1
|
Pruksaphon K, Amsri A, Jeenkeawpieam J, Thammasit P, Nosanchuk JD, Youngchim S. The microbial damage and host response framework: lesson learned from pathogenic survival trajectories and immunoinflammatory responses of Talaromyces marneffei infection. Front Immunol 2024; 15:1448729. [PMID: 39188728 PMCID: PMC11345217 DOI: 10.3389/fimmu.2024.1448729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
The adverse outcomes of fungal infection in mammalian hosts depend on the complex interactions between the host immune system and pathogen virulence-associated traits. The main clinical problems arise when the host response is either too weak to effectively eliminate the pathogen or overly aggressive, resulting in host tissue damage rather than protection. This article will highlight current knowledge regarding the virulence attributions and mechanisms involved in the dual-sided role of the host immune system in the immunopathogenesis of the thermally dimorphic fungus Talaromyces marneffei through the lens of the damage response framework (DRF) of microbial pathogenesis model.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Artid Amsri
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Juthatip Jeenkeawpieam
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Patcharin Thammasit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Giusiano G, Tracogna F, Messina F, Sosa V, Rojas F, Chacón Y, Vásquez A, de Los Ángeles Sosa M, Formosa P, Fernández M, Cattana ME, Mussin J, Fernández N, Piedrabuena M, Romero M, Miranda C, Posse G, Davalos F, Valdez R, Acuña A, Aguilera A, Andreni M, Serrano J, Álvarez C, Aguirre D, Pineda G, Effron GG, Santiso G. Impact of COVID-19 on paracoccidioidomycosis. Which was the most influential: The pandemic or the virus? Mycoses 2024; 67:e13761. [PMID: 38946016 DOI: 10.1111/myc.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
The impact of COVID-19 on paracoccidioidomycosis (PCM) in Argentina and the consequences generated by the pandemic are discussed. From 2018 to 3 years after the pandemic declaration, 285 proven PCM patients were registered. No association between both diseases was documented. PCM frequency decreased to extremely low levels in 2020. Mandatory social isolation and the emotional and psychological effects generated under pandemic circumstances led to delays in diagnosis, severe disseminated cases, and other challenges for diagnosis in subsequent years. Probable underdiagnosis should be considered due to the overlap of clinical manifestations, the low index of suspicion and the lack of sensitive diagnostic tools.
Collapse
Affiliation(s)
- Gustavo Giusiano
- Departamento Micología, Instituto de Medicina Regional, Universidad Nacional de Nordeste, CONICET, Resistencia, Chaco, Argentina
- Hospital Pediátrico Juan Pablo II, Corrientes, Argentina
| | | | - Fernando Messina
- Unidad de Micología, Hospital de Enfermedades Infecciosas F. J. Muñiz, Buenos Aires, Argentina
| | - Vanesa Sosa
- Servicio de Micología, Hospital Ramon Madariaga, Posadas, Misiones, Argentina
| | - Florencia Rojas
- Departamento Micología, Instituto de Medicina Regional, Universidad Nacional de Nordeste, CONICET, Resistencia, Chaco, Argentina
| | - Yone Chacón
- Hospital Señor del Milagro, Salta, Argentina
| | - Andrea Vásquez
- Servicio de Microbiología, Hospital 4 de Junio Ramón Carrillo, Presidencia Roque Sáenz Peña, Chaco, Argentina
| | - Maria de Los Ángeles Sosa
- Laboratorio Central de Redes y Programas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Patricia Formosa
- Hospital de Alta Complejidad Pte. J. D. Perón, Formosa, Argentina
| | | | | | - Javier Mussin
- Departamento Micología, Instituto de Medicina Regional, Universidad Nacional de Nordeste, CONICET, Resistencia, Chaco, Argentina
| | - Norma Fernández
- Laboratorio de Micología, Hospital de Clínicas José de San Martin, Buenos Aires, Argentina
| | - Milagros Piedrabuena
- Laboratorio de Microbiología, Hospital San Martín, Paraná, Entre Ríos, Argentina
| | - Mercedes Romero
- CEMAR Microbiología, Dir. Bioquímica, Secretaría de Salud Pública, Rosario, Argentina
| | | | - Gladys Posse
- Hospital Nacional Alejandro Posadas, Buenos Aires, Argentina
| | | | - Ruth Valdez
- Hospital Señor del Milagro, Salta, Argentina
| | | | | | - Mariana Andreni
- Sección Microbiología, Hospital General de Agudos Juan A. Fernández, Buenos Aires, Argentina
| | - Julian Serrano
- Sección Micología, Hospital Independencia, Santiago del Estero, Argentina
| | - Christian Álvarez
- División Micología-Laboratorio de Salud Pública de Tucumán, Tucumán, Argentina
| | - Diana Aguirre
- Hospital Pediátrico Avelino Castelán, Resistencia, Chaco, Argentina
| | - Gloria Pineda
- Hospital Universitario Austral, Pilar, Buenos Aires, Argentina
- Hospital de Pediatría S.A.M.I.C. Juan P. Garraham, Buenos Aires, Argentina
| | - Guillermo Garcia Effron
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CONICET, Santa Fe, Argentina
| | - Gabriela Santiso
- Unidad de Micología, Hospital de Enfermedades Infecciosas F. J. Muñiz, Buenos Aires, Argentina
| |
Collapse
|
3
|
de Matos Silva S, Echeverri CR, Mendes-Giannini MJS, Fusco-Almeida AM, Gonzalez A. Common virulence factors between Histoplasma and Paracoccidioides: Recognition of Hsp60 and Enolase by CR3 and plasmin receptors in host cells. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100246. [PMID: 39022313 PMCID: PMC11253281 DOI: 10.1016/j.crmicr.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Over the last two decades, the incidence of Invasive Fungal Infections (IFIs) globally has risen, posing a considerable challenge despite available antifungal therapies. Addressing this, the World Health Organization (WHO) prioritized research on specific fungi, notably Histoplasma spp. and Paracoccidioides spp. These dimorphic fungi have a mycelial life cycle in soil and a yeast phase associated with tissues of mammalian hosts. Inhalation of conidia and mycelial fragments initiates the infection, crucially transforming into the yeast form within the host, influenced by factors like temperature, host immunity, and hormonal status. Survival and multiplication within alveolar macrophages are crucial for disease progression, where innate immune responses play a pivotal role in overcoming physical barriers. The transition to pathogenic yeast, triggered by increased temperature, involves yeast phase-specific gene expression, closely linked to infection establishment and pathogenicity. Cell adhesion mechanisms during host-pathogen interactions are intricately linked to fungal virulence, which is critical for tissue colonization and disease development. Yeast replication within macrophages leads to their rupture, aiding pathogen dissemination. Immune cells, especially macrophages, dendritic cells, and neutrophils, are key players during infection control, with macrophages crucial for defense, tissue integrity, and pathogen elimination. Recognition of common virulence molecules such as heat- shock protein-60 (Hsp60) and enolase by pattern recognition receptors (PRRs), mainly via the complement receptor 3 (CR3) and plasmin receptor pathways, respectively, could be pivotal in host-pathogen interactions for Histoplasma spp. and Paracoccidioides spp., influencing adhesion, phagocytosis, and inflammatory regulation. This review provides a comprehensive overview of the dynamic of these two IFIs between host and pathogen. Further research into these fungi's virulence factors promises insights into pathogenic mechanisms, potentially guiding the development of effective treatment strategies.
Collapse
Affiliation(s)
- Samanta de Matos Silva
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Carolina Rodriguez Echeverri
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Angel Gonzalez
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
4
|
de Brito EDCA, França ADO, Siqueira IV, Félix VLT, Rezende AA, Amorim BC, da Silva SER, Mendes RP, Weber SS, Paniago AMM. Analysis and Interpretation of Automated Blood Count in the Treatment of Chronic Paracoccidioidomycosis. J Fungi (Basel) 2024; 10:317. [PMID: 38786672 PMCID: PMC11122400 DOI: 10.3390/jof10050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Blood count is crucial for assessing bone marrow's cell production and differentiation during infections, gaging disease severity, and monitoring therapeutic responses. The profile of blood count in chronic forms of paracoccidioidomycosis (PCM) has been insufficiently explored. To better understand the changes in hematological cells in different stages of the PCM chronic form, we evaluated the blood count, including immature blood cells in automated equipment, before and during the treatment follow-up of 62 chronic PCM patients. Predominantly male (96.8%) with an average age of 54.3 (standard deviation SD 6.9) years, participants exhibited pre-treatment conditions such as anemia (45.2%), monocytosis (38.7%), and leukocytosis (17.7%), which became less frequent after clinical cure. Anemia was more prevalent in severe cases. Notably, hemoglobin and reticulocyte hemoglobin content increased, while leukocytes, monocytes, neutrophils, immature granulocytes, and platelets decreased. Chronic PCM induced manageable hematological abnormalities, mainly in the red blood series. Monocytosis, indicating monocytes' role in PCM's immune response, was frequent. Post-treatment, especially after achieving clinical cure, significant improvements were observed in various hematological indices, including immature granulocytes and reticulocyte hemoglobin content, underscoring the impact of infection on these parameters.
Collapse
Affiliation(s)
- Eliana da Costa Alvarenga de Brito
- Graduate Program in Infectious and Parasitic Diseases, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (E.d.C.A.d.B.); (A.d.O.F.); (B.C.A.)
| | - Adriana de Oliveira França
- Graduate Program in Infectious and Parasitic Diseases, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (E.d.C.A.d.B.); (A.d.O.F.); (B.C.A.)
| | - Igor Valadares Siqueira
- Scientific Initiation CNPq, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (I.V.S.); (V.L.T.F.); (A.A.R.); (S.E.R.d.S.)
| | - Vinícius Lopes Teodoro Félix
- Scientific Initiation CNPq, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (I.V.S.); (V.L.T.F.); (A.A.R.); (S.E.R.d.S.)
| | - Amanda Alves Rezende
- Scientific Initiation CNPq, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (I.V.S.); (V.L.T.F.); (A.A.R.); (S.E.R.d.S.)
| | - Bárbara Casella Amorim
- Graduate Program in Infectious and Parasitic Diseases, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (E.d.C.A.d.B.); (A.d.O.F.); (B.C.A.)
| | - Suzane Eberhart Ribeiro da Silva
- Scientific Initiation CNPq, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (I.V.S.); (V.L.T.F.); (A.A.R.); (S.E.R.d.S.)
| | - Rinaldo Poncio Mendes
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University, Botucatu 18618-687, SP, Brazil;
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Anamaria Mello Miranda Paniago
- Graduate Program in Infectious and Parasitic Diseases, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (E.d.C.A.d.B.); (A.d.O.F.); (B.C.A.)
| |
Collapse
|
5
|
Sonnberger J, Kasper L, Lange T, Brunke S, Hube B. "We've got to get out"-Strategies of human pathogenic fungi to escape from phagocytes. Mol Microbiol 2024; 121:341-358. [PMID: 37800630 DOI: 10.1111/mmi.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.
Collapse
Affiliation(s)
- Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
6
|
Abele TJ, Billman ZP, Li L, Harvest CK, Bryan AK, Magalski GR, Lopez JP, Larson HN, Yin XM, Miao EA. Apoptotic signaling clears engineered Salmonella in an organ-specific manner. eLife 2023; 12:RP89210. [PMID: 38055781 PMCID: PMC10699806 DOI: 10.7554/elife.89210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Pyroptosis and apoptosis are two forms of regulated cell death that can defend against intracellular infection. When a cell fails to complete pyroptosis, backup pathways will initiate apoptosis. Here, we investigated the utility of apoptosis compared to pyroptosis in defense against an intracellular bacterial infection. We previously engineered Salmonella enterica serovar Typhimurium to persistently express flagellin, and thereby activate NLRC4 during systemic infection in mice. The resulting pyroptosis clears this flagellin-engineered strain. We now show that infection of caspase-1 or gasdermin D deficient macrophages by this flagellin-engineered S. Typhimurium induces apoptosis in vitro. Additionally, we engineered S. Typhimurium to translocate the pro-apoptotic BH3 domain of BID, which also triggers apoptosis in macrophages in vitro. During mouse infection, the apoptotic pathway successfully cleared these engineered S. Typhimurium from the intestinal niche but failed to clear the bacteria from the myeloid niche in the spleen or lymph nodes. In contrast, the pyroptotic pathway was beneficial in defense of both niches. To clear an infection, cells may have specific tasks that they must complete before they die; different modes of cell death could initiate these 'bucket lists' in either convergent or divergent ways.
Collapse
Affiliation(s)
- Taylor J Abele
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Zachary P Billman
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Lupeng Li
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Carissa K Harvest
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Alexia K Bryan
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Biomedical Engineering, Duke University Pratt School of EngineeringDurhamUnited States
| | - Gabrielle R Magalski
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Joseph P Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Heather N Larson
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of MedicineNew OrleansUnited States
| | - Edward A Miao
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
7
|
Silva LOS, Baeza LC, Pigosso LL, Silva KSFE, Pereira M, de Carvalho Júnior MAB, de Almeida Soares CM. The Response of Paracoccidioides lutzii to the Interaction with Human Neutrophils. J Fungi (Basel) 2023; 9:1088. [PMID: 37998893 PMCID: PMC10672145 DOI: 10.3390/jof9111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The fungal pathogen Paracoccidioides lutzii causes systemic mycosis Paracoccidioidomycosis (PCM), which presents a broad distribution in Latin America. Upon infection, the fungus undergoes a morphological transition to yeast cells and provokes an inflammatory granulomatous reaction with a high number of neutrophils in the lungs. In this work, we employed proteomic analysis to investigate the in vitro response of the fungus to the interaction with human neutrophils. Proteomic profiling of P. lutzii yeast cells harvested at 2 and 4 h post interaction with human polymorphonuclear cells allowed the identification of 505 proteins differentially accumulated. The data indicated that P. lutzii yeast cells underwent a shift in metabolism from glycolysis to Beta oxidation, increasing enzymes of the glyoxylate cycle and upregulating enzymes related to the detoxification of oxidative and heat shock stress. To our knowledge, this is the first study employing proteomic analysis in the investigation of the response of a member of the Paracoccidioides genus to the interaction with neutrophils.
Collapse
Affiliation(s)
- Lana O’Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Lilian Cristiane Baeza
- Laboratório de Bacteriologia e Micologia Médica, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel 85819-110, PR, Brazil;
| | - Laurine Lacerda Pigosso
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Kleber Santiago Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Marcos Antonio Batista de Carvalho Júnior
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil; (L.O.S.S.); (L.L.P.); (K.S.F.e.S.); (M.P.); (M.A.B.d.C.J.)
| |
Collapse
|
8
|
Cardoso-Miguel MDRD, Bürgel PH, de Castro RJA, Marina CL, de Oliveira SA, Albuquerque P, Silva-Pereira I, Bocca AL, Tavares AH. Dectin-2 is critical for phagocyte function and resistance to Paracoccidioides brasiliensis in mice. Med Mycol 2023; 61:myad117. [PMID: 37960963 DOI: 10.1093/mmy/myad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/11/2023] [Accepted: 11/11/2023] [Indexed: 11/15/2023] Open
Abstract
Germline-encoded pattern recognition receptors, particularly C-type lectin receptors (CLRs), are essential for phagocytes to sense invading fungal cells. Among CLRs, Dectin-2 (encoded by Clec4n) plays a critical role in the antifungal immune response as it recognizes high-mannose polysaccharides on the fungal cell wall, triggering phagocyte functional activities and ultimately determining adaptive responses. Here, we assessed the role of Dectin-2 on the course of primary Paracoccidioides brasiliensis systemic infection in mice with Dectin-2-targeted deletion. Paracoccidioides brasiliensis constitutes the principal etiologic agent of paracoccidioidomycosis, the most prominent invasive mycosis in Latin American countries. The deficiency of Dectin-2 resulted in shortened survival rates, high lung fungal burden, and increased lung pathology in mice infected with P. brasiliensis. Consistently, dendritic cells (DCs) from mice lacking Dectin-2 infected ex vivo with P. brasiliensis showed impaired secretion of several proinflammatory and regulatory cytokines, including TNF-α, IL-1β, IL-6, and IL-10. Additionally, when cocultured with splenic lymphocytes, DCs were less efficient in promoting a type 1 cytokine pattern secretion (i.e., IFN-γ). In macrophages, Dectin-2-mediated signaling was required to ensure phagocytosis and fungicidal activity associated with nitric oxide production. Overall, Dectin-2-mediated signaling is critical to promote host protection against P. brasiliensis infection, and its exploitation might lead to the development of new vaccines and immunotherapeutic approaches.
Collapse
Affiliation(s)
- Mariana de Resende Damas Cardoso-Miguel
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Pedro Henrique Bürgel
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Raffael Júnio Araújo de Castro
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Clara Luna Marina
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Stephan Alberto de Oliveira
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Patrícia Albuquerque
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
- Department of Cell Biology, Laboratory of Molecular Biology of Pathogenic Fungi, University of Brasília, Brasília, DF, Brazil
- Laboratory of Microorganism, Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil
| | - Ildinete Silva-Pereira
- Department of Cell Biology, Laboratory of Molecular Biology of Pathogenic Fungi, University of Brasília, Brasília, DF, Brazil
| | - Anamélia Lorenzetti Bocca
- Department of Cell Biology, Laboratory of Applied Immunology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Aldo Henrique Tavares
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
- Laboratory of Microorganism, Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
9
|
Abele TJ, Billman ZP, Li L, Harvest CK, Bryan AK, Magalski GR, Lopez JP, Larson HN, Yin XM, Miao EA. Apoptotic signaling clears engineered Salmonella in an organ-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539681. [PMID: 37205464 PMCID: PMC10187329 DOI: 10.1101/2023.05.06.539681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pyroptosis and apoptosis are two forms of regulated cell death that can defend against intracellular infection. Although pyroptosis and apoptosis have distinct signaling pathways, when a cell fails to complete pyroptosis, backup pathways will initiate apoptosis. Here, we investigated the utility of apoptosis compared to pyroptosis in defense against an intracellular bacterial infection. We previously engineered Salmonella enterica serovar Typhimurium to persistently express flagellin, and thereby activate NLRC4 during systemic infection in mice. The resulting pyroptosis clears this flagellin-engineered strain. We now show that infection of caspase-1 or gasdermin D deficient macrophages by this flagellin-engineered S. Typhimurium induces apoptosis in vitro. Additionally, we also now engineer S. Typhimurium to translocate the pro-apoptotic BH3 domain of BID, which also triggers apoptosis in macrophages in vitro. In both engineered strains, apoptosis occurred somewhat slower than pyroptosis. During mouse infection, the apoptotic pathway successfully cleared these engineered S. Typhimurium from the intestinal niche, but failed to clear the bacteria in the myeloid niche in the spleen or lymph nodes. In contrast, the pyroptotic pathway was beneficial in defense of both niches. In order to clear an infection, distinct cell types may have specific tasks that they must complete before they die. In some cells, either apoptotic or pyroptotic signaling may initiate the same tasks, whereas in other cell types these modes of cell death may lead to different tasks that may not be identical in defense against infection. We recently suggested that such diverse tasks can be considered as different cellular 'bucket lists' to be accomplished before a cell dies.
Collapse
|
10
|
Quaye IK, Aleksenko L, Paganotti GM, Peloewetse E, Haiyambo DH, Ntebela D, Oeuvray C, Greco B. Malaria Elimination in Africa: Rethinking Strategies for Plasmodium vivax and Lessons from Botswana. Trop Med Infect Dis 2023; 8:392. [PMID: 37624330 PMCID: PMC10458071 DOI: 10.3390/tropicalmed8080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The global malaria community has picked up the theme of malaria elimination in more than 90% of the world's population in the next decade. Recent reports of Plasmodium vivax (P. vivax) in sub-Saharan Africa, including in Duffy-negative individuals, threaten the efforts aimed at achieving elimination. This is not only in view of strategies that are tailored only to P. falciparum elimination but also due to currently revealed biological characteristics of P. vivax concerning the relapse patterns of hypnozoites and conservation of large biomasses in cryptic sites in the bone marrow and spleen. A typical scenario was observed in Botswana between 2008 and 2018, which palpably projects how P. vivax could endanger malaria elimination efforts where the two parasites co-exist. The need for the global malaria community, national malaria programs (NMPs), funding agencies and relevant stakeholders to engage in a forum to discuss and recommend clear pathways for elimination of malaria, including P. vivax, in sub-Saharan Africa is warranted.
Collapse
Affiliation(s)
- Isaac K. Quaye
- Pan African Vivax and Ovale Network, Faculty of Engineering Computer and Allied Sciences, Regent University College of Science and Technology, #1 Regent Ave, McCarthy Hill, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| | - Larysa Aleksenko
- Department of Health Sciences, School of Public Health, College of Health, Medicine and Life Sciences, Brunel University, Kingston Lane, Uxbridge, Middlesex, London UB8 3PH, UK;
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, Riverwalk, Gaborone P.O. Box 45498, Botswana;
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elias Peloewetse
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana;
| | - Daniel H. Haiyambo
- Department of Human, Biological and Translational Medical Sciences, Faculty of Health Sciences and Veterinary Medicine, University of Namibia School of Medicine, Hage Geingob Campus, Windhoek Private Bag 13301, Namibia;
| | - Davies Ntebela
- National Malaria Program, Ministry of Health, Gaborone Private Bag 0038, Botswana;
| | - Claude Oeuvray
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - Beatrice Greco
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - the PAVON Consortium
- PAVON, Regent University College of Science and Technology, #1 Regent Avenue, McCarthy Hiil, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| |
Collapse
|
11
|
Molecular Interactions of the Copper Chaperone Atx1 of Paracoccidioides brasiliensis with Fungal Proteins Suggest a Crosstalk between Iron and Copper Homeostasis. Microorganisms 2023; 11:microorganisms11020248. [PMID: 36838213 PMCID: PMC9963772 DOI: 10.3390/microorganisms11020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Paracoccidioides spp. are endemic fungi from Latin America that cause Paracoccidioidomycosis, a systemic disease. These fungi present systems for high-affinity metal uptake, storage, and mobilization, which counteract host nutritional immunity and mitigate the toxic effects of metals. Regarding Cu mobilization, the metallochaperone Atx1 is regulated according to Cu bioavailability in Paracoccidioides spp., contributing to metal homeostasis. However, additional information in the literature on PbAtx1 is scarce. Therefore, in the present work, we aimed to study the PbAtx1 protein-protein interaction networks. Heterologous expressed PbAtx1 was used in a pull-down assay with Paracoccidioides brasiliensis cytoplasmic extract. Nineteen proteins that interacted with PbAtx1 were identified by HPLC-MSE. Among them, a relevant finding was a Cytochrome b5 (PbCyb5), regulated by Fe bioavailability in Aspergillus fumigatus and highly secreted by P. brasiliensis in Fe deprivation. We validated the interaction between PbAtx1-PbCyb5 through molecular modeling and far-Western analyses. It is known that there is a relationship between Fe homeostasis and Cu homeostasis in organisms. In this sense, would PbAtx1-PbCyb5 interaction be a new metal-sensor system? Would it be supported by the presence/absence of metals? We intend to answer those questions in future works to contribute to the understanding of the strategies employed by Paracoccidioides spp. to overcome host defenses.
Collapse
|
12
|
Corrêa-Moreira D, Castro R, da Costa GL, Lima-Neto RG, Oliveira MME. Cerebrospinal fluid: a target of some fungi and an overview. Mem Inst Oswaldo Cruz 2023; 118:e220251. [PMID: 36946852 PMCID: PMC10027065 DOI: 10.1590/0074-02760220251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Meningitis is a potentially life-threatening infection characterised by the inflammation of the leptomeningeal membranes. The estimated annual prevalence of 8.7 million cases globally and the disease is caused by many different viral, bacterial, and fungal pathogens. Although several genera of fungi are capable of causing infections in the central nervous system (CNS), the most significant number of registered cases have, as causal agents, yeasts of the genus Cryptococcus. The relevance of cryptococcal meningitis has changed in the last decades, mainly due to the increase in the number of people living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and medications that impair the immune responses. In this context, coronavirus disease 19 (COVID-19) has also emerged as a risk factor for invasive fungal infections (IFI), including fungal meningitis (FM), due to severe COVID-19 disease is associated with increased pro-inflammatory cytokines, interleukin (IL)-1, IL-6, and tumour necrosis factor-alpha, reduced CD4-interferon-gamma expression, CD4 and CD8 T cells. The gold standard technique for fungal identification is isolating fungi in the culture of the biological material, including cerebrospinal fluid (CSF). However, this methodology has as its main disadvantage the slow or null growth of some fungal species in culture, which makes it difficult to finalise the diagnosis. In conclusions, this article, in the first place, point that it is necessary to accurately identify the etiological agent in order to assist in the choice of the therapeutic regimen for the patients, including the implementation of actions that promote the reduction of the incidence, lethality, and fungal morbidity, which includes what is healthy in the CNS.
Collapse
Affiliation(s)
- Danielly Corrêa-Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| | - Rodolfo Castro
- Fundação Oswaldo Cruz-Fiocruz, Escola Nacional de Saúde Pública, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Saúde Coletiva, Rio de Janeiro, RJ, Brasil
| | - Gisela Lara da Costa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| | | | - Manoel Marques Evangelista Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
13
|
Macias-Paz IU, Pérez-Hernández S, Tavera-Tapia A, Luna-Arias JP, Guerra-Cárdenas JE, Reyna-Beltrán E. Candida albicans the main opportunistic pathogenic fungus in humans. Rev Argent Microbiol 2022:S0325-7541(22)00084-0. [DOI: 10.1016/j.ram.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/03/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
|
14
|
Koehler A, Girardi FM, Neto LK, de Moraes PC, Junior VF, Scroferneker ML. Head and neck manifestations of paracoccidioidomycosis: A retrospective study of histopathologically diagnosed cases in two medical centers in southern Brazil. J Mycol Med 2022; 32:101292. [DOI: 10.1016/j.mycmed.2022.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/22/2022] [Accepted: 04/30/2022] [Indexed: 11/15/2022]
|
15
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
16
|
Li Y, Li H, Sun T, Ding C. Pathogen-Host Interaction Repertoire at Proteome and Posttranslational Modification Levels During Fungal Infections. Front Cell Infect Microbiol 2021; 11:774340. [PMID: 34926320 PMCID: PMC8674643 DOI: 10.3389/fcimb.2021.774340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Prevalence of fungal diseases has increased globally in recent years, which often associated with increased immunocompromised patients, aging populations, and the novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal agents mortality and morbidity rates of invasion fungal disease remain stubbornly high, and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal pathogenicity and interactions between fungi and host have been the focus of many studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been identified. Mass spectrometry (MS)-based proteomics is a novel approach to better understand fungal pathogenicities and host–pathogen interactions at protein and protein posttranslational modification (PTM) levels. The approach has successfully elucidated interactions between pathogens and hosts by examining, for example, samples of fungal cells under different conditions, body fluids from infected patients, and exosomes. Many studies conclude that protein and PTM levels in both pathogens and hosts play important roles in progression of fungal diseases. This review summarizes mass spectrometry studies of protein and PTM levels from perspectives of both pathogens and hosts and provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents development, and host–pathogen interactions.
Collapse
Affiliation(s)
- Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
17
|
Navarro MV, de Barros YN, Segura WD, Chaves AFA, Jannuzzi GP, Ferreira KS, Xander P, Batista WL. The Role of Dimorphism Regulating Histidine Kinase (Drk1) in the Pathogenic Fungus Paracoccidioides brasiliensis Cell Wall. J Fungi (Basel) 2021; 7:jof7121014. [PMID: 34946996 PMCID: PMC8707131 DOI: 10.3390/jof7121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen presents as infective mycelium at 25 °C in the soil, reverting to its pathogenic form when inhaled by the mammalian host (37 °C). Among these dimorphic fungal species, dimorphism regulating histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them was FKS1, a β-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy analysis and flow cytometry showed higher β-glucan exposure on the cell surface of P. brasiliensis after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phagocytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally, our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we can identify β-glucan. Understanding this signalling pathway may be of great value for identifying targets of antifungal molecular activity since HKs are not present in mammals.
Collapse
Affiliation(s)
- Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
| | - Yasmin Nascimento de Barros
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wilson Dias Segura
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | | | - Grasielle Pereira Jannuzzi
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Patrícia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
- Correspondence: ; Tel.: +55-11-3319-3594; Fax: +55-11-3319-3300
| |
Collapse
|