1
|
Boukadida C, Peralta-Prado A, Chávez-Torres M, Romero-Mora K, Rincon-Rubio A, Ávila-Ríos S, Garrido-Rodríguez D, Reyes-Terán G, Pinto-Cardoso S. Alterations of the gut microbiome in HIV infection highlight human anelloviruses as potential predictors of immune recovery. MICROBIOME 2024; 12:204. [PMID: 39420423 PMCID: PMC11483978 DOI: 10.1186/s40168-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND HIV-1 infection is characterized by a massive depletion of mucosal CD4 T cells that triggers a cascade of events ultimately linking gut microbial dysbiosis to HIV-1 disease progression and pathogenesis. The association between HIV infection and the enteric virome composition is less characterized, although viruses are an essential component of the gut ecosystem. Here, we performed a cross-sectional analysis of the fecal viral (eukaryotic viruses and bacteriophages) and bacterial microbiome in people with HIV (PWH) and in HIV-negative individuals. To gain further insight into the association between the gut microbiome composition, HIV-associated immunodeficiency, and immune recovery, we carried out a longitudinal study including 14 PWH who initiated antiretroviral therapy (ART) and were followed for 24 months with samplings performed at baseline (before ART) and at 2, 6, 12, and 24 months post-ART initiation. RESULTS Our data revealed a striking expansion in the abundance and prevalence of several human virus genomic sequences (Anelloviridae, Adenoviridae, and Papillomaviridae) in stool samples of PWH with severe immunodeficiency (CD4 < 200). We also noted a decreased abundance of sequences belonging to two plant viruses from the Tobamovirus genus, a reduction in bacterial alpha diversity, and a decrease in Inoviridae bacteriophage sequences. Short-term ART (24 months) was linked to a significant decrease in human Anelloviridae sequences. Remarkably, the detection of Anellovirus sequences at baseline independently predicted poor immune recovery, as did low CD4 T cell counts. The bacterial and bacteriophage populations were unique to each PWH with individualized trajectories; we found no discernable pattern of clustering after 24 months on ART. CONCLUSION Advanced HIV-1 infection was associated with marked alterations in the virome composition, in particular a remarkable expansion of human anelloviruses, with a gradual restoration after ART initiation. In addition to CD4 T cell counts, anellovirus sequence detection might be useful to predict and monitor immune recovery. This study confirms data on the bacteriome and expands our knowledge on the viral component of the gut microbiome in HIV-1 infection. Video Abstract.
Collapse
Affiliation(s)
- Celia Boukadida
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Amy Peralta-Prado
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Monserrat Chávez-Torres
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karla Romero-Mora
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Alma Rincon-Rubio
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Santiago Ávila-Ríos
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Daniela Garrido-Rodríguez
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Gustavo Reyes-Terán
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ciudad de México, México
| | - Sandra Pinto-Cardoso
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México.
| |
Collapse
|
2
|
Yang C, Wusigale, You L, Li X, Kwok LY, Chen Y. Inflammation, Gut Microbiota, and Metabolomic Shifts in Colorectal Cancer: Insights from Human and Mouse Models. Int J Mol Sci 2024; 25:11189. [PMID: 39456970 PMCID: PMC11508446 DOI: 10.3390/ijms252011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Colorectal cancer (CRC) arises from aberrant mutations in colorectal cells, frequently linked to chronic inflammation. This study integrated human gut metagenome analysis with an azoxymethane and dextran sulfate sodium-induced CRC mouse model to investigate the dynamics of inflammation, gut microbiota, and metabolomic profiles throughout tumorigenesis. The analysis of stool metagenome data from 30 healthy individuals and 40 CRC patients disclosed a significant escalation in both gut microbiota diversity and abundance in CRC patients compared to healthy individuals (p < 0.05). Marked structural disparities were identified between the gut microbiota of healthy individuals and those with CRC (p < 0.05), characterized by elevated levels of clostridia and diminished bifidobacteria in CRC patients (p < 0.05). In the mouse model, CRC mice exhibited distinct gut microbiota structures and metabolite signatures at early and advanced tumor stages, with subtle variations noted during the intermediate phase. Additionally, inflammatory marker levels increased progressively during tumor development in CRC mice, in contrast to their stable levels in healthy counterparts. These findings suggest that persistent inflammation might precipitate gut dysbiosis and altered microbial metabolism. Collectively, this study provides insights into the interplay between inflammation, gut microbiota, and metabolite changes during CRC progression, offering potential biomarkers for diagnosis. While further validation with larger cohorts is warranted, the data obtained support the development of CRC prevention and diagnosis strategies.
Collapse
Affiliation(s)
- Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lijun You
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiang Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Malan-Müller S, Martín-Hernández D, Caso JR, Matthijnssens J, Rodríguez-Urrutia A, Lowry CA, Leza JC. Metagenomic symphony of the intestinal ecosystem: How the composition affects the mind. Brain Behav Immun 2024; 123:510-523. [PMID: 39368785 DOI: 10.1016/j.bbi.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Mental health disorders and neurodegenerative diseases place a heavy burden on patients and societies, and, although great strides have been made to understand the pathophysiology of these conditions, advancement in drug development is lagging. The importance of gastrointestinal health in maintaining overall health and preventing disease is not a new concept. Hundreds of years ago, healers from various cultures and civilizations recognized the crucial role of the gut in sustaining health. More than a century ago, scientists began exploring the restorative effects of probiotics, marking the early recognition of the importance of gut microbes. The omics era brought more enlightenment and enabled researchers to identify the complexity of the microbial ecosystems we harbour, encompassing bacteria, eukaryotes (including fungi), archaea, viruses, and other microorganisms. The extensive genetic capacity of the microbiota is dynamic and influenced by the environment. The microbiota therefore serves as a significant entity within us, with evolutionarily preserved functions in host metabolism, immunity, development, and behavior. The significant role of the bacterial gut microbiome in mental health and neurodegenerative disorders has been realized and described within the framework of the microbiota-gut-brain axis. However, the bacterial members do not function unaccompanied, but rather in concert, and there is a substantial knowledge gap regarding the involvement of non-bacterial microbiome members in these disorders. In this review, we will explore the current literature that implicates a role for the entire metagenomic ensemble, and how their complex interkingdom relationships could influence CNS functioning in mental health disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Amanda Rodríguez-Urrutia
- Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| |
Collapse
|
4
|
Sbardellati DL, Vannette RL. Targeted viromes and total metagenomes capture distinct components of bee gut phage communities. MICROBIOME 2024; 12:155. [PMID: 39175056 PMCID: PMC11342477 DOI: 10.1186/s40168-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Despite being among the most abundant biological entities on earth, bacteriophage (phage) remain an understudied component of host-associated systems. One limitation to studying host-associated phage is the lack of consensus on methods for sampling phage communities. Here, we compare paired total metagenomes and viral size fraction metagenomes (viromes) as methods for investigating the dsDNA viral communities associated with the GI tract of two bee species: the European honey bee Apis mellifera and the eastern bumble bee Bombus impatiens. RESULTS We find that viromes successfully enriched for phage, thereby increasing phage recovery, but only in honey bees. In contrast, for bumble bees, total metagenomes recovered greater phage diversity. Across both bee species, viromes better sampled low occupancy phage, while total metagenomes were biased towards sampling temperate phage. Additionally, many of the phage captured by total metagenomes were absent altogether from viromes. Comparing between bees, we show that phage communities in commercially reared bumble bees are significantly reduced in diversity compared to honey bees, likely reflecting differences in bacterial titer and diversity. In a broader context, these results highlight the complementary nature of total metagenomes and targeted viromes, especially when applied to host-associated environments. CONCLUSIONS Overall, we suggest that studies interested in assessing total communities of host-associated phage should consider using both approaches. However, given the constraints of virome sampling, total metagenomes may serve to sample phage communities with the understanding that they will preferentially sample dominant and temperate phage. Video Abstract.
Collapse
Affiliation(s)
| | - Rachel Lee Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| |
Collapse
|
5
|
Howard A, Carroll-Portillo A, Alcock J, Lin HC. Dietary Effects on the Gut Phageome. Int J Mol Sci 2024; 25:8690. [PMID: 39201374 PMCID: PMC11354428 DOI: 10.3390/ijms25168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations have now been associated with several conditions including Crohn's disease (CD), Ulcerative Colitis (UC), irritable bowel syndrome (IBS), Alzheimer's disease, Parkinson's Disease, liver diseases, obesity, metabolic syndrome, anxiety, depression, and cancers. As the bacteria in our gut thrive on the food we eat, diet plays a critical role in the functional aspects of our gut microbiome, influencing not only health but also the development of disease. While the bacterial microbiome in the context of disease is well studied, the associated gut phageome-bacteriophages living amongst and within our bacterial microbiome-is less well understood. With growing evidence that fluctuations in the phageome also correlate with dysbiosis, how diet influences this population needs to be better understood. This review surveys the current understanding of the effects of diet on the gut phageome.
Collapse
Affiliation(s)
- Andrea Howard
- School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
6
|
Thiele M, Villesen IF, Niu L, Johansen S, Sulek K, Nishijima S, Espen LV, Keller M, Israelsen M, Suvitaival T, Zawadzki AD, Juel HB, Brol MJ, Stinson SE, Huang Y, Silva MCA, Kuhn M, Anastasiadou E, Leeming DJ, Karsdal M, Matthijnssens J, Arumugam M, Dalgaard LT, Legido-Quigley C, Mann M, Trebicka J, Bork P, Jensen LJ, Hansen T, Krag A. Opportunities and barriers in omics-based biomarker discovery for steatotic liver diseases. J Hepatol 2024; 81:345-359. [PMID: 38552880 DOI: 10.1016/j.jhep.2024.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 07/26/2024]
Abstract
The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.
Collapse
Affiliation(s)
- Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ida Falk Villesen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stine Johansen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | | | - Suguru Nishijima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Marisa Keller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mads Israelsen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Joseph Brol
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maria Camilla Alvarez Silva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Diana Julie Leeming
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Morten Karsdal
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonel Trebicka
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
7
|
Paietta EN, Kraberger S, Lund MC, Vargas KL, Custer JM, Ehmke E, Yoder AD, Varsani A. Diverse Circular DNA Viral Communities in Blood, Oral, and Fecal Samples of Captive Lemurs. Viruses 2024; 16:1099. [PMID: 39066262 PMCID: PMC11281440 DOI: 10.3390/v16071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel's sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel's sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27708, USA
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
8
|
Gilman RT, Muldoon MR, Megremis S, Robertson DL, Chanishvili N, Papadopoulos NG. Lysogeny destabilizes computationally simulated microbiomes. Ecol Lett 2024; 27:e14464. [PMID: 38923281 DOI: 10.1111/ele.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Microbiomes are ecosystems, and their stability can impact the health of their hosts. Theory predicts that predators influence ecosystem stability. Phages are key predators of bacteria in microbiomes, but phages are unusual predators because many have lysogenic life cycles. It has been hypothesized that lysogeny can destabilize microbiomes, but lysogeny has no direct analog in classical ecological theory, and no formal theory exists. We studied the stability of computationally simulated microbiomes with different numbers of temperate (lysogenic) and virulent (obligate lytic) phage species. Bacterial populations were more likely to fluctuate over time when there were more temperate phages species. After disturbances, bacterial populations returned to their pre-disturbance densities more slowly when there were more temperate phage species, but cycles engendered by disturbances dampened more slowly when there were more virulent phage species. Our work offers the first formal theory linking lysogeny to microbiome stability.
Collapse
Affiliation(s)
- R Tucker Gilman
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Mark R Muldoon
- Department of Mathematics, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Spyridon Megremis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Genetics and Genome Biology, Centre for Phage Research, Institute for Precision Health, University of Leicester, Leicester, UK
| | | | - Nina Chanishvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
- NewVision University, Tbilisi, Georgia
| | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Yu X, Cheng L, Yi X, Li B, Li X, Liu X, Liu Z, Kong X. Gut phageome: challenges in research and impact on human microbiota. Front Microbiol 2024; 15:1379382. [PMID: 38585689 PMCID: PMC10995246 DOI: 10.3389/fmicb.2024.1379382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
The human gut microbiome plays a critical role in maintaining our health. Fluctuations in the diversity and structure of the gut microbiota have been implicated in the pathogenesis of several metabolic and inflammatory conditions. Dietary patterns, medication, smoking, alcohol consumption, and physical activity can all influence the abundance of different types of microbiota in the gut, which in turn can affect the health of individuals. Intestinal phages are an essential component of the gut microbiome, but most studies predominantly focus on the structure and dynamics of gut bacteria while neglecting the role of phages in shaping the gut microbiome. As bacteria-killing viruses, the distribution of bacteriophages in the intestine, their role in influencing the intestinal microbiota, and their mechanisms of action remain elusive. Herein, we present an overview of the current knowledge of gut phages, their lifestyles, identification, and potential impact on the gut microbiota.
Collapse
Affiliation(s)
- Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Cheng
- Department of Clinical Laboratory and Pathology, Hospital of Shanxi People’s Armed Police, Taiyuan, China
| | - Xin Yi
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Bing Li
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xueqin Li
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Jincheng Coal Industry Group, Jincheng, China
| | - Xiang Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Kirk D, Costeira R, Visconti A, Khan Mirzaei M, Deng L, Valdes AM, Menni C. Bacteriophages, gut bacteria, and microbial pathways interplay in cardiometabolic health. Cell Rep 2024; 43:113728. [PMID: 38300802 DOI: 10.1016/j.celrep.2024.113728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Cardiometabolic diseases are leading causes of mortality in Western countries. Well-established risk factors include host genetics, lifestyle, diet, and the gut microbiome. Moreover, gut bacterial communities and their activities can be altered by bacteriophages (also known simply as phages), bacteria-infecting viruses, making these biological entities key regulators of human cardiometabolic health. The manipulation of bacterial populations by phages enables the possibility of using phages in the treatment of cardiometabolic diseases through phage therapy and fecal viral transplants. First, however, a deeper understanding of the role of the phageome in cardiometabolic diseases is required. In this review, we first introduce the phageome as a component of the gut microbiome and discuss fecal viral transplants and phage therapy in relation to cardiometabolic diseases. We then summarize the current state of phageome research in cardiometabolic diseases and propose how the phageome might indirectly influence cardiometabolic health through gut bacteria and their metabolites.
Collapse
Affiliation(s)
- Daniel Kirk
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Ricardo Costeira
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, UK; Center for Biostatistics, Epidemiology, and Public Health, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, 85764 Neuherberg, Germany; School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, 85764 Neuherberg, Germany; School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ana M Valdes
- Academic Rheumatology, Clinical Sciences Building, Nottingham City Hospital, University of Nottingham, Nottingham, UK
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, UK.
| |
Collapse
|
11
|
Caesar L, Haag KL. Tailed bacteriophages (Caudoviricetes) dominate the microbiome of a diseased stingless bee. Genet Mol Biol 2024; 46:e20230120. [PMID: 38252058 PMCID: PMC10802228 DOI: 10.1590/1678-4685-gmb-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Bacteriophages, viruses that infect bacterial hosts, are known to rule the dynamics and diversity of bacterial populations in a number of ecosystems. Bacterial communities residing in the gut of animals, known as the gut microbiome, have revolutionized our understanding of many diseases. However, the gut phageome, while of apparent importance in this context, remains an underexplored area of research. Here we identify for the first time genomic sequences from tailed viruses (Caudoviricetes) that are associated with the microbiome of stingless bees (Melipona quadrifasciata). Both DNA and RNA were extracted from virus particles isolated from healthy and diseased forager bees, the latter showing symptoms from an annual syndrome that only affects M. quadrifasciata. Viral contigs from previously sequenced metagenomes of healthy and diseased forager bees were used for the analyses. Using conserved proteins deduced from their genomes, we found that Caudoviricetes were only present in the worker bee gut microbiome from diseased stingless bees. The most abundant phages are phylogenetically related to phages that infect Gram-positive bacteria from the order Lactobacillales and Gram-negative bacteria from the genus Gilliamella and Bartonella, that are common honey bee symbionts. The potential implication of these viruses in the M. quadrifasciata syndrome is discussed.
Collapse
Affiliation(s)
- Lilian Caesar
- Indiana University Bloomington, Department of Biology, Bloomington, IN, USA
| | - Karen Luisa Haag
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Álvarez-Espejo DM, Rivera D, Moreno-Switt AI. Bacteriophage-Host Interactions and Coevolution. Methods Mol Biol 2024; 2738:231-243. [PMID: 37966603 DOI: 10.1007/978-1-0716-3549-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are the most abundant entity on the planet and play very relevant roles in the diversity and abundance of their bacterial hosts. These interactions are subject to several factors, such as the first encounter of the phage with its host bacterium, in which molecular interactions are fundamental. Along with this, these interactions depend on the environment and other communities present. This chapter focuses on these phage-bacteria interactions, reviewing the knowledge of the early stage (receptor-binding proteins), host responses (resistance and counter-resistance), and ecological and evolutionary models described to date. In general, knowledge has focused on a few phage-bacteria models and has been deepened by sequencing and metagenomics. The study of phage-bacteria interactions is an essential step for the development of therapies and other applications of phages in the clinical and productive environment.
Collapse
Affiliation(s)
- Diana M Álvarez-Espejo
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
14
|
Babkin I, Tikunov A, Morozova V, Matveev A, Morozov VV, Tikunova N. Genomes of a Novel Group of Phages That Use Alternative Genetic Code Found in Human Gut Viromes. Int J Mol Sci 2023; 24:15302. [PMID: 37894982 PMCID: PMC10607447 DOI: 10.3390/ijms242015302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metagenomics provides detection of phage genome sequences in various microbial communities. However, the use of alternative genetic codes by some phages precludes the correct analysis of their genomes. In this study, the unusual phage genome (phAss-1, 135,976 bp) was found after the de novo assembly of the human gut virome. Genome analysis revealed the presence of the TAG stop codons in 41 ORFs, including characteristic phage ORFs, and three genes of suppressor tRNA. Comparative analysis indicated that no phages with similar genomes were described. However, two phage genomes (BK046881_ctckW2 and BK025033_ct6IQ4) with substantial similarity to phAss-1 were extracted from the human gut metagenome data. These two complete genomes demonstrated 82.7% and 86.4% of nucleotide identity, respectively, similar genome synteny to phAss-1, the presence of suppressor tRNA genes and suppressor TAG stop codons in many characteristic phage ORFs. These data indicated that phAss-1, BK046881_ctckW2, and BK025033_ct6IQ4 are distinct species within the proposed Phassvirus genus. Moreover, a monophyletic group of divergent phage genomes containing the proposed Phassvirus genus was found among metagenome data. Several phage genomes from the group also contain ORFs with suppressor TAG stop codons, indicating the need to use various translation tables when depositing phage genomes in GenBank.
Collapse
Affiliation(s)
- Igor Babkin
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Tikunov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vera Morozova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
| | - Andrey Matveev
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
| | - Vitaliy V. Morozov
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
| | - Nina Tikunova
- Federal State Public Scientific Institution «Institute of Chemical Biology and Fundamental Medicine», Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.B.); (A.T.); (V.M.); (A.M.); (V.V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
15
|
Zhang Y, Sharma S, Tom L, Liao YT, Wu VCH. Gut Phageome-An Insight into the Role and Impact of Gut Microbiome and Their Correlation with Mammal Health and Diseases. Microorganisms 2023; 11:2454. [PMID: 37894111 PMCID: PMC10609124 DOI: 10.3390/microorganisms11102454] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, and viruses, compose a diverse mammalian gut environment and are highly associated with host health. Bacteriophages, the viruses that infect bacteria, are the primary members of the gastrointestinal virome, known as the phageome. However, our knowledge regarding the gut phageome remains poorly understood. In this review, the critical role of the gut phageome and its correlation with mammalian health were summarized. First, an overall profile of phages across the gastrointestinal tract and their dynamic roles in shaping the surrounding microorganisms was elucidated. Further, the impacts of the gut phageome on gastrointestinal fitness and the bacterial community were highlighted, together with the influence of diets on the gut phageome composition. Additionally, new reports on the role of the gut phageome in the association of mammalian health and diseases were reviewed. Finally, a comprehensive update regarding the advanced phage benchwork and contributions of phage-based therapy to prevent/treat mammalian diseases was provided. This study provides insights into the role and impact of the gut phagenome in gut environments closely related to mammal health and diseases. The findings provoke the potential applications of phage-based diagnosis and therapy in clinical and agricultural fields. Future research is needed to uncover the underlying mechanism of phage-bacterial interactions in gut environments and explore the maintenance of mammalian health via phage-regulated gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
16
|
Alkhalil SS. The role of bacteriophages in shaping bacterial composition and diversity in the human gut. Front Microbiol 2023; 14:1232413. [PMID: 37795308 PMCID: PMC10546012 DOI: 10.3389/fmicb.2023.1232413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 10/06/2023] Open
Abstract
The microbiota of the gut has continued to co-evolve alongside their human hosts conferring considerable health benefits including the production of nutrients, drug metabolism, modulation of the immune system, and playing an antagonistic role against pathogen invasion of the gastrointestinal tract (GIT). The gut is said to provide a habitat for diverse groups of microorganisms where they all co-habit and interact with one another and with the immune system of humans. Phages are bacterial parasites that require the host metabolic system to replicate via the lytic or lysogenic cycle. The phage and bacterial populations are regarded as the most dominant in the gut ecosystem. As such, among the various microbial interactions, the phage-bacteria interactions, although complex, have been demonstrated to co-evolve over time using different mechanisms such as predation, lysogenic conversion, and phage induction, alongside counterdefense by the bacterial population. With the help of models and dynamics of phage-bacteria interactions, the complexity behind their survival in the gut ecosystem was demystified, and their roles in maintaining gut homeostasis and promoting the overall health of humans were elucidated. Although the treatment of various gastrointestinal infections has been demonstrated to be successful against multidrug-resistant causative agents, concerns about this technique are still very much alive among researchers owing to the potential for phages to evolve. Since a dearth of knowledge exists regarding the use of phages for therapeutic purposes, more studies involving experimental models and clinical trials are needed to widen the understanding of bacteria-phage interactions and their association with immunological responses in the gut of humans.
Collapse
Affiliation(s)
- Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Ambros CL, Ehrmann MA. Distribution, inducibility, and characteristics of Latilactobacillus curvatus temperate phages. MICROBIOME RESEARCH REPORTS 2023; 2:34. [PMID: 38045928 PMCID: PMC10688831 DOI: 10.20517/mrr.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 12/05/2023]
Abstract
Aim: Temperate phages are known to heavily impact the growth of their host, be it in a positive way, e.g., when beneficial genes are provided by the phage, or negatively when lysis occurs after prophage induction. This study provides an in-depth look into the distribution and variety of prophages in Latilactobacillus curvatus (L. curvatus). This species is found in a wide variety of ecological niches and is routinely used as a meat starter culture. Methods: Fourty five L. curvatus genomes were screened for prophages. The intact predicted prophages and their chromosomal integration loci were described. Six L. curvatus lysogens were analysed for phage-mediated lysis post induction via UV light and/or mitomycin C. Their lysates were analysed for phage particles via viral DNA sequencing and transmission electron microscopy. Results: Two hundred and six prophage sequences of any completeness were detected within L. curvatus genomes. The 50 as intact predicted prophages show high levels of genetic diversity on an intraspecies level with conserved regions mostly in the replication and head/tail gene clusters. Twelve chromosomal loci, mostly tRNA genes, were identified, where intact L. curvatus phages were integrated. The six analysed L. curvatus lysogens showed strain-dependent lysis in various degrees after induction, yet only four of their lysates appeared to contain fully assembled virions with the siphovirus morphotype. Conclusion: Our data demonstrate that L. curvatus is a (pro)phage-susceptible species, harbouring multiple intact prophages and remnant sequences thereof. This knowledge provides a basis to study phage-host interaction influencing microbial communities in food fermentations.
Collapse
Affiliation(s)
| | - Matthias A. Ehrmann
- Chair of Microbiology, School of Life Sciences, Technical University Munich (TUM), Freising 85354, Germany
| |
Collapse
|
18
|
Shahin K, Soleimani-Delfan A, He Z, Sansonetti P, Collard JM. Metagenomics revealed a correlation of gut phageome with autism spectrum disorder. Gut Pathog 2023; 15:39. [PMID: 37542330 PMCID: PMC10403902 DOI: 10.1186/s13099-023-00561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 07/04/2023] [Indexed: 08/06/2023] Open
Abstract
The human gut bacteriome is believed to have pivotal influences on human health and disease while the particular roles associated with the gut phageome have not been fully characterized yet with few exceptions. It is argued that gut microbiota can have a potential role in autism spectrum disorders (ASD). The public microbiota database of ASD and typically developing (TD) Chinese individuals were analyzed for phage protein-coding units (pPCU) to find any link between the phageome and ASD. The gut phageome of ASD individuals showed a wider diversity and higher abundance compared to TD individuals. The ASD phageome was associated with a significant expansion of Caudoviricetes bacteriophages. Phages infecting Bacteroidaceae and prophages encoded within Faecalibacterium were more frequent in ASD than in TD individuals. The expansion and diversification of ASD phageome can influence the bacterial homeostasis by imposing pressure on the bacterial communities. In conclusion, the differences of phages community in in ASD and TD can be used as potential diagnosis biomarkers of ASD. Further investigations are needed to verify the role of gut phage communities in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Khashayar Shahin
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai/Chinese Academy of Sciences, Life Science Research Building, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Abbas Soleimani-Delfan
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jereeb Street, Isfahan, 81746-73441, Iran
| | - Zihan He
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai/Chinese Academy of Sciences, Life Science Research Building, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Philippe Sansonetti
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai/Chinese Academy of Sciences, Life Science Research Building, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Jean-Marc Collard
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai/Chinese Academy of Sciences, Life Science Research Building, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China.
- Enteric Bacterial Pathogens Unit & French National Reference Center for Escherichia Coli, Shigella and Salmonella, Department of Global Health, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris cedex 15, France.
| |
Collapse
|
19
|
Floccari VA, Dragoš A. Host control by SPβ phage regulatory switch as potential manipulation strategy. Curr Opin Microbiol 2023; 71:102260. [PMID: 36580707 DOI: 10.1016/j.mib.2022.102260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
The interaction between temperate phages and their bacterial hosts has always been one of the most controversial in nature. As genetic parasites, phages need their hosts to propagate, while the host may take advantage of the genetic arsenal carried in the phage genome. This intriguing host-parasite interplay with an evident mutualistic implication could be challenged by recent discoveries of alternative phage lifestyles and regulatory systems that seem to support a manipulative strategy pursued by the phage. Through two fascinating novel mechanisms concerning the active lysogeny and a phage-encoded quorum sensing system, referred as 'Arbitrium', employed by SPβ-like phages of Bacilli, we propose the parasite manipulation as ecological relationship between certain temperate phages and bacteria.
Collapse
Affiliation(s)
- Valentina A Floccari
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Bacteriophages and the Microbiome in Dermatology: The Role of the Phageome and a Potential Therapeutic Strategy. Int J Mol Sci 2023; 24:ijms24032695. [PMID: 36769020 PMCID: PMC9916943 DOI: 10.3390/ijms24032695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Bacteriophages, also known as phages, are viruses that selectively target and infect bacteria. In addition to bacterial dysbiosis, dermatologic conditions such as acne, psoriasis, and atopic dermatitis are characterized by a relative reduction in the abundance of phages and the overgrowth of the corresponding bacteria. Phages often exhibit high specificity for their targeted bacteria, making phage-replacement therapy a promising therapeutic strategy for the control of pathogenic bacteria in dermatologic disease. Novel therapeutic strategies regulating pathogenic bacteria are especially necessary in light of growing antibiotic resistance. In this review, we aimed to review the medical literature assessing phage dysbiosis and therapeutic trials in dermatology. Ultimately, studies have depicted promising results for the treatment of acne, psoriasis, and atopic dermatitis but are limited by low sample sizes and the omission of control groups in some trials. Additional work is necessary to validate the efficacy depicted in proof-of-concept trials and to further determine optimal treatment vehicles, administration mechanisms, and dosing schedules. This review provides the necessary framework for the assessment of phage efficacy in future trials.
Collapse
|
21
|
Repetitive Exposure to Bacteriophage Cocktails against Pseudomonas aeruginosa or Escherichia coli Provokes Marginal Humoral Immunity in Naïve Mice. Viruses 2023; 15:v15020387. [PMID: 36851601 PMCID: PMC9964535 DOI: 10.3390/v15020387] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Phage therapy of ventilator-associated pneumonia (VAP) is of great interest due to the rising incidence of multidrug-resistant bacterial pathogens. However, natural or therapy-induced immunity against therapeutic phages remains a potential concern. In this study, we investigated the innate and adaptive immune responses to two different phage cocktails targeting either Pseudomonas aeruginosa or Escherichia coli-two VAP-associated pathogens-in naïve mice without the confounding effects of a bacterial infection. Active or UV-inactivated phage cocktails or buffers were injected intraperitoneally daily for 7 days in C57BL/6J wild-type mice. Blood cell analysis, flow cytometry analysis, assessment of phage distribution and histopathological analysis of spleens were performed at 6 h, 10 days and 21 days after treatment start. Phages reached the lungs and although the phage cocktails were slightly immunogenic, phage injections were well tolerated without obvious adverse effects. No signs of activation of innate or adaptive immune cells were observed; however, both active phage cocktails elicited a minimal humoral response with secretion of phage-specific antibodies. Our findings show that even repetitive injections lead only to a minimal innate and adaptive immune response in naïve mice and suggest that systemic phage treatment is thus potentially suitable for treating bacterial lung infections.
Collapse
|
22
|
Shim H. Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity. Antibiotics (Basel) 2023; 12:antibiotics12020204. [PMID: 36830114 PMCID: PMC9952447 DOI: 10.3390/antibiotics12020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance is a silent pandemic exacerbated by the uncontrolled use of antibiotics. Since the discovery of penicillin, we have been largely dependent on microbe-derived small molecules to treat bacterial infections. However, the golden era of antibiotics is coming to an end, as the emergence and spread of antimicrobial resistance against these antibacterial compounds are outpacing the discovery and development of new antibiotics. The current antibiotic market suffers from various shortcomings, including the absence of profitability and investment. The most important underlying issue of traditional antibiotics arises from the inherent properties of these small molecules being mostly broad-spectrum and non-programmable. As the scientific knowledge of microbes progresses, the scientific community is starting to explore entirely novel approaches to tackling antimicrobial resistance. One of the most prominent approaches is to develop next-generation antibiotics. In this review, we discuss three innovations of next-generation antibiotics compared to traditional antibiotics as specificity, evolvability, and non-immunogenicity. We present a number of potential antimicrobial agents, including bacteriophage-based therapy, CRISPR-Cas-based antimicrobials, and microbiome-derived antimicrobial agents. These alternative antimicrobial agents possess innovative properties that may overcome the inherent shortcomings of traditional antibiotics, and some of these next-generation antibiotics are not merely far-fetched ideas but are currently in clinical development. We further discuss some related issues and challenges such as infection diagnostics and regulatory frameworks that still need to be addressed to bring these next-generation antibiotics to the antibiotic market as viable products to combat antimicrobial resistance using a diversified set of strategies.
Collapse
Affiliation(s)
- Hyunjin Shim
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
23
|
Shen W, Xiang H, Huang T, Tang H, Peng M, Cai D, Hu P, Ren H. KMCP: accurate metagenomic profiling of both prokaryotic and viral populations by pseudo-mapping. Bioinformatics 2023; 39:btac845. [PMID: 36579886 PMCID: PMC9828150 DOI: 10.1093/bioinformatics/btac845] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION The growing number of microbial reference genomes enables the improvement of metagenomic profiling accuracy but also imposes greater requirements on the indexing efficiency, database size and runtime of taxonomic profilers. Additionally, most profilers focus mainly on bacterial, archaeal and fungal populations, while less attention is paid to viral communities. RESULTS We present KMCP (K-mer-based Metagenomic Classification and Profiling), a novel k-mer-based metagenomic profiling tool that utilizes genome coverage information by splitting the reference genomes into chunks and stores k-mers in a modified and optimized Compact Bit-Sliced Signature Index for fast alignment-free sequence searching. KMCP combines k-mer similarity and genome coverage information to reduce the false positive rate of k-mer-based taxonomic classification and profiling methods. Benchmarking results based on simulated and real data demonstrate that KMCP, despite a longer running time than all other methods, not only allows the accurate taxonomic profiling of prokaryotic and viral populations but also provides more confident pathogen detection in clinical samples of low depth. AVAILABILITY AND IMPLEMENTATION The software is open-source under the MIT license and available at https://github.com/shenwei356/kmcp. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Shen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hongyan Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Tianquan Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hui Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Dachuan Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
24
|
Yan A, Butcher J, Schramm L, Mack DR, Stintzi A. Multiomic spatial analysis reveals a distinct mucosa-associated virome. Gut Microbes 2023; 15:2177488. [PMID: 36823020 PMCID: PMC9980608 DOI: 10.1080/19490976.2023.2177488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The human gut virome has been increasingly explored in recent years. However, nearly all virome-sequencing efforts rely solely on fecal samples and few studies leverage multiomic approaches to investigate phage-host relationships. Here, we combine metagenomics, metaviromics, and metatranscriptomics to study virome-bacteriome interactions at the colonic mucosal-luminal interface in a cohort of three individuals with inflammatory bowel disease; non-IBD controls were not included in this study. We show that the mucosal viral population is distinct from the stool virome and houses abundant crAss-like phages that are undetectable by fecal sampling. Through viral protein prediction and metatranscriptomic analysis, we explore viral gene transcription, prophage activation, and the relationship between the presence of integrase and temperate phages in IBD subjects. We also show the impact of deep sequencing on virus recovery and offer guidelines for selecting optimal sequencing depths in future metaviromic studies. Systems biology approaches such as those presented in this report will enhance our understanding of the human virome and its interactions with our microbiome and our health.
Collapse
Affiliation(s)
- Austin Yan
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Laetitia Schramm
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David R. Mack
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,Inflammatory Bowel Disease Centre and CHEO Research Institute, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,CONTACT Alain Stintzi Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
25
|
Nale JY, Thanki AM, Rashid SJ, Shan J, Vinner GK, Dowah ASA, Cheng JKJ, Sicheritz-Pontén T, Clokie MRJ. Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages. Viruses 2022; 14:v14122772. [PMID: 36560776 PMCID: PMC9784644 DOI: 10.3390/v14122772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
Collapse
Affiliation(s)
- Janet Y. Nale
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, Scotland’s Rural College, Inverness IV2 5NA, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Anisha M. Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Srwa J. Rashid
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gurinder K. Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Ahmed S. A. Dowah
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- School of Pharmacy, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Correspondence:
| |
Collapse
|
26
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Recent years have seen great strides made in the field of viral metagenomics. Many studies have reported alterations in the virome in different disease states. The vast majority of the human intestinal virome consists of bacteriophages, viruses that infect bacteria. The dynamic relationship between gut bacterial populations and bacteriophages is influenced by environmental factors that also impact host health and disease. In this review, we focus on studies highlighting the dynamics of the gut virome and fluctuations associated with disease states. RECENT FINDINGS Novel correlations have been identified between the human gut virome and diseases such as obesity, necrotizing enterocolitis and severe acute respiratory syndrome coronavirus 2 infection. Further associations between the virome and cognition, diet and geography highlight the complexity of factors that can influence the dynamic relationship between gut bacteria, bacteriophages and health. SUMMARY Here, we highlight some novel associations between the virome and health that will be the foundation for future studies in this field. The future development of microbiome-based interventions, identification of biomarkers, and novel therapeutics will require a thorough understanding of the gut virome and its dynamics.
Collapse
Affiliation(s)
- Hiba Shareefdeen
- APC Microbiome Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Henrot C, Petit M. Signals triggering prophage induction in the gut microbiota. Mol Microbiol 2022; 118:494-502. [PMID: 36164818 PMCID: PMC9827884 DOI: 10.1111/mmi.14983] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 01/12/2023]
Abstract
Compared to bacteria of the gut microbiota, bacteriophages are still poorly characterised, and their physiological importance is far less known. Temperate phages are probably a major actor in the gut, as it is estimated that 80% of intestinal bacteria are lysogens, meaning that they are carrying prophages. In addition, prophage induction rates are higher in the gut than in vitro. However, studies on the signals leading to prophage induction have essentially focused on genotoxic agents with poor relevance for this environment. In this review, we sum up recent findings about signals able to trigger prophage induction in the gut. Three categories of signals are at play: those originating from interactions between intestinal microbes, those from the human or animal host physiology and those from external intakes. These recent results highlight the diversity of factors influencing prophage induction in the gut, and start to unveil ways by which microbiota composition may be modulated.
Collapse
Affiliation(s)
- Caroline Henrot
- Université Paris‐Saclay, INRAEAgroParisTech, Micalis InstituteJouy‐en‐JosasFrance,Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1Université de LyonLyonFrance
| | - Marie‐Agnès Petit
- Université Paris‐Saclay, INRAEAgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| |
Collapse
|
29
|
Olwenyi OA, Johnson SD, Bidokhti M, Thakur V, Pandey K, Thurman M, Acharya A, Uppada S, Callen S, Giavedoni L, Ranga U, Buch SJ, Byrareddy SN. Systems biology analyses reveal enhanced chronic morphine distortion of gut-brain interrelationships in simian human immunodeficiency virus infected rhesus macaques. Front Neurosci 2022; 16:1001544. [PMID: 36312033 PMCID: PMC9613112 DOI: 10.3389/fnins.2022.1001544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Commonly used opioids, such as morphine have been implicated in augmented SIV/HIV persistence within the central nervous system (CNS). However, the extent of myeloid cell polarization and viral persistence in different brain regions remains unclear. Additionally, the additive effects of morphine on SIV/HIV dysregulation of gut-brain crosstalk remain underexplored. Therefore, studies focused on understanding how drugs of abuse such as morphine affect immune dynamics, viral persistence and gut-brain interrelationships are warranted. Materials and methods For a total of 9 weeks, rhesus macaques were ramped-up, and twice daily injections of either morphine (n = 4) or saline (n = 4) administered. This was later followed with infection with SHIVAD8EO variants. At necropsy, mononuclear cells were isolated from diverse brain [frontal lobe, cerebellum, medulla, putamen, hippocampus (HIP) and subventricular zone (SVZ)] and gut [lamina propria (LP) and muscularis (MUSC) of ascending colon, duodenum, and ileum] regions. Multiparametric flow cytometry was used to were profile for myeloid cell polarity/activation and results corroborated with indirect immunofluorescence assays. Simian human immunodeficiency virus (SHIV) DNA levels were measured with aid of the digital droplet polymerase chain reaction (PCR) assay. Luminex assays were then used to evaluate soluble plasma/CSF biomarker levels. Finally, changes in the fecal microbiome were evaluated using 16S rRNA on the Illumina NovaSeq platform. Results Flow Cytometry-based semi-supervised analysis revealed that morphine exposure led to exacerbated M1 (CD14/CD16)/M2 (CD163/CD206) polarization in activated microglia that spanned across diverse brain regions. This was accompanied by elevated SHIV DNA within the sites of neurogenesis-HIP and SVZ. HIP/SVZ CD16+ activated microglia positively correlated with SHIV DNA levels in the brain (r = 0.548, p = 0.042). Simultaneously, morphine dependence depleted butyrate-producing bacteria, including Ruminococcus (p = 0.05), Lachnospira (p = 0.068) genera and Roseburia_sp_831b (p = 0.068). Finally, morphine also altered the regulation of CNS inflammation by reducing the levels of IL1 Receptor antagonist (IL1Ra). Conclusion These findings are suggestive that morphine promotes CNS inflammation by altering receptor modulation, increasing myeloid brain activation, distorting gut-brain crosstalk, and causing selective enhancement of SHIV persistence in sites of neurogenesis.
Collapse
Affiliation(s)
- Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Samuel D. Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mehdi Bidokhti
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vandana Thakur
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Srijayaprakash Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Luis Giavedoni
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Shilpa J. Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
30
|
Clerbaux LA, Fillipovska J, Muñoz A, Petrillo M, Coecke S, Amorim MJ, Grenga L. Mechanisms Leading to Gut Dysbiosis in COVID-19: Current Evidence and Uncertainties Based on Adverse Outcome Pathways. J Clin Med 2022; 11:5400. [PMID: 36143044 PMCID: PMC9505288 DOI: 10.3390/jcm11185400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Alteration in gut microbiota has been associated with COVID-19. However, the underlying mechanisms remain poorly understood. Here, we outlined three potential interconnected mechanistic pathways leading to gut dysbiosis as an adverse outcome following SARS-CoV-2 presence in the gastrointestinal tract. Evidence from the literature and current uncertainties are reported for each step of the different pathways. One pathway investigates evidence that intestinal infection by SARS-CoV-2 inducing intestinal inflammation alters the gut microbiota. Another pathway links the binding of viral S protein to angiotensin-converting enzyme 2 (ACE2) to the dysregulation of this receptor, essential in intestinal homeostasis-notably for amino acid metabolism-leading to gut dysbiosis. Additionally, SARS-CoV-2 could induce gut dysbiosis by infecting intestinal bacteria. Assessing current evidence within the Adverse Outcome Pathway framework justifies confidence in the proposed mechanisms to support disease management and permits the identification of inconsistencies and knowledge gaps to orient further research.
Collapse
Affiliation(s)
| | | | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Maria-Joao Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oerias, Portugal
- Católica Medical School, Católica Biomedical Research Centre, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé, Commissariat à l’Énergie Atomique et Aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris-Saclay, 30200 Bagnols-sur-Cèze, France
| |
Collapse
|
31
|
Yutin N, Rayko M, Antipov D, Mutz P, Wolf YI, Krupovic M, Koonin EV. Varidnaviruses in the Human Gut: A Major Expansion of the Order Vinavirales. Viruses 2022; 14:1842. [PMID: 36146653 PMCID: PMC9502842 DOI: 10.3390/v14091842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages play key roles in the dynamics of the human microbiome. By far the most abundant components of the human gut virome are tailed bacteriophages of the realm Duplodnaviria, in particular, crAss-like phages. However, apart from duplodnaviruses, the gut virome has not been dissected in detail. Here we report a comprehensive census of a minor component of the gut virome, the tailless bacteriophages of the realm Varidnaviria. Tailless phages are primarily represented in the gut by prophages, that are mostly integrated in genomes of Alphaproteobacteria and Verrucomicrobia and belong to the order Vinavirales, which currently consists of the families Corticoviridae and Autolykiviridae. Phylogenetic analysis of the major capsid proteins (MCP) suggests that at least three new families should be established within Vinavirales to accommodate the diversity of prophages from the human gut virome. Previously, only the MCP and packaging ATPase genes were reported as conserved core genes of Vinavirales. Here we report an extended core set of 12 proteins, including MCP, packaging ATPase, and previously undetected lysis enzymes, that are shared by most of these viruses. We further demonstrate that replication system components are frequently replaced in the genomes of Vinavirales, suggestive of selective pressure for escape from yet unknown host defenses or avoidance of incompatibility with coinfecting related viruses. The results of this analysis show that, in a sharp contrast to marine viromes, varidnaviruses are a minor component of the human gut virome. Moreover, they are primarily represented by prophages, as indicated by the analysis of the flanking genes, suggesting that there are few, if any, lytic varidnavirus infections in the gut at any given time. These findings complement the existing knowledge of the human gut virome by exploring a group of viruses that has been virtually overlooked in previous work.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Mike Rayko
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Dmitry Antipov
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, F-75015 Paris, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
32
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Tiamani K, Luo S, Schulz S, Xue J, Costa R, Khan Mirzaei M, Deng L. The role of virome in the gastrointestinal tract and beyond. FEMS Microbiol Rev 2022; 46:6608358. [PMID: 35700129 PMCID: PMC9629487 DOI: 10.1093/femsre/fuac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/11/2023] Open
Abstract
The human gut virome is comprised of diverse commensal and pathogenic viruses. The colonization by these viruses begins right after birth through vaginal delivery, then continues through breastfeeding, and broader environmental exposure. Their constant interaction with their bacterial hosts in the body shapes not only our microbiomes but us. In addition, these viruses interact with the immune cells, trigger a broad range of immune responses, and influence different metabolic pathways. Besides its key role in regulating the human gut homeostasis, the intestinal virome contributes to disease development in distant organs, both directly and indirectly. In this review, we will describe the changes in the gut virome through life, health, and disease, followed by discussing the interactions between the virome, the microbiome, and the human host as well as providing an overview of their contribution to gut disease and disease of distant organs.
Collapse
Affiliation(s)
| | | | - Sarah Schulz
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rita Costa
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Li Deng
- Corresponding author: Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany; Chair of Prevention of Microbial Diseases, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany. E-mail:
| |
Collapse
|
34
|
Sundaramoorthy NS, Shankaran P, Gopalan V, Nagarajan S. New tools to mitigate drug resistance in Enterobacteriaceae - Escherichia coli and Klebsiella pneumoniae. Crit Rev Microbiol 2022:1-20. [PMID: 35649163 DOI: 10.1080/1040841x.2022.2080525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Treatment to common bacterial infections are becoming ineffective of late, owing to the emergence and dissemination of antibiotic resistance globally. Escherichia coli and Klebsiella pneumoniae are the most notorious microorganisms and are among the critical priority pathogens listed by WHO in 2017. These pathogens are the predominant cause of sepsis, urinary tract infections (UTIs), pneumonia, meningitis and pyogenic liver abscess. Concern arises due to the resistance of bacteria to most of the beta lactam antibiotics like penicillin, cephalosporin, monobactams and carbapenems, even to the last resort antibiotics like colistin. Preventing influx by modulation of porins, extruding the antibiotics by overexpression of efflux pumps, mutations of drug targets/receptors, biofilm formation, altering the drug molecules and rendering them ineffective are few resistance mechanisms that are adapted by Enterobacteriaeceae upon exposure to antibiotics. The situation is exacerbated due to the process of horizontal gene transfer (HGT), wherein the genes encoding resistance mechanisms are transferred to the neighbouring bacteria through plasmids/phages/uptake of free DNA. Carbapenemases, other beta lactamases and mcr genes coding for colistin resistance are widely disseminated leading to limited/no therapeutic options against those infections. Development of new antibiotics can be viewed as a possible solution but it involves major investment, time and labour despite which, the bacteria can easily adapt to the new antibiotic and evolve resistance in a relatively short time. Targeting the resistance mechanisms can be one feasible alternative to tackle these multidrug resistant (MDR) pathogens. Removal of plasmid (plasmid curing) causing resistance, use of bacteriophages and bacteriotherapy can be other potential approaches to combat infections caused by MDR E. coli and K. pneumoniae. The present review discusses the efficacies of these therapies in mitigating these infections, which can be potentially used as an adjuvant therapy along with existing antibiotics.
Collapse
Affiliation(s)
- Niranjana Sri Sundaramoorthy
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| | - Prakash Shankaran
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| | - Vidhya Gopalan
- Department of Virology, Kings Institute of Preventative Medicine, Guindy, Chennai, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
35
|
Collective effects of human genomic variation on microbiome function. Sci Rep 2022; 12:3839. [PMID: 35264618 PMCID: PMC8907173 DOI: 10.1038/s41598-022-07632-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022] Open
Abstract
Studies of the impact of host genetics on gut microbiome composition have mainly focused on the impact of individual single nucleotide polymorphisms (SNPs) on gut microbiome composition, without considering their collective impact or the specific functions of the microbiome. To assess the aggregate role of human genetics on the gut microbiome composition and function, we apply sparse canonical correlation analysis (sCCA), a flexible, multivariate data integration method. A critical attribute of metagenome data is its sparsity, and here we propose application of a Tweedie distribution to accommodate this. We use the TwinsUK cohort to analyze the gut microbiomes and human variants of 250 individuals. Sparse CCA, or sCCA, identified SNPs in microbiome-associated metabolic traits (BMI, blood pressure) and microbiome-associated disorders (type 2 diabetes, some neurological disorders) and certain cancers. Both common and rare microbial functions such as secretion system proteins or antibiotic resistance were found to be associated with host genetics. sCCA applied to microbial species abundances found known associations such as Bifidobacteria species, as well as novel associations. Despite our small sample size, our method can identify not only previously known associations, but novel ones as well. Overall, we present a new and flexible framework for examining host-microbiome genetic interactions, and we provide a new dimension to the current debate around the role of human genetics on the gut microbiome.
Collapse
|
36
|
Verma NK, Tan SJ, Chen J, Chen H, Ismail MH, Rice SA, Bifani P, Hariharan S, Paul VD, Sriram B, Dam LC, Chan CC, Ho P, Goh BC, Chung SJ, Goh KCM, Thong SH, Kwa ALH, Ostrowski A, Aung TT, Razali H, Low SW, Bhattacharyya MS, Gautam HK, Lakshminarayanan R, Sicheritz-Pontén T, Clokie MR, Moreira W, van Steensel MAM. inPhocus: Current State and Challenges of Phage Research in Singapore. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:6-11. [PMID: 36161195 PMCID: PMC9436264 DOI: 10.1089/phage.2022.29028.nkv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bacteriophages and phage-derived proteins are a promising class of antibacterial agents that experience a growing worldwide interest. To map ongoing phage research in Singapore and neighboring countries, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore (NTU) and Yong Loo Lin School of Medicine, National University of Singapore (NUS) recently co-organized a virtual symposium on Bacteriophage and Bacteriophage-Derived Technologies, which was attended by more than 80 participants. Topics were discussed relating to phage life cycles, diversity, the roles of phages in biofilms and the human gut microbiome, engineered phage lysins to combat polymicrobial infections in wounds, and the challenges and prospects of clinical phage therapy. This perspective summarizes major points discussed during the symposium and new perceptions that emerged after the panel discussion.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,Singapore Eye Research Institute, Singapore.,Address correspondence to: Navin Kumar Verma, PhD, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Si Jia Tan
- Institute for Health Technologies, Nanyang Technological University Singapore, Singapore
| | - John Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hanrong Chen
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Muhammad Hafiz Ismail
- Singapore Centre for Environmental Life Sciences Engineering, Microbial Biofilms Cluster, Nanyang Technological University Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Microbial Biofilms Cluster, Nanyang Technological University Singapore, Singapore.,Microbiomes for One Systems Health and Agriculture and Food, Westmead NSW, CSIRO, Australia
| | - Pablo Bifani
- Yong Loo Lin School of Medicine, National University of Singapore, A*STAR Infectious Diseases Labs, Singapore and the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Bharathi Sriram
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Linh Chi Dam
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Chia Ching Chan
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Boon Chong Goh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Shimin Jasmine Chung
- Department of Infectious Diseases, Singapore General Hospital, Singapore.,Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore
| | | | - Shu Hua Thong
- Department of Pharmacy, Singapore General Hospital, Singapore
| | - Andrea Lay-Hoon Kwa
- Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore.,Department of Pharmacy, Singapore General Hospital, Singapore.,Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Thet Tun Aung
- Department of Microbiology and Immunology, Immunology Translational Research Program and Centre for Life Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Halimah Razali
- Asian School of the Environment, Nanyang Technological University Singapore, Singapore
| | - Shermaine W.Y. Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | | | - Hemant K. Gautam
- CSIR—Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Wilfried Moreira
- Department of Microbiology and Immunology, Immunology Translational Research Program and Centre for Life Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Address correspondence to: Wilfried Moreira, PhD, Department of Microbiology and Immunology, Immunology Translational Research Program and Centre for Life Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Maurice Adrianus Monique van Steensel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,Address correspondence to: Maurice Adrianus Monique van Steensel, PhD, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| |
Collapse
|
37
|
Manohar P, Loh B, Elangovan N, Loganathan A, Nachimuthu R, Leptihn S. A Multiwell-Plate Caenorhabditis elegans Assay for Assessing the Therapeutic Potential of Bacteriophages against Clinical Pathogens. Microbiol Spectr 2022; 10:e0139321. [PMID: 35171008 PMCID: PMC8849058 DOI: 10.1128/spectrum.01393-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
In order to establish phage therapy as a standard clinical treatment for bacterial infections, testing of every phage to ensure the suitability and safety of the biological compound is required. While some issues have been addressed over recent years, standard and easy-to-use animal models to test phages are still rare. Testing of phages in highly suitable mammalian models such as mice is subjected to strict ethical regulations, while insect larvae such as the Galleria mellonella model suffer from batch-to-batch variations and require manual operator skills to inject bacteria, resulting in unreliable experimental outcomes. A much simpler model is the nematode Caenorhabditis elegans, which feeds on bacteria, a fast growing and easy to handle organism that can be used in high-throughput screening. In this study, two clinical bacterial strains of Escherichia coli, one Klebsiella pneumoniae, and one Enterobacter cloacae strain were tested on the model system together with lytic bacteriophages that we isolated previously. We developed a liquid-based assay, in which the efficiency of phage treatment was evaluated using a scoring system based on microscopy and counting of the nematodes, allowing increasing statistical significance compared to other assays such as larvae or mice. Our work demonstrates the potential to use Caenorhabditis elegans to test the virulence of strains of Klebsiella pneumoniae, Enterobacter cloacae, and EHEC/EPEC as well as the efficacy of bacteriophages to treat or prevent infections, allowing a more reliable evaluation for the clinical therapeutic potential of lytic phages. IMPORTANCE Validating the efficacy and safety of phages prior to clinical application is crucial to see phage therapy in practice. Current animal models include mice and insect larvae, which pose ethical or technical challenges. This study examined the use of the nematode model organism C. elegans as a quick, reliable, and simple alternative for testing phages. The data show that all the four tested bacteriophages can eliminate bacterial pathogens and protect the nematode from infections. Survival rates of the nematodes increased from <20% in the infection group to >90% in the phage treatment group. Even the nematodes with poly-microbial infections recovered during phage cocktail treatment. The use of C. elegans as a simple whole-animal infection model is a rapid and robust way to study the efficacy of phages before testing them on more complex model animals such as mice.
Collapse
Affiliation(s)
- Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, Zhejiang, People’s Republic of China
- The Second Affiliated Hospital Zhejiang University (SAHZU), School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, Zhejiang, People’s Republic of China
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Archana Loganathan
- Antibiotic Resistance and Phage Therapy Lab, Department of Biomedical Science, School of Biosciences and Technology, Vellore, Tamil Nadu, India
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Lab, Department of Biomedical Science, School of Biosciences and Technology, Vellore, Tamil Nadu, India
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, Zhejiang, People’s Republic of China
- Department of Infectious Diseases, Sir Run Department Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Abstract
Intestinal microbiota, dominated by bacteria, plays an important role in the occurrence and the development of alcohol-associated liver disease (ALD), which is one of the most common liver diseases around the world. With sufficient studies focusing on the gut bacterial community, chronic alcohol consumption is now known as a key factor that alters the composition of gut bacterial community, increases intestinal permeability, causes intestinal dysfunction, induces bacterial translocation, and exacerbates the process of ALD via gut-liver axis. However, gut non-bacterial communities including fungi, viruses, and archaea, which may also participate in the disease, has received little attention relative to the gut bacterial community. This paper will systematically collect the latest literatures reporting non-bacterial communities in mammalian health and disease, and review their mechanisms in promoting the development of ALD including CLEC7A pathway, Candidalysin (a peptide toxin secreted by Candida albicans), metabolites, and other chemical substances secreted or regulated by gut commensal mycobiome, virome, and archaeome, hoping to bring novel insights on our current knowledge of ALD.
Collapse
Affiliation(s)
- Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixin Zhu
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,CONTACT Huikuan Chu Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
39
|
George S, Aguilera X, Gallardo P, Farfán M, Lucero Y, Torres JP, Vidal R, O'Ryan M. Bacterial Gut Microbiota and Infections During Early Childhood. Front Microbiol 2022; 12:793050. [PMID: 35069488 PMCID: PMC8767011 DOI: 10.3389/fmicb.2021.793050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota composition during the first years of life is variable, dynamic and influenced by both prenatal and postnatal factors, such as maternal antibiotics administered during labor, delivery mode, maternal diet, breastfeeding, and/or antibiotic consumption during infancy. Furthermore, the microbiota displays bidirectional interactions with infectious agents, either through direct microbiota-microorganism interactions or indirectly through various stimuli of the host immune system. Here we review these interactions during childhood until 5 years of life, focusing on bacterial microbiota, the most common gastrointestinal and respiratory infections and two well characterized gastrointestinal diseases related to dysbiosis (necrotizing enterocolitis and Clostridioides difficile infection). To date, most peer-reviewed studies on the bacterial microbiota in childhood have been cross-sectional and have reported patterns of gut dysbiosis during infections as compared to healthy controls; prospective studies suggest that most children progressively return to a "healthy microbiota status" following infection. Animal models and/or studies focusing on specific preventive and therapeutic interventions, such as probiotic administration and fecal transplantation, support the role of the bacterial gut microbiota in modulating both enteric and respiratory infections. A more in depth understanding of the mechanisms involved in the establishment and maintenance of the early bacterial microbiota, focusing on specific components of the microbiota-immunity-infectious agent axis is necessary in order to better define potential preventive or therapeutic tools against significant infections in children.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ximena Aguilera
- School of Medicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Gallardo
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mauricio Farfán
- Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
40
|
White K, Yu JH, Eraclio G, Dal Bello F, Nauta A, Mahony J, van Sinderen D. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. MICROBIOME RESEARCH REPORTS 2022; 1:3. [PMID: 38089066 PMCID: PMC10714293 DOI: 10.20517/mrr.2021.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 02/19/2024]
Abstract
Food fermentation relies on the activity of robust starter cultures, which are commonly comprised of lactic acid bacteria such as Lactococcus and Streptococcus thermophilus. While bacteriophage infection represents a persistent threat that may cause slowed or failed fermentations, their beneficial role in fermentations is also being appreciated. In order to develop robust starter cultures, it is important to understand how phages interact with and modulate the compositional landscape of these complex microbial communities. Both culture-dependent and -independent methods have been instrumental in defining individual phage-host interactions of many lactic acid bacteria (LAB). This knowledge needs to be integrated and expanded to obtain a full understanding of the overall complexity of such interactions pertinent to fermented foods through a combination of culturomics, metagenomics, and phageomics. With such knowledge, it is believed that factory-specific detection and monitoring systems may be developed to ensure robust and reliable fermentation practices. In this review, we explore/discuss phage-host interactions of LAB, the role of both virulent and temperate phages on the microbial composition, and the current knowledge of phageomes of fermented foods.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Jun-Hyeok Yu
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | | | | | - Arjen Nauta
- FrieslandCampina, Amersfoort 3800 BN, The Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
41
|
Menor-Flores M, Vega-Rodríguez MA, Molina F. Computational design of phage cocktails based on phage-bacteria infection networks. Comput Biol Med 2022; 142:105186. [PMID: 34998221 DOI: 10.1016/j.compbiomed.2021.105186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 01/16/2023]
Abstract
The misuse and overuse of antibiotics have boosted the proliferation of multidrug-resistant (MDR) bacteria, which are considered a major public health issue in the twenty-first century. Phage therapy may be a promising way in the treatment of infections caused by MDR pathogens, without the side effects of the current available antimicrobials. Phage therapy is based on phage cocktails, that is, combinations of phages able to lyse the target bacteria. In this work, we present and explain in detail two innovative computational methods to design phage cocktails taking into account a given phage-bacteria infection network. One of the methods (Exhaustive Search) always generates the best possible phage cocktail, while the other method (Network Metrics) always keeps a very reduced runtime (a few milliseconds). Both methods have been included in a Cytoscape application that is available for any user. A complete experimental study has been performed, evaluating and comparing the biological quality, runtime, and the impact when additional phages are included in the cocktail.
Collapse
Affiliation(s)
- Manuel Menor-Flores
- Escuela Politécnica, Universidad de Extremadura(1), Avda. de la Universidad s/n, 10 003, Cáceres, Spain.
| | - Miguel A Vega-Rodríguez
- Escuela Politécnica, Universidad de Extremadura(1), Avda. de la Universidad s/n, 10 003, Cáceres, Spain.
| | - Felipe Molina
- Facultad de Ciencias, Universidad de Extremadura(1), Avda. de Elvas s/n, 06 006, Badajoz, Spain.
| |
Collapse
|
42
|
Pane S, Ristori MV, Gardini S, Russo A, Del Chierico F, Putignani L. Clinical Parasitology and Parasitome Maps as Old and New Tools to Improve Clinical Microbiomics. Pathogens 2021; 10:1550. [PMID: 34959505 PMCID: PMC8704233 DOI: 10.3390/pathogens10121550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence shows that dysbiotic gut microbiota may correlate with a wide range of disorders; hence, the clinical use of microbiota maps and fecal microbiota transplantation (FMT) can be exploited in the clinic of some infectious diseases. Through direct or indirect ecological and functional competition, FMT may stimulate decolonization of pathogens or opportunistic pathogens, modulating immune response and colonic inflammation, and restoring intestinal homeostasis, which reduces host damage. Herein, we discuss how diagnostic parasitology may contribute to designing clinical metagenomic pipelines and FMT programs, especially in pediatric subjects. The consequences of more specialized diagnostics in the context of gut microbiota communities may improve the clinical parasitology and extend its applications to the prevention and treatment of several communicable and even noncommunicable disorders.
Collapse
Affiliation(s)
- Stefania Pane
- Microbiology and Diagnostic Immunology Unit, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.V.R.); (A.R.)
| | - Maria Vittoria Ristori
- Microbiology and Diagnostic Immunology Unit, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.V.R.); (A.R.)
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | | | - Alessandra Russo
- Microbiology and Diagnostic Immunology Unit, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.V.R.); (A.R.)
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Lorenza Putignani
- Microbiology and Diagnostic Immunology Unit, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.V.R.); (A.R.)
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| |
Collapse
|