of crucial host cell factors such as epithelial cell junction proteins. Furthermore, we reconstruct the evolution of these proteases in 34 species of the Campylobacter genus. Finally, we discuss to what extent C. jejuni proteases have initiated the search for inhibitor compounds as prospective novel anti-bacterial therapies.
Collapse
Affiliation(s)
- Bodo Linz
- Correspondence: ; Tel.: +49-(0)-9131-8528988
| | | | | | | |
Collapse
|
15
|
Abstract
The major function of the mammalian immune system is to prevent and control infections caused by enteropathogens that collectively have altered human destiny. In fact, as the gastrointestinal tissues are the major interface of mammals with the environment, up to 70% of the human immune system is dedicated to patrolling them The defenses are multi-tiered and include the endogenous microflora that mediate colonization resistance as well as physical barriers intended to compartmentalize infections. The gastrointestinal tract and associated lymphoid tissue are also protected by sophisticated interleaved arrays of active innate and adaptive immune defenses. Remarkably, some bacterial enteropathogens have acquired an arsenal of virulence factors with which they neutralize all these formidable barriers to infection, causing disease ranging from mild self-limiting gastroenteritis to in some cases devastating human disease.
Collapse
Affiliation(s)
- Micah J. Worley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA,CONTACT Micah J. Worley Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, Kentucky, USA
| |
Collapse
|
16
|
Wessler S, Posselt G. Bacterial Proteases in Helicobacter pylori Infections and Gastric Disease. Curr Top Microbiol Immunol 2023; 444:259-277. [PMID: 38231222 DOI: 10.1007/978-3-031-47331-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori (H. pylori) proteases have become a major focus of research in recent years, because they not only have an important function in bacterial physiology, but also directly alter host cell functions. In this review, we summarize recent findings on extracellular H. pylori proteases that target host-derived substrates to facilitate bacterial pathogenesis. In particular, the secreted H. pylori collagenase (Hp0169), the metalloprotease Hp1012, or the serine protease High temperature requirement A (HtrA) are of great interest. Specifically, various host cell-derived substrates were identified for HtrA that directly interfere with the gastric epithelial barrier allowing full pathogenesis. In light of increasing antibiotic resistance, the development of inhibitory compounds for extracellular proteases as potential targets is an innovative field that offers alternatives to existing therapies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria.
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria.
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
| |
Collapse
|
17
|
Xie Y, Mao Y, Mao ZW, Xia W. Identification of Substrates of Secreted Bacterial Protease by APEX2-Based Proximity Labeling. Methods Mol Biol 2023; 2674:169-179. [PMID: 37258967 DOI: 10.1007/978-1-0716-3243-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interactions between bacterial virulence factors and host receptors play a critical role during bacterial infection. Therefore, the identification of interactions between host receptor and bacterial virulence factors can not only elucidate the molecular mechanisms of bacterial infection but also provide a framework for new therapeutic and prevention strategies. Herein, we report an APEX2-based live cell proximity labeling strategy in combination with high-resolution quantitative mass spectrometry to profile the substrates of Helicobacter pylori HtrA protease on the membrane of human stomach epithelial cells. This strategy can be further applied to identify other interactions between secreted bacterial virulence factors and host receptors on live cells.
Collapse
Affiliation(s)
- Yanxuan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Naumann M, Ferino L, Sharafutdinov I, Backert S. Gastric Epithelial Barrier Disruption, Inflammation and Oncogenic Signal Transduction by Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:207-238. [PMID: 38231220 DOI: 10.1007/978-3-031-47331-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori exemplifies one of the most favourable bacterial pathogens worldwide. The bacterium colonizes the gastric mucosa in about half of the human population and constitutes a major risk factor for triggering gastric diseases such as stomach cancer. H. pylori infection represents a prime example of chronic inflammation and cancer-inducing bacterial pathogens. The microbe utilizes a remarkable set of virulence factors and strategies to control cellular checkpoints of inflammation and oncogenic signal transduction. This chapter emphasizes on the pathogenicity determinants of H. pylori such as the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system (T4SS), effector protein CagA, lipopolysaccharide (LPS) metabolite ADP-glycero-β-D-manno-heptose (ADP-heptose), cytotoxin VacA, serine protease HtrA, and urease, and how they manipulate various key host cell signaling networks in the gastric epithelium. In particular, we highlight the H. pylori-induced disruption of cell-to-cell junctions, pro-inflammatory activities, as well as proliferative, pro-apoptotic and anti-apoptotic responses. Here we review these hijacked signal transduction events and their impact on gastric disease development.
Collapse
Affiliation(s)
- Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Lorena Ferino
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Irshad Sharafutdinov
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Steffen Backert
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
19
|
Feng C, Liu X, Hu N, Tang Y, Feng M, Zhou Z. Aeromonas hydrophila Ssp1: A secretory serine protease that disrupts tight junction integrity and is essential for host infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:530-541. [PMID: 35798244 DOI: 10.1016/j.fsi.2022.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is a Gram-negative bacterial pathogen with a broad host range, including fish and humans. In this study, we examined the function of a secretory serine protease (named Ssp1) identified in pathogenic A. hydrophila CCL1. Ssp1 possesses a trypsin-like serine protease domain and contains two conserved PDZ domains. Recombinant Ssp1 protein (rSsp1) treatment increased intestinal permeability by downregulating and redistributing tight junction protein Occludin in intestinal Caco-2 cells in vitro. Western blot demonstrated that rSsp1 treatment in Caco-2 cells resulted in marked increases in the expressions of myosin light chain kinase (MLCK) and phosphorylated myosin light chain (p-MLC). For virulence analysis, an isogenic CCL1 mutant ΔSsp1 was created. ΔSsp1 bears an in-frame deletion of the Ssp1 gene. A live infection study in crucian carps showed that, compared to CCL1, ΔSsp1 infection exhibited increased Occludin expression, reduced intestinal permeability and tissue dissemination capacity, and attenuated overall virulence in vivo. However, ΔSsp1 showed no differences in the biofilm formation, swimming motility, and resistance to environmental stress. These lost virulence capacities of ΔSsp1 were restored by complementation with the Ssp1 gene. Global transcriptome analysis and quantitative real-time RT-PCR showed that compared to CCL1 infection, ΔSsp1 promoted the expressions of antimicrobial molecules (MUC2, LEAP-2, Hepcidin-1, and IL-22). Finally, CCL1 infection caused significant dysbiosis of the gut microbiota, including increased Vibrio and Deefgea compared to ΔSsp1 infected fish. Taken together, these results indicate that Ssp1 is essential for the virulence of A. hydrophila and is required for the perturbation of intestinal tight junction barrier.
Collapse
Affiliation(s)
- Chen Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Niewen Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Mengzhe Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
20
|
Campylobacter jejuni Serine Protease HtrA Induces Paracellular Transmigration of Microbiota across Polarized Intestinal Epithelial Cells. Biomolecules 2022; 12:biom12040521. [DOI: 10.3390/biom12040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Campylobacter jejuni represents an eminent zoonotic germ responsible for foodborne infections causing campylobacteriosis. In addition, infections with C. jejuni constitute a risk factor for the occurrence of inflammatory bowel disease (IBD). In the latter case, patients show inflammatory reactions not only against C. jejuni, but also against the non-infectious microbiota. However, the involved mechanisms and molecular basis are still largely unclear. We recently reported that C. jejuni breaches the intestinal epithelial barrier by secretion of serine protease HtrA (high temperature requirement A), which cleaves several major tight and adherens junction proteins. In the present study, we aimed to study if HtrA-expressing C. jejuni may also trigger the transepithelial migration of non-pathogenic gastrointestinal microbiota. Using confocal immunofluorescence and scanning electron microscopy, we demonstrate that C. jejuni wild-type (wt) as well as the isogenic ∆htrA mutant bind to the surface of polarized intestinal Caco-2 epithelial cells, but do not invade them at the apical side. Instead, C. jejuni wt, but not ∆htrA mutant, disrupt the cellular junctions and transmigrate using the paracellular route between neighboring cells. Using transwell filter systems, we then co-incubated the cells with C. jejuni and non-invasive microbiota strains, either Escherichia coli or Lactococcus lactis. Interestingly, C. jejuni wt, but not ∆htrA mutant, induced the efficient transmigration of these microbiota bacteria into the basal compartment. Thus, infection of the intestinal epithelium with C. jejuni causes local opening of cellular junctions and paracellular translocation in an HtrA-dependent manner, which paves the way for transmigration of microbiota that is otherwise non-invasive. Taken together, these findings may have impacts on various Campylobacter-associated diseases such as IBD, which are discussed here.
Collapse
|
21
|
Huang JY, Lyons-Cohen MR, Gerner MY. Information flow in the spatiotemporal organization of immune responses. Immunol Rev 2022; 306:93-107. [PMID: 34845729 PMCID: PMC8837692 DOI: 10.1111/imr.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Immune responses must be rapid, tightly orchestrated, and tailored to the encountered stimulus. Lymphatic vessels facilitate this process by continuously collecting immunological information (ie, antigens, immune cells, and soluble mediators) about the current state of peripheral tissues, and transporting these via the lymph across the lymphatic system. Lymph nodes (LNs), which are critical meeting points for innate and adaptive immune cells, are strategically located along the lymphatic network to intercept this information. Within LNs, immune cells are spatially organized, allowing them to efficiently respond to information delivered by the lymph, and to either promote immune homeostasis or mount protective immune responses. These responses involve the activation and functional cooperation of multiple distinct cell types and are tailored to the specific inflammatory conditions. The natural patterns of lymph flow can also generate spatial gradients of antigens and agonists within draining LNs, which can in turn further regulate innate cell function and localization, as well as the downstream generation of adaptive immunity. In this review, we explore how information transmitted by the lymph shapes the spatiotemporal organization of innate and adaptive immune responses in LNs, with particular focus on steady state and Type-I vs. Type-II inflammation.
Collapse
Affiliation(s)
| | | | - Michael Y Gerner
- Corresponding author: Michael Gerner, , Address: 750 Republican Street Seattle, WA 98109, Phone: 206-685-3610
| |
Collapse
|
22
|
Ueda M, Kobayashi H, Seike S, Takahashi E, Okamoto K, Yamanaka H. Aeromonas sobria Serine Protease Degrades Several Protein Components of Tight Junctions and Assists Bacterial Translocation Across the T84 Monolayer. Front Cell Infect Microbiol 2022; 12:824547. [PMID: 35273923 PMCID: PMC8902146 DOI: 10.3389/fcimb.2022.824547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
Aeromonas sobria is a Gram-negative pathogen that causes food-borne illness. In immunocompromised patients and the elderly, A. sobria opportunistically leads to severe extraintestinal diseases including sepsis, peritonitis, and meningitis. If A. sobria that infects the intestinal tract causes such an extraintestinal infection, the pathogen must pass through the intestinal epithelial barrier. In our earlier study using intestinal cultured cells (T84 cells), we observed that an A. sobria strain with higher A. sobria serine protease (ASP) production caused a marked level of bacterial translocation across the T84 intestinal epithelial monolayer. Herein, we investigated the effect of ASP on tight junctions (TJs) in T84 cells. We observed that ASP acts on TJs and causes the destruction of ZO-1, ZO-2, ZO-3, and claudin-7 (i.e., some of the protein components constituting TJs), especially in the strains with high ASP productivity. Based on the present results together with those of our earlier study, we propose that ASP may cause a disruption of the barrier function of the intestinal epithelium as a whole due to the destruction of TJs (in addition to the destruction of adherens junctions) and that ASP may assist invasion of the pathogens from the intestinal epithelium into deep sites in the human body.
Collapse
Affiliation(s)
- Mitsunobu Ueda
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Hidetomo Kobayashi
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Soshi Seike
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Eizo Takahashi
- Laboratory of Medical Microbiology, Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera Enteric Diseases, Kolkata, India
| | - Hiroyasu Yamanaka
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
- *Correspondence: Hiroyasu Yamanaka,
| |
Collapse
|
23
|
Song Y, Ke Y, Kang M, Bao R. Function, molecular mechanisms, and therapeutic potential of bacterial HtrA proteins: An evolving view. Comput Struct Biotechnol J 2022; 20:40-49. [PMID: 34976310 PMCID: PMC8671199 DOI: 10.1016/j.csbj.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/05/2023] Open
Abstract
Members of the high temperature requirement A (HtrA) protein family are widely distributed amongst prokaryotic and eukaryotic species. HtrA proteins have ATP-independent dual chaperone-protease activity and mediate protein quality control. Emerging evidence indicates that HtrA family members are vital for establishing infections and bacterial survival under stress conditions. Bacterial HtrA proteins are increasingly thought of as important new targets for antibacterial drug development. Recent literature suggests that HtrA protein AlgW from Pseudomonas aeruginosa has distinct structural, functional, and regulatory characteristics. The novel dual-signal activation mechanism seen in AlgW is required to modulate stress and drug responses in bacteria, prompting us to review our understanding of the many HtrA proteins found in microorganisms. Here, we describe the distribution of HtrA gene orthologues in pathogenic bacteria, discuss their structure–function relationships, outline the molecular mechanisms exhibited by different bacterial HtrA proteins in bacteria under selective pressure, and review the significance of recently developed small molecule inhibitors targeting HtrA in pathogenic bacteria.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yitao Ke
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Corresponding authors.
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Corresponding authors.
| |
Collapse
|
24
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|