1
|
McCarthy WJ, Thomas SE, Olaleye T, Boland JA, Floto RA, Williams G, Blundell TL, Coyne AG, Abell C. A Fragment-Based Competitive 19F LB-NMR Platform For Hotspot-Directed Ligand Profiling. Angew Chem Int Ed Engl 2024; 63:e202406846. [PMID: 38896426 DOI: 10.1002/anie.202406846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Ligand binding hotspots are regions of protein surfaces that form particularly favourable interactions with small molecule pharmacophores. Targeting interactions with these hotspots maximises the efficiency of ligand binding. Existing methods are capable of identifying hotspots but often lack assays to quantify ligand binding and direct elaboration at these sites. Herein, we describe a fragment-based competitive 19F Ligand Based NMR (LB-NMR) screening platform that enables routine, quantitative ligand profiling focused at ligand-binding hotspots. As a proof of concept, the method was applied to 4'-phosphopantetheine adenylyltransferase (PPAT) from Mycobacterium abscessus (Mabs). X-ray crystallographic characterisation of the hits from a 960-member fragment screen identified three ligand-binding hotspots across the PPAT active site. From the fragment hits a collection of 19F reporter candidates were designed and synthesised. By rigorous prioritisation and use of optimisation workflows, a single 19F reporter molecule was generated for each hotspot. Profiling the binding of a set of structurally characterised ligands by competitive 19F LB-NMR with this suite of 19F reporters recapitulated the binding affinity and site ID assignments made by ITC and X-ray crystallography. This quantitative mapping of ligand binding events at hotspot level resolution establishes the utility of the fragment-based competitive 19F LB-NMR screening platform for hotspot-directed ligand profiling.
Collapse
Affiliation(s)
- William J McCarthy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK, CB2 1EW
- Present Address: Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK, NW1 1AT
| | - Sherine E Thomas
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK, CB2 1GA
- Present Address: Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK, CB2 1PD
| | - Tayo Olaleye
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK, CB2 1EW
| | - Jennifer A Boland
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK, CB2 1EW
| | - R Andres Floto
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK, CB2 0QH
- VPD Heart Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, UK, CB2 0BB
| | - Glyn Williams
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK, CB2 1EW
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK, CB2 1GA
- VPD Heart Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, UK, CB2 0BB
| | - Anthony G Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK, CB2 1EW
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK, CB2 1EW
| |
Collapse
|
2
|
Hasnat S, Hoque MN, Mahbub MM, Sakif TI, Shahinuzzaman A, Islam T. Pantothenate kinase: A promising therapeutic target against pathogenic Clostridium species. Heliyon 2024; 10:e34544. [PMID: 39130480 PMCID: PMC11315101 DOI: 10.1016/j.heliyon.2024.e34544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Current treatment of clostridial infections includes broad-spectrum antibiotics and antitoxins, yet antitoxins are ineffective against all Clostridiumspecies. Moreover, rising antimicrobial resistance (AMR) threatens treatment effectiveness and public health. This study therefore aimed to discover a common drug target for four pathogenic clostridial species, Clostridium botulinum, C. difficile, C. tetani, and C. perfringens through an in-silico core genomic approach. Using four reference genomes of C. botulinum, C. difficile, C. tetani, and C. perfringens, we identified 1484 core genomic proteins (371/genome) and screened them for potential drug targets. Through a subtractive approach, four core proteins were finally identified as drug targets, represented by type III pantothenate kinase (CoaX) and, selected for further analyses. Interestingly, the CoaX is involved in the phosphorylation of pantothenate (vitamin B5), which is a critical precursor for coenzyme A (CoA) biosynthesis. Investigation of druggability analysis on the identified drug target reinforces CoaX as a promising novel drug target for the selected Clostridium species. During the molecular screening of 1201 compounds, a known agonist drug compound (Vibegron) showed strong inhibitory activity against targeted clostridial CoaX. Additionally, we identified tazobactam, a beta-lactamase inhibitor, as effective against the newly proposed target, CoaX. Therefore, identifying CoaX as a single drug target effective against all four clostridial pathogens presents a valuable opportunity to develop a cost-effective treatment for multispecies clostridial infections.
Collapse
Affiliation(s)
- Soharth Hasnat
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
- Molecular Biology and Bioinformatics Laboratory (MBBL), Department of Gynecology, Obstetrics and Reproductive Health, BSMRAU, Gazipur, 1706, Bangladesh
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory (MBBL), Department of Gynecology, Obstetrics and Reproductive Health, BSMRAU, Gazipur, 1706, Bangladesh
| | - M Murshida Mahbub
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Tahsin Islam Sakif
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, WV 26506, USA
| | - A.D.A. Shahinuzzaman
- Pharmaceutical Sciences Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| |
Collapse
|
3
|
Thapa S, Rathnaiah G, Zinniel DK, Barletta RG, Bannantine JP, Huebner M, Sreevatsan S. The Fur-like regulatory protein MAP3773c modulates key metabolic pathways in Mycobacterium avium subsp. paratuberculosis under in-vitro iron starvation. Sci Rep 2024; 14:8941. [PMID: 38637716 PMCID: PMC11026511 DOI: 10.1038/s41598-024-59691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024] Open
Abstract
Johne's disease (JD) is a chronic enteric infection of dairy cattle worldwide. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of JD, is fastidious often requiring eight to sixteen weeks to produce colonies in culture-a major hurdle in the diagnosis and therefore in implementation of optimal JD control measures. A significant gap in knowledge is the comprehensive understanding of the metabolic networks deployed by MAP to regulate iron both in-vitro and in-vivo. The genome of MAP carries MAP3773c, a putative metal regulator, which is absent in all other mycobacteria. The role of MAP3773c in intracellular iron regulation is poorly understood. In the current study, a field isolate (K-10) and an in-frame MAP3773c deletion mutant (ΔMAP3773c) derived from K-10, were exposed to iron starvation for 5, 30, 60, and 90 min and RNA-Seq was performed. A comparison of transcriptional profiles between K-10 and ΔMAP3773c showed 425 differentially expressed genes (DEGs) at 30 min time post-iron restriction. Functional analysis of DEGs in ΔMAP3773c revealed that pantothenate (Pan) biosynthesis, polysaccharide biosynthesis and sugar metabolism genes were downregulated at 30 min post-iron starvation whereas ATP-binding cassette (ABC) type metal transporters, putative siderophore biosynthesis, PPE and PE family genes were upregulated. Pathway analysis revealed that the MAP3773c knockout has an impairment in Pan and Coenzyme A (CoA) biosynthesis pathways suggesting that the absence of those pathways likely affect overall metabolic processes and cellular functions, which have consequences on MAP survival and pathogenesis.
Collapse
Affiliation(s)
- Sajani Thapa
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, STEG300, East Lansing, MI, 48824, USA
| | - Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
- University Of Nebraska, Eppley Institute for Cancer Research, Lincoln, USA
| | - Denise K Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
| | - Raul G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
| | | | - Marianne Huebner
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, STEG300, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Wedman JJ, Sibon OCM, Mastantuono E, Iuso A. Impaired coenzyme A homeostasis in cardiac dysfunction and benefits of boosting coenzyme A production with vitamin B5 and its derivatives in the management of heart failure. J Inherit Metab Dis 2024. [PMID: 38591231 DOI: 10.1002/jimd.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Coenzyme A (CoA) is an essential cofactor required for over a hundred metabolic reactions in the human body. This cofactor is synthesized de novo in our cells from vitamin B5, also known as pantothenic acid, a water-soluble vitamin abundantly present in vegetables and animal-based foods. Neurodegenerative disorders, cancer, and infectious diseases have been linked to defects in de novo CoA biosynthesis or reduced levels of this coenzyme. There is now accumulating evidence that CoA limitation is a critical pathomechanism in cardiac dysfunction too. In the current review, we will summarize our current knowledge on CoA and heart failure, with emphasis on two primary cardiomyopathies, phosphopantothenoylcysteine synthetase and phosphopantothenoylcysteine decarboxylase deficiency disorders biochemically characterized by a decreased level of CoA in patients' samples. Hence, we will discuss the potential benefits of CoA restoration in these diseases and, more generally, in heart failure, by vitamin B5 and its derivatives pantethine and 4'-phosphopantetheine.
Collapse
Affiliation(s)
- J J Wedman
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - O C M Sibon
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E Mastantuono
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - A Iuso
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
| |
Collapse
|
5
|
Kahne SC, Yoo JH, Chen J, Nakedi K, Iyer LM, Putzel G, Samhadaneh NM, Pironti A, Aravind L, Ekiert DC, Bhabha G, Rhee KY, Darwin KH. Identification of a proteolysis regulator for an essential enzyme in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587195. [PMID: 38585835 PMCID: PMC10996600 DOI: 10.1101/2024.03.29.587195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In Mycobacterium tuberculosis proteins that are post-translationally modified with Pup, a prokaryotic ubiquitin-like protein, can be degraded by proteasomes. While pupylation is reversible, mechanisms regulating substrate specificity have not been identified. Here, we identify the first depupylation regulators: CoaX, a pseudokinase, and pantothenate, an essential, central metabolite. In a Δ coaX mutant, pantothenate synthesis enzymes were more abundant, including PanB, a substrate of the Pup-proteasome system. Media supplementation with pantothenate decreased PanB levels in a coaX and Pup-proteasome-dependent manner. In vitro , CoaX accelerated depupylation of Pup∼PanB, while addition of pantothenate inhibited this reaction. Collectively, we propose CoaX contributes to proteasomal degradation of PanB by modulating depupylation of Pup∼PanB in response to pantothenate levels. One Sentence Summary A pseudo-pantothenate kinase regulates proteasomal degradation of a pantothenate synthesis enzyme in M. tuberculosis .
Collapse
|
6
|
Shao X, Hu G, Lu Y, Li M, Shen B, Kong W, Guan Y, Yang X, Fang J, Liu J, Ran Y. Discrimination of Traditional Chinese Medicine Syndromes in Type 2 Diabetic Patients Based on Metabolomics-Proteomics Profiles. Int J Anal Chem 2023; 2023:5722131. [PMID: 37304842 PMCID: PMC10256445 DOI: 10.1155/2023/5722131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Materials and Methods The metabolomics-proteomics of sixty patients with T2DM were acquired by high-performance liquid chromatography (HPLC). In addition, some clinical features, containing total cholesterol (TC), triglycerides (TG), hemoglobin A1c (HbA1c), body mass index (BMI), and low-density lipoprotein (LDL) together with high-density lipoprotein (HDL), were determined via clinical detection strategies. Abundant metabolites and proteins, respectively, were identified with the analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS). Results 22 differentially abundant metabolites and 15 differentially abundant proteins were determined. The analysis of bioinformatics suggested that the differentially abundant proteins were commonly associated with the renin-angiotensin system, vitamin digestion and absorption, hypertrophic cardiomyopathy, and so on. Furthermore, differentially abundant metabolites were amino acids and were associated with the biosynthesis of CoA and pantothenate, together with the metabolisms of phenylalanine, beta-alanine, proline, and arginine. Combination analysis revealed that the vitamin metabolism pathway was predominantly affected. Conclusions DHS syndrome can be separated by certain metabolic-proteomic differences, and metabolism is particularly prominent, especially in vitamin digestion and absorption. From the molecular level, we provide preliminary data for the extensive application of TCM in the study of T2DM, and at the same time benefited in a sense diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- Xin Shao
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Gang Hu
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Yuanyuan Lu
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Ming Li
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Baohua Shen
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Wenwen Kong
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Yanhua Guan
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Xin Yang
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Jia Fang
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Jing Liu
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| | - Yingzhuo Ran
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210012, China
| |
Collapse
|
7
|
El Bakali J, Blaszczyk M, Evans JC, Boland JA, McCarthy WJ, Fathoni I, Dias MVB, Johnson EO, Coyne AG, Mizrahi V, Blundell TL, Abell C, Spry C. Chemical Validation of Mycobacterium tuberculosis Phosphopantetheine Adenylyltransferase Using Fragment Linking and CRISPR Interference. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202300221. [PMID: 38515507 PMCID: PMC10952327 DOI: 10.1002/ange.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 02/11/2023]
Abstract
The coenzyme A (CoA) biosynthesis pathway has attracted attention as a potential target for much-needed novel antimicrobial drugs, including for the treatment of tuberculosis (TB), the lethal disease caused by Mycobacterium tuberculosis (Mtb). Seeking to identify inhibitors of Mtb phosphopantetheine adenylyltransferase (MtbPPAT), the enzyme that catalyses the penultimate step in CoA biosynthesis, we performed a fragment screen. In doing so, we discovered three series of fragments that occupy distinct regions of the MtbPPAT active site, presenting a unique opportunity for fragment linking. Here we show how, guided by X-ray crystal structures, we could link weakly-binding fragments to produce an active site binder with a K D <20 μM and on-target anti-Mtb activity, as demonstrated using CRISPR interference. This study represents a big step toward validating MtbPPAT as a potential drug target and designing a MtbPPAT-targeting anti-TB drug.
Collapse
Affiliation(s)
- Jamal El Bakali
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Present address: Univ. LilleInserm, CHU LilleUMR-S 1172-LiNC-Lille Neuroscience & Cognition59000LilleFrance
| | - Michal Blaszczyk
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
- Present address: Cambridge Institute of Therapeutic Immunology and Infectious DiseaseDepartment of MedicineUniversity of CambridgePuddicombe WayCB2 0AWCambridgeUK
| | - Joanna C. Evans
- MRC/NHLS/UCT Molecular Mycobacteriology Research UnitDST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine and Department of PathologyFaculty of Health SciencesUniversity of Cape TownAnzio RoadCape Town, Observatory7925South Africa
- Systems Chemical Biology of Infection and Resistance LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Jennifer A. Boland
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - William J. McCarthy
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Present address: Molecular Structure of Cell Signaling LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Imam Fathoni
- Research School of BiologyThe Australian National UniversityLinnaeus WayACT2601Australia
| | - Marcio V. B. Dias
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
- Present addresses: Department of MicrobiologyInstitute of Biomedical ScienceUniversity of São Paulo (Brazil) and Department of ChemistryUniversity of WarwickUK
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Anthony G. Coyne
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research UnitDST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine and Department of PathologyFaculty of Health SciencesUniversity of Cape TownAnzio RoadCape Town, Observatory7925South Africa
| | - Tom L. Blundell
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
| | - Chris Abell
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Christina Spry
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Research School of BiologyThe Australian National UniversityLinnaeus WayACT2601Australia
| |
Collapse
|
8
|
El Bakali J, Blaszczyk M, Evans JC, Boland JA, McCarthy WJ, Fathoni I, Dias MVB, Johnson EO, Coyne AG, Mizrahi V, Blundell TL, Abell C, Spry C. Chemical Validation of Mycobacterium tuberculosis Phosphopantetheine Adenylyltransferase Using Fragment Linking and CRISPR Interference. Angew Chem Int Ed Engl 2023; 62:e202300221. [PMID: 36757665 PMCID: PMC10947119 DOI: 10.1002/anie.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
The coenzyme A (CoA) biosynthesis pathway has attracted attention as a potential target for much-needed novel antimicrobial drugs, including for the treatment of tuberculosis (TB), the lethal disease caused by Mycobacterium tuberculosis (Mtb). Seeking to identify inhibitors of Mtb phosphopantetheine adenylyltransferase (MtbPPAT), the enzyme that catalyses the penultimate step in CoA biosynthesis, we performed a fragment screen. In doing so, we discovered three series of fragments that occupy distinct regions of the MtbPPAT active site, presenting a unique opportunity for fragment linking. Here we show how, guided by X-ray crystal structures, we could link weakly-binding fragments to produce an active site binder with a KD <20 μM and on-target anti-Mtb activity, as demonstrated using CRISPR interference. This study represents a big step toward validating MtbPPAT as a potential drug target and designing a MtbPPAT-targeting anti-TB drug.
Collapse
Affiliation(s)
- Jamal El Bakali
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Present address: Univ. LilleInserm, CHU LilleUMR-S 1172-LiNC-Lille Neuroscience & Cognition59000LilleFrance
| | - Michal Blaszczyk
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
- Present address: Cambridge Institute of Therapeutic Immunology and Infectious DiseaseDepartment of MedicineUniversity of CambridgePuddicombe WayCB2 0AWCambridgeUK
| | - Joanna C. Evans
- MRC/NHLS/UCT Molecular Mycobacteriology Research UnitDST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine and Department of PathologyFaculty of Health SciencesUniversity of Cape TownAnzio RoadCape Town, Observatory7925South Africa
- Systems Chemical Biology of Infection and Resistance LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Jennifer A. Boland
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - William J. McCarthy
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Present address: Molecular Structure of Cell Signaling LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Imam Fathoni
- Research School of BiologyThe Australian National UniversityLinnaeus WayACT2601Australia
| | - Marcio V. B. Dias
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
- Present addresses: Department of MicrobiologyInstitute of Biomedical ScienceUniversity of São Paulo (Brazil) and Department of ChemistryUniversity of WarwickUK
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Anthony G. Coyne
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research UnitDST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine and Department of PathologyFaculty of Health SciencesUniversity of Cape TownAnzio RoadCape Town, Observatory7925South Africa
| | - Tom L. Blundell
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
| | - Chris Abell
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Christina Spry
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Research School of BiologyThe Australian National UniversityLinnaeus WayACT2601Australia
| |
Collapse
|
9
|
Howieson VM, Zeng J, Kloehn J, Spry C, Marchetti C, Lunghi M, Varesio E, Soper A, Coyne AG, Abell C, van Dooren GG, Saliba KJ. Pantothenate biosynthesis in Toxoplasma gondii tachyzoites is not a drug target. INTERNATIONAL JOURNAL FOR PARASITOLOGY: DRUGS AND DRUG RESISTANCE 2023; 22:1-8. [PMID: 37004488 PMCID: PMC10102396 DOI: 10.1016/j.ijpddr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T. gondii pantothenate synthetase, the enzyme responsible for the synthesis of the vitamin B5 (pantothenate), the precursor of the important cofactor, coenzyme A, is a good drug target. Their conclusion was based on the ability of potent inhibitors of the M. tuberculosis pantothenate synthetase to inhibit the proliferation of T. gondii tachyzoites. They also reported that the inhibitory effect of the compounds could be antagonised by supplementing the medium with pantothenate, supporting their conclusion that the compounds were acting on the intended target. Contrary to these observations, we find that compound SW314, one of the compounds used in the Mageed et al. study and previously shown to be active against M. tuberculosis pantothenate synthetase in vitro, is inactive against the T. gondii pantothenate synthetase and does not inhibit tachyzoite proliferation, despite gaining access into the parasite in situ. Furthermore, we validate the recent observation that the pantothenate synthetase gene in T. gondii can be disrupted without detrimental effect to the survival of the tachyzoite-stage parasite in the presence or absence of extracellular pantothenate. We conclude that the T. gondii pantothenate synthetase is not essential during the tachyzoite stage of the parasite and it is therefore not a target for drug discovery against T. gondii tachyzoites.
Collapse
|
10
|
Brigg SE, Koekemoer L, Brand LA, Strauss E. Multifaceted Target Specificity Analysis as a Tool in Antimicrobial Drug Development: Type III Pantothenate Kinases as a Case Study. ChemMedChem 2023; 18:e202200630. [PMID: 36749500 DOI: 10.1002/cmdc.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
The research and development of a new antimicrobial drug using a target-based approach raises the question of whether any resulting hits will also show activity against the homologous target in other closely related organisms. While an assessment of the similarities of the predicted interactions between the identified inhibitor and the various targets is an obvious first step in answering this question, no clear and consistent framework has been proposed for how this should be done. Here we developed Multifaceted Target Specificity Analysis (MTSA) and applied it to type III pantothenate kinase (PanKIII ) - an essential enzyme required for coenzyme A biosynthesis in a wide range of pathogenic bacteria - as a case study to establish if targeting a specific organism's PanKIII would lead to a narrow- or broad-spectrum agent. We propose that MTSA is a useful tool and aid for directing new target-based antimicrobial drug development initiatives.
Collapse
Affiliation(s)
- Siobhan Ernan Brigg
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| | - Lizbé Koekemoer
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| | - Leisl A Brand
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
11
|
Pepi MJ, Chacko S, Kopetz N, Boshoff HIM, Cuny GD, Hedstrom L. Nonhydrolyzable d‑phenylalanine-benzoxazole derivatives retain antitubercular activity. Bioorg Med Chem Lett 2023; 80:129116. [PMID: 36572353 PMCID: PMC9885953 DOI: 10.1016/j.bmcl.2022.129116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The emergence of drug resistant Mycobacterium tuberculosis, the causative agent of tuberculosis, demands the development of new drugs and new drug targets. We have recently reported that the d-phenylalanine benzoxazole Q112 has potent antibacterial activity against this pathogen with a distinct mechanism of action from other antimycobacterial agents. Q112 and previously reported derivatives were unstable in plasma and no free compound could be observed. Here we expand the structure-activity relationship for antimycobacterial activity and find nonhydrolyzable derivatives with decreased plasma binding. We also show that there is no correlation between antibacterial activity and inhibition of PanG, a putative target for these compounds.
Collapse
Affiliation(s)
- Michael J Pepi
- Graduate Program in Chemistry, MS015, Brandeis University, Waltham, MA 02453, United States
| | - Shibin Chacko
- Department of Biology, MS009, Brandeis University, Waltham, MA 02453, United States
| | - Nicole Kopetz
- Graduate Program in Chemistry, MS015, Brandeis University, Waltham, MA 02453, United States
| | - Helena I M Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Lizbeth Hedstrom
- Department of Biology, MS009, Brandeis University, Waltham, MA 02453, United States; Department of Chemistry, Brandeis University, Waltham, MA 02453, United States.
| |
Collapse
|
12
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
13
|
Generation and Validation of an Anti-Human PANK3 Mouse Monoclonal Antibody. Biomolecules 2022; 12:biom12091323. [PMID: 36139163 PMCID: PMC9496473 DOI: 10.3390/biom12091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A (CoA) is an essential co-factor at the intersection of diverse metabolic pathways. Cellular CoA biosynthesis is regulated at the first committed step—phosphorylation of pantothenic acid—catalyzed by pantothenate kinases (PANK1,2,3 in humans, PANK3 being the most highly expressed). Despite the critical importance of CoA in metabolism, the differential roles of PANK isoforms remain poorly understood. Our investigations of PANK proteins as potential precision oncology collateral lethality targets (PANK1 is co-deleted as part of the PTEN locus in some highly aggressive cancers) were severely hindered by a dearth of commercial antibodies that can reliably detect endogenous PANK3 protein. While we successfully validated commercial antibodies for PANK1 and PANK2 using CRISPR knockout cell lines, we found no commercial antibody that could detect endogenous PANK3. We therefore set out to generate a mouse monoclonal antibody against human PANK3 protein. We demonstrate that a clone (Clone MDA-299-62A) can reliably detect endogenous PANK3 protein in cancer cell lines, with band-specificity confirmed by CRISPR PANK3 knockout and knockdown cell lines. Sub-cellular fractionation shows that PANK3 is overwhelmingly cytosolic and expressed broadly across cancer cell lines. PANK3 monoclonal antibody MDA-299-62A should prove a valuable tool for researchers investigating this understudied family of metabolic enzymes in health and disease.
Collapse
|
14
|
Hassam M, Shamsi JA, Khan A, Al-Harrasi A, Uddin R. Prediction of inhibitory activities of small molecules against Pantothenate synthetase from Mycobacterium tuberculosis using Machine Learning models. Comput Biol Med 2022; 145:105453. [DOI: 10.1016/j.compbiomed.2022.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
|
15
|
Pepi MJ, Chacko S, Marqus GM, Singh V, Wang Z, Planck K, Cullinane RT, Meka PN, Gollapalli DR, Ioerger TR, Rhee KY, Cuny GD, Boshoff HI, Hedstrom L. A d-Phenylalanine-Benzoxazole Derivative Reveals the Role of the Essential Enzyme Rv3603c in the Pantothenate Biosynthetic Pathway of Mycobacterium tuberculosis. ACS Infect Dis 2022; 8:330-342. [PMID: 35015509 PMCID: PMC9558617 DOI: 10.1021/acsinfecdis.1c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New drugs and new targets are urgently needed to treat tuberculosis. We discovered that d-phenylalanine-benzoxazole Q112 displays potent antibacterial activity against Mycobacterium tuberculosis (Mtb) in multiple media and in macrophage infections. A metabolomic profiling indicates that Q112 has a unique mechanism of action. Q112 perturbs the essential pantothenate/coenzyme A biosynthetic pathway, depleting pantoate while increasing ketopantoate, as would be expected if ketopantoate reductase (KPR) were inhibited. We searched for alternative KPRs, since the enzyme annotated as PanE KPR is not essential in Mtb. The ketol-acid reductoisomerase IlvC catalyzes the KPR reaction in the close Mtb relative Corynebacterium glutamicum, but Mtb IlvC does not display KPR activity. We identified the essential protein Rv3603c as an orthologue of PanG KPR and demonstrated that a purified recombinant Rv3603c has KPR activity. Q112 inhibits Rv3603c, explaining the metabolomic changes. Surprisingly, pantothenate does not rescue Q112-treated bacteria, indicating that Q112 has an additional target(s). Q112-resistant strains contain loss-of-function mutations in the twin arginine translocase TatABC, further underscoring Q112's unique mechanism of action. Loss of TatABC causes a severe fitness deficit attributed to changes in nutrient uptake, suggesting that Q112 resistance may derive from a decrease in uptake.
Collapse
Affiliation(s)
- Michael J. Pepi
- Graduate Program in Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shibin Chacko
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Gary M. Marqus
- Graduate Program in Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Vinayak Singh
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa and Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Zhe Wang
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Kyle Planck
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ryan T. Cullinane
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Penchala N. Meka
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Helena I.M. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
16
|
Lv L, Peng L, Shi D, Shao L, Jiang H, Yan R. Probiotic Combination CBLEB Alleviates Streptococcus pneumoniae Infection Through Immune Regulation in Immunocompromised Rats. J Inflamm Res 2022; 15:987-1004. [PMID: 35210807 PMCID: PMC8857997 DOI: 10.2147/jir.s348047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Streptococcus pneumoniae (SP) is the most common cause of bacterial pneumonia, especially for people with immature or compromised immune systems. In addition to vaccination and antibiotics, immune regulation through microbial intervention has emerged in recent anti-SP infection research. This study investigated the therapeutic effect of a combination of live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus (CBLEB), a widely used probiotic drug, on SP infection in rats. Methods An immunocompromised SP-infection rat model was established by intraperitoneal injection of cyclophosphamide and nasal administration of SP strain ATCC49619. Samples from SP-infected, SP-infected and CBLEB-treated, and healthy rats were collected to determine blood indicators, serum cytokines, gut microbiota, faecal and serum metabolomes, lung- and colon-gene transcriptions, and histopathological features. Results CBLEB treatment alleviated weight loss, inflammation, organ damage, increase in basophil percentage, red cell distribution width, and RANTES levels and decrease in total protein and albumin levels of immunocompromised SP-infection rats. Furthermore, CBLEB treatment alleviated dysbiosis in gut microbiota, including altered microbial composition and the aberrant abundance of opportunistic pathogenic bacterial taxa such as Eggerthellaceae, and disorders in gut and serum metabolism, including altered metabolomic profiles and differentially enriched metabolites such as 2,4-di-tert-butylphenol in faeces and L-tyrosine in serum. The transcriptome analysis results indicated that the underlying mechanism by which CBLEB fights SP infection is mainly attributed to its regulation of immune-related pathways such as TLR and NLR signalling in the lungs and infection-, inflammation- or metabolism-related pathways such as TCR signalling in the colon. Conclusion The present study shows a potential value of CBLEB in the treatment of SP infection.
Collapse
Affiliation(s)
- Longxian Lv
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Ding Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Shao
- Institute of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
| | - Huiyong Jiang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Correspondence: Huiyong Jiang; Ren Yan, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People’s Republic Of China, Tel/Fax +86-571-87236453, Email ;
| | - Ren Yan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
17
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Evans JC, Murugesan D, Post JM, Mendes V, Wang Z, Nahiyaan N, Lynch SL, Thompson S, Green SR, Ray PC, Hess J, Spry C, Coyne AG, Abell C, Boshoff HIM, Wyatt PG, Rhee KY, Blundell TL, Barry CE, Mizrahi V. Targeting Mycobacterium tuberculosis CoaBC through Chemical Inhibition of 4'-Phosphopantothenoyl-l-cysteine Synthetase (CoaB) Activity. ACS Infect Dis 2021; 7:1666-1679. [PMID: 33939919 PMCID: PMC8205227 DOI: 10.1021/acsinfecdis.0c00904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.
Collapse
Affiliation(s)
- Joanna C. Evans
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Dinakaran Murugesan
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - John M. Post
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Vitor Mendes
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Zhe Wang
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Navid Nahiyaan
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Sasha L. Lynch
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Stephen Thompson
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Simon R. Green
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Peter C. Ray
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Jeannine Hess
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christina Spry
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Anthony G. Coyne
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chris Abell
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Paul G. Wyatt
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Kyu Y. Rhee
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Tom L. Blundell
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Clifton E. Barry
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Valerie Mizrahi
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|