1
|
Liu Y, Huang T, Yap NA, Lim K, Ju LA. Harnessing the power of bioprinting for the development of next-generation models of thrombosis. Bioact Mater 2024; 42:328-344. [PMID: 39295733 PMCID: PMC11408160 DOI: 10.1016/j.bioactmat.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Thrombosis, a leading cause of cardiovascular morbidity and mortality, involves the formation of blood clots within blood vessels. Current animal models and in vitro systems have limitations in recapitulating the complex human vasculature and hemodynamic conditions, limiting the research in understanding the mechanisms of thrombosis. Bioprinting has emerged as a promising approach to construct biomimetic vascular models that closely mimic the structural and mechanical properties of native blood vessels. This review discusses the key considerations for designing bioprinted vascular conduits for thrombosis studies, including the incorporation of key structural, biochemical and mechanical features, the selection of appropriate biomaterials and cell sources, and the challenges and future directions in the field. The advancements in bioprinting techniques, such as multi-material bioprinting and microfluidic integration, have enabled the development of physiologically relevant models of thrombosis. The future of bioprinted models of thrombosis lies in the integration of patient-specific data, real-time monitoring technologies, and advanced microfluidic platforms, paving the way for personalized medicine and targeted interventions. As the field of bioprinting continues to evolve, these advanced vascular models are expected to play an increasingly important role in unraveling the complexities of thrombosis and improving patient outcomes. The continued advancements in bioprinting technologies and the collaboration between researchers from various disciplines hold great promise for revolutionizing the field of thrombosis research.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tao Huang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Khoon Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Darlington, NSW 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
2
|
Feng J, Liu L, Liu J, Wang J. Immunological alterations in the endothelial barrier: a new predictive and therapeutic paradigm for sepsis. Expert Rev Clin Immunol 2024; 20:1205-1217. [PMID: 38850066 DOI: 10.1080/1744666x.2024.2366301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Despite the fact incidence and mortality vary widely among regions, sepsis remains a major cause of morbidity and cost worldwide. The importance of the endothelial barrier in sepsis and infectious diseases is increasingly recognized; however, the underlying pathophysiology of the endothelial barrier in sepsis remains poorly understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of immunological alterations in endothelial dysfunction, discussing the central role of endothelial barrier involved in sepsis to provide new predictive and therapeutic paradigm for sepsis. EXPERT OPINION Given its physiological and immunological functions in infectious diseases, the endothelial barrier has been dramatically altered in sepsis, suggesting that endothelial dysfunction may play a critical role in the pathogenesis of sepsis. Although many reliable biomarkers have been investigated to monitor endothelial activation and injury in an attempt to find diagnostic and therapeutic tools, there are no specific therapies to treat sepsis due to its complex pathophysiology. Since sepsis is initiated by both hyperinflammation and immunoparalysis occurring simultaneously, a 'one-treatment-fits-all' strategy for sepsis-induced immune injury and immunoparalysis is bound to fail, and an individualized 'precision medicine' approach is required.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junya Liu
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Li W, Hua S, Yang J, Cao Y, Gao R, Sun H, Yang K, Wang Y, Peng P. Investigating immune dysregulation and hub genes in septic cardiomyopathy development. Sci Rep 2024; 14:21608. [PMID: 39294340 PMCID: PMC11411067 DOI: 10.1038/s41598-024-72724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
Septic cardiomyopathy is a life-threatening heart dysfunction caused by severe infection. Considering the complexity of pathogenesis and high mortality, the identification of efficient biomarkers are needed to guide clinical practice. Based on multimicroarray analysis, this study aimed to explore the pathogenesis of septic cardiomyopathy and the related immune landscape. The results showed that septic cardiomyopathy resulted in organ dysfunction due to extreme pro- and anti-inflammatory effects. In this process, KLRG1, PRF1, BCL6, GAB2, MMP9, IL1R1, JAK3, IL6ST, and SERPINE1 were identified as the hub genes regulating the immune landscape of septic cardiomyopathy. Nine transcription factors regulated the expression of these genes: SRF, STAT1, SP1, RELA, PPARG, NFKB1, PPARA, SMAD3, and STAT3. The hub genes activated the Th17 cell differentiation pathway, JAK-STAT signaling pathway, and cytokine‒cytokine receptor interaction pathway. These pathways were mainly involved in regulating the inflammatory response, adaptive immune response, leukocyte-mediated immunity, cytokine-mediated immunity, immune effector processes, myeloid cell differentiation, and T-helper cell differentiation. These nine hub genes could be considered biomarkers for the early prediction of septic cardiomyopathy.
Collapse
Affiliation(s)
- Wenli Li
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Shi Hua
- Department of Neurosurgery, Linyi People's Hospital, Linyi, People's Republic of China
| | - Jianzhong Yang
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Yang Cao
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Ranran Gao
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Hu Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Kai Yang
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Ying Wang
- Medical Department, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Peng Peng
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China.
| |
Collapse
|
5
|
Hou M, Wu J, Li J, Zhang M, Yin H, Chen J, Jin Z, Dong R. Immunothrombosis: A bibliometric analysis from 2003 to 2023. Medicine (Baltimore) 2024; 103:e39566. [PMID: 39287275 PMCID: PMC11404911 DOI: 10.1097/md.0000000000039566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Immunothrombosis is a physiological process that constitutes an intravascular innate immune response. Abnormal immunothrombosis can lead to thrombotic disorders. With the outbreak of COVID-19, there is increasing attention to the mechanisms of immunothrombosis and its critical role in thrombotic events, and a growing number of relevant research papers are emerging. This article employs bibliometrics to discuss the current status, hotspots, and trends in research of this field. METHODS Research papers relevant to immunothrombosis published from January 1, 2003, to May 29, 2023, were collected from the Web of Science Core Collection database. VOSviewer and the R package "Bibliometrix" were employed to analyze publication metrics, including the number of publications, authors, countries, institutions, journals, and keywords. The analysis generated visual results, and trends in research topics and hotspots were examined. RESULTS A total of 495 target papers were identified, originating from 58 countries and involving 3287 authors from 1011 research institutions. Eighty high-frequency keywords were classified into 5 clusters. The current key research topics in the field of immunothrombosis include platelets, inflammation, neutrophil extracellular traps, Von Willebrand factor, and the complement system. Research hotspots focus on the mechanisms and manifestations of immunothrombosis in COVID-19, as well as the discovery of novel treatment strategies targeting immunothrombosis in cardiovascular and cerebrovascular diseases. CONCLUSION Bibliometric analysis summarizes the main achievements and development trends in research on immunothrombosis, offering readers a comprehensive understanding of the field and guiding future research directions.
Collapse
Affiliation(s)
- Mengyu Hou
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhu L, Zhang H, Zhang X, Xia L. RNA m6A methylation regulators in sepsis. Mol Cell Biochem 2024; 479:2165-2180. [PMID: 37659034 DOI: 10.1007/s11010-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
N6-methyladenosine (m6A) modification is a class of epitope modifications that has received significant attention in recent years, particularly in relation to its role in various diseases, including sepsis. Epigenetic research has increasingly focused on m6A modifications, which is influenced by the dynamic regulation of three protein types: ‟Writers" (such as METTL3/METTL14/WTAP)-responsible for m6A modification; ‟Erasers" (FTO and ALKBH5)-involved in m6A de-modification; and ‟Readers" (YTHDC1/2, YTHDF1/2/3)-responsible for m6A recognition. Sepsis, a severe and fatal infectious disease, has garnered attention regarding the crucial effect of m6A modifications on its development. In this review, we attempted to summarize the recent studies on the involvement of m6A and its regulators in sepsis, as well as the significance of m6A modifications and their regulators in the development of novel drugs and clinical treatment. The potential value of m6A modifications and modulators in the diagnosis, treatment, and prognosis of sepsis has also been discussed.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
7
|
Siniscalchi C, Perrella A, Trama U, Bernardi FF, Imbalzano E, Camporese G, Russo V, Scudiero O, Meschi T, Di Micco P. Bacterial Porins and Their Procoagulant Role: Implication in the Pathophysiology of Several Thrombotic Complications during Sepsis. Toxins (Basel) 2024; 16:368. [PMID: 39195778 PMCID: PMC11359280 DOI: 10.3390/toxins16080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The association between sepsis and thrombotic complications is still not well known. Different mechanisms have been shown to be involved in the sepsis-induced prothrombotic state, but clinical scenarios may differ. In this review, we have summarized the role that bacterial products such as porins and toxins can have in the induction of the prothrombotic state during sepsis and the interaction that they can have with each other. Furthermore, the above-mentioned mechanisms might be involved in the pattern of the clinical presentation of thrombotic events during bacterial sepsis, which would secondarily explain the association between sepsis and venous thromboembolism, the association between sepsis and disseminated intravascular coagulation, and the association between sepsis and microangiopathic venous thromboembolism.
Collapse
Affiliation(s)
- Carmine Siniscalchi
- Internal Medicine Unit, Department of Internal Medicine, University of Parma, 43100 Parma, Italy; (C.S.); (T.M.)
| | - Alessandro Perrella
- UOC Emerging Infectious Disease and High Contagiousness, AORN dei Colli, P.O. Cotugno, 80131 Naples, Italy;
| | - Ugo Trama
- UOD Politica del Farmaco e Dispositivi della DG per la Tutela della Salute SSR, Regione Campania, Via Santa Lucia, 80100 Napoli, Italy;
| | - Francesca Futura Bernardi
- Department of Pharmacology, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, Piazzale Ettore Ruggeri, 80131 Naples, Italy;
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| | - Giuseppe Camporese
- Department of Internal Medicine DIMED, Padua University Hospital, 35100 Padua, Italy;
| | - Vincenzo Russo
- Cardiology Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, Piazzale Ettore Ruggeri, 80131 Naples, Italy;
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, 80131 Naples, Italy;
| | - Tiziana Meschi
- Internal Medicine Unit, Department of Internal Medicine, University of Parma, 43100 Parma, Italy; (C.S.); (T.M.)
| | - Pierpaolo Di Micco
- UOC Medicina Interna, AFO Medica, P.O. Santa Maria delle Grazie, ASL Napoli 2 Nord, Pozzuoli, 80078 Naples, Italy;
| |
Collapse
|
8
|
Joosten SCM, Wiersinga WJ, Poll TVD. Dysregulation of Host-Pathogen Interactions in Sepsis: Host-Related Factors. Semin Respir Crit Care Med 2024; 45:469-478. [PMID: 38950605 DOI: 10.1055/s-0044-1787554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sepsis stands as a prominent contributor to sickness and death on a global scale. The most current consensus definition characterizes sepsis as a life-threatening organ dysfunction stemming from an imbalanced host response to infection. This definition does not capture the intricate array of immune processes at play in sepsis, marked by simultaneous states of heightened inflammation and immune suppression. This overview delves into the immune-related processes of sepsis, elaborating about mechanisms involved in hyperinflammation and immune suppression. Moreover, we discuss stratification of patients with sepsis based on their immune profiles and how this could impact future sepsis management.
Collapse
Affiliation(s)
- Sebastiaan C M Joosten
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Willem J Wiersinga
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tom van der Poll
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wang N, Shi XL, Li D, Li BB, Liu P, Luo H. Neutrophil extracellular traps - an a-list-actor in a variety of diseases. Ann Hematol 2024:10.1007/s00277-024-05915-5. [PMID: 39078437 DOI: 10.1007/s00277-024-05915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Neutrophil extracellular traps (NETs) represent a response mechanism in which activated neutrophils release DNA-based webs, adorned with histones and neutrophil proteases, to capture and eliminate invasive microorganisms. However, when these neutrophils become excessively activated, much more proteases associated with NETs are liberated into surrounding tissues or bloodstreams, thereby altering the cellular milieu and causing tissue damage. Recent research has revealed that NETs may play significant roles in the emergence and progression of various diseases, spanning from infections, inflammation to autoimmune disorders and cancers. In this review, we delve deeply into the intricate and complex mechanisms that underlie the formation of NETs and their profound interplay with various clinical pathologies. We aim to describe the application perspectives of NETs related proteins in specific disease diagnosis and treatment.
Collapse
Affiliation(s)
- Na Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, 116044, PR China
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Xiao-Lin Shi
- Department of Clinical Laboratory, Weihai Maternal and Child Health Hospital, Weihai, Shandong, 264200, PR China
| | - Dan Li
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Bin-Bin Li
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.
| | - Hong Luo
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, 116044, PR China.
| |
Collapse
|
10
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
He W, Yao C, Wang K, Duan Z, Wang S, Xie L. Single-cell landscape of immunological responses in elderly patients with sepsis. Immun Ageing 2024; 21:40. [PMID: 38909272 PMCID: PMC11193269 DOI: 10.1186/s12979-024-00446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Sepsis is a dysregulated host response to severe infections, and immune dysfunction plays a crucial role in its pathogenesis. Elderly patients, a special population influenced by immunosenescence, are more susceptible to sepsis and have a worse prognosis. However, the immunopathogenic mechanisms underlying sepsis in elderly patients remain unclear. Here, we performed single-cell RNA sequencing of peripheral blood samples from young and old subjects and patients with sepsis. By exploring the transcriptional profiles of immune cells, we analyzed immune cell compositions, phenotype shifts, expression heterogeneities, and intercellular communication. In elderly patients with sepsis, innate immune cells (e.g., monocytes and DCs) exhibit decreased antigen presentation, presenting an overactive inflammatory and senescent phenotype. However, the immunophenotype of T cells shifted to characterize effector, memory, and exhaustion. Moreover, we identified strong interferon-γ responses of T cells in both aging and sepsis groups and a deranged inflammaging status in elderly sepsis patients. Tregs in elderly patients with sepsis showed increased abundance and enhanced immunosuppressive effects. In addition, metabolism-associated pathways were upregulated in T cells in elderly patients with sepsis, and the lysine metabolism pathway was enriched in Tregs. Cell-cell interaction analysis showed that the expression profile of ligand-receptor pairs was probably associated with aggravated immune dysfunction in elderly patients with sepsis. A novel HLA-KIR interaction was observed between Tregs and CD8 + T cells. These findings illustrate the immunological hallmarks of sepsis in elderly patients, and highlight that immunosuppressive and metabolic regulatory pathways may undergo important alterations in elderly patients with sepsis.
Collapse
Affiliation(s)
- Wanxue He
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chen Yao
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kaifei Wang
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhimei Duan
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
12
|
Yaykasli KO, van Schie KA, Toes REM, Wuhrer M, Koeleman CAM, Bila G, Negrych N, Schett G, Knopf J, Herrmann M, Bilyy R. Neutrophil Depletion Changes the N-Glycosylation Pattern of IgG in Experimental Murine Sepsis. Int J Mol Sci 2024; 25:6478. [PMID: 38928183 PMCID: PMC11203722 DOI: 10.3390/ijms25126478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the exact effector mechanism of action still remains a mystery. Changes in the glycosylation pattern of the immunoglobulin G (IgG) Fc region are described for several diseases including meningococcal sepsis. In this study, we investigated the possible contribution of neutrophils and neutrophil implication, potentially related to degranulation or neutrophil extracellular trap (NET) formation in changing the IgG Fc N-glycosylation pattern in a murine sepsis model. We have measured the serum level of cytokines/chemokines and immunoglobulins, the serum activity of neutrophil elastase (NE), and analyzed the IgG Fc glycosylation pattern by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) and Lectin enzyme-linked immunosorbent assay (ELISA). We observed an increased activity of NE- and neutrophil-associated cytokines such as keratinocyte chemoattractant (KC) with the development of sepsis. Regarding the IgG Fc N-glycosylation, we observed an increase in fucosylation and α1,3-galactosylation and a decrease for sialyation. Interestingly, these changes were not uniform for all IgG subclasses. After depletion of neutrophils, we saw a change in the exposure of fucose and α2,6-linked sialic acid during the time course of our experimental sepsis model. In conclusion, neutrophils can influence changes in the IgG glycosylation pattern in experimental sepsis.
Collapse
Affiliation(s)
- Kursat O. Yaykasli
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Karin A. van Schie
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - René E. M. Toes
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Carolien A. M. Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Galyna Bila
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’, 050568 Bucharest, Romania
| | - Nazar Negrych
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’, 050568 Bucharest, Romania
| |
Collapse
|
13
|
Roychowdhury S, Pant B, Cross E, Scheraga R, Vachharajani V. Effect of ethanol exposure on innate immune response in sepsis. J Leukoc Biol 2024; 115:1029-1041. [PMID: 38066660 PMCID: PMC11136611 DOI: 10.1093/jleuko/qiad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Alcohol use disorder, reported by 1 in 8 critically ill patients, is a risk factor for death in sepsis patients. Sepsis, the leading cause of death, kills over 270,000 patients in the United States alone and remains without targeted therapy. Immune response in sepsis transitions from an early hyperinflammation to persistent inflammation and immunosuppression and multiple organ dysfunction during late sepsis. Innate immunity is the first line of defense against pathogen invasion. Ethanol exposure is known to impair innate and adaptive immune response and bacterial clearance in sepsis patients. Specifically, ethanol exposure is known to modulate every aspect of innate immune response with and without sepsis. Multiple molecular mechanisms are implicated in causing dysregulated immune response in ethanol exposure with sepsis, but targeted treatments have remained elusive. In this article, we outline the effects of ethanol exposure on various innate immune cell types in general and during sepsis.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Bishnu Pant
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Emily Cross
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Rachel Scheraga
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| |
Collapse
|
14
|
黄 嘉, 方 金, 吴 芝, 吴 建, 方 颖, 林 蒋. [Neutrophil extracellular traps extrusion from neutrophils stably adhered to ICAM-1 by lipoteichoic acid stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:304-312. [PMID: 38686411 PMCID: PMC11058506 DOI: 10.7507/1001-5515.202401062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Indexed: 05/02/2024]
Abstract
The effect of neutrophil extracellular traps (NETs) on promoting intravascular microthrombi formation and exacerbating the severity of sepsis in patients has gained extensive attention. However, in sepsis, the mechanisms and key signaling molecules mediating NET formation during direct interactions of endothelial cells and neutrophils still need further explored. Herein, we utilized lipoteichoic acid (LTA), a component shared by Gram-positive bacteria, to induce NET extrusion from neutrophils firmly adhered to the glass slides coated with intercellular adhesion molecule-1(ICAM-1). We also used Sytox green to label NET-DNA and Flou-4 AM as the intracellular Ca 2+ signaling indicator to observe the NET formation and fluctuation of Ca 2+ signaling. Our results illustrated that LTA was able to induce NET release from neutrophils firmly attached to ICAM-1-coated glass slides, and the process was time-dependent. In addition, our study indicated that LTA-induced NET release by neutrophils stably adhered to ICAM-1 depended on Ca 2+ signaling but not intracellular reactive oxygen species (ROS). This study reveals NET formation mediated by direct interactions between endothelial ICAM-1 and neutrophils under LTA stimulation and key signaling molecules involved, providing the theoretical basis for medicine development and clinical treatment for related diseases.
Collapse
Affiliation(s)
- 嘉祺 黄
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 金花 方
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 芝伟 吴
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 建华 吴
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 颖 方
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 蒋国 林
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Manda-Handzlik A, Stojkov D, Wachowska M, Surmiak M. Editorial: Neutrophil extracellular traps: mechanistic and functional insight. Front Immunol 2024; 15:1407232. [PMID: 38698859 PMCID: PMC11063356 DOI: 10.3389/fimmu.2024.1407232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Malgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
16
|
Torp MK, Stensløkken KO, Vaage J. When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness. J Intensive Care Med 2024:8850666241237715. [PMID: 38505947 DOI: 10.1177/08850666241237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.
Collapse
Affiliation(s)
- May-Kristin Torp
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research, Østfold Hospital Trust, Grålum, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Sacchetti S, Vidali M, Esposito T, Zorzi S, Burgener A, Ciccarello L, Cammarota G, Zanotti V, Giacomini L, Bellan M, Pirisi M, Lopez RS, Dianzani U, Vaschetto R, Rolla R. The Role of New Morphological Parameters Provided by the BC 6800 Plus Analyzer in the Early Diagnosis of Sepsis. Diagnostics (Basel) 2024; 14:340. [PMID: 38337856 PMCID: PMC10855753 DOI: 10.3390/diagnostics14030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Late diagnosis of sepsis is associated with adverse consequences and high mortality rate. The aim of this study was to evaluate the diagnostic value of hematologic research parameters, that reflect the cell morphology of blood cells, available on the BC 6800 plus automated analyzer (Mindray) for the early detection of sepsis. MATERIALS AND METHODS A complete blood count (CBC) was performed by Mindray BC 6800 Plus Analyzer in 327 patients (223 with a confirmed diagnosis of sepsis following sepsis-3 criteria, 104 without sepsis), admitted at the Intensive Care Unit of the Novara's Hospital (Italy) and in 56 patients with localized infection. RESULTS In univariate logistic regression, age, Hb, RDW, MO#, NMR, NeuX, NeuY, NeuZ, LymX, MonX, MonY, MonZ were associated with sepsis (p < 0.005). In multivariate analysis, only RDW, NeuX, NeuY, NeuZ, MonX and MonZ were found to be independent predictors of sepsis (p < 0.005). Morphological research parameters are confirmed to be predictors of sepsis even when analyzing the group with localized infection. CONCLUSIONS In addition to already established biomarkers and basic CBC parameters, new morphological cell parameters can be a valuable aid in the early diagnosis of sepsis at no additional cost.
Collapse
Affiliation(s)
- Sara Sacchetti
- Clinical Chemistry Laboratory, Department of Health Sciences, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (S.S.); (V.Z.); (L.G.); (U.D.); (R.R.)
| | - Matteo Vidali
- Clinical Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Teresa Esposito
- Unit of Anaesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (T.E.); (S.Z.); (A.B.); (L.C.); (G.C.); (R.V.)
| | - Stefano Zorzi
- Unit of Anaesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (T.E.); (S.Z.); (A.B.); (L.C.); (G.C.); (R.V.)
| | - Alessia Burgener
- Unit of Anaesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (T.E.); (S.Z.); (A.B.); (L.C.); (G.C.); (R.V.)
| | - Lorenzo Ciccarello
- Unit of Anaesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (T.E.); (S.Z.); (A.B.); (L.C.); (G.C.); (R.V.)
| | - Gianmaria Cammarota
- Unit of Anaesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (T.E.); (S.Z.); (A.B.); (L.C.); (G.C.); (R.V.)
| | - Valentina Zanotti
- Clinical Chemistry Laboratory, Department of Health Sciences, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (S.S.); (V.Z.); (L.G.); (U.D.); (R.R.)
| | - Luca Giacomini
- Clinical Chemistry Laboratory, Department of Health Sciences, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (S.S.); (V.Z.); (L.G.); (U.D.); (R.R.)
| | - Mattia Bellan
- Department of Translational Medicine, Division of Internal Medicine, Università del Piemonte Orientale, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (M.B.); (M.P.)
| | - Mario Pirisi
- Department of Translational Medicine, Division of Internal Medicine, Università del Piemonte Orientale, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (M.B.); (M.P.)
| | - Ramon Simon Lopez
- Medical Xpert Systems SA, Brunnenmattstrasse 6, 6317 Oberwil bei Zug, Switzerland;
| | - Umberto Dianzani
- Clinical Chemistry Laboratory, Department of Health Sciences, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (S.S.); (V.Z.); (L.G.); (U.D.); (R.R.)
| | - Rosanna Vaschetto
- Unit of Anaesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (T.E.); (S.Z.); (A.B.); (L.C.); (G.C.); (R.V.)
| | - Roberta Rolla
- Clinical Chemistry Laboratory, Department of Health Sciences, Università del Piemonte Orientale, Maggiore della Carità University Hospital, 28100 Novara, Italy; (S.S.); (V.Z.); (L.G.); (U.D.); (R.R.)
| |
Collapse
|
18
|
de Diego C, Lasierra AB, López-Vergara L, Torralba L, Ruiz de Gopegui P, Lahoz R, Abadía C, Godino J, Cebollada A, Jimeno B, Bello C, Tejada A, Bello S. What is the actual relationship between neutrophil extracellular traps and COVID-19 severity? A longitudinal study. Respir Res 2024; 25:48. [PMID: 38243237 PMCID: PMC10797938 DOI: 10.1186/s12931-023-02650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) have repeatedly been related to COVID-19 severity and mortality. However, there is no consensus on their quantification, and there are scarce data on their evolution during the disease. We studied circulating NET markers in patients with COVID-19 throughout their hospitalization. METHODS We prospectively included 93 patients (201 blood samples), evaluating the disease severity in 3 evolutionary phases (viral, early, and late inflammation). Of these, 72 had 180 samples in various phases. We also evaluated 55 controls with similar age, sex and comorbidities. We measured 4 NET markers in serum: cfDNA, CitH3, and MPO-DNA and NE-DNA complexes; as well as neutrophil-related cytokines IL-8 and G-CSF. RESULTS The COVID-19 group had higher CitH3 (28.29 vs 20.29 pg/mL, p = 0.022), and cfDNA, MPO-DNA, and NE-DNA (7.87 vs 2.56 ng/mL; 0.80 vs 0.52 and 1.04 vs 0.72, respectively, p < 0.001 for all) than the controls throughout hospitalisation. cfDNA was the only NET marker clearly related to severity, and it remained higher in non-survivors during the 3 phases. Only cfDNA was an independent risk factor for mortality and need for intensive care. Neutrophil count, IL-8, and G-CSF were significantly related to severity. MPO-DNA and NE-DNA showed significant correlations (r: 0.483, p < 0.001), including all 3 phases and across all severity grades, and they only remained significantly higher on days 10-16 of evolution in those who died. Correlations among the other NET markers were lower than expected. CONCLUSIONS The circulating biomarkers of NETs were present in patients with COVID-19 throughout hospitalization. cfDNA was associated with severity and mortality, but the three other markers showed little or no association with these outcomes. Neutrophil activity and neutrophil count were also associated with severity. MPO-DNA and NE-DNA better reflected NET formation. cfDNA appeared to be more associated with overall tissue damage; previous widespread use of this marker could have overestimated the relationship between NETs and severity. Currently, there are limitations to accurate NET markers measurement that make it difficult to assess its true role in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Cristina de Diego
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Lucía López-Vergara
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | - Laura Torralba
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Raquel Lahoz
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Claudia Abadía
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Javier Godino
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Alberto Cebollada
- Biocomputing Technical Scientific Service, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Beatriz Jimeno
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Carlota Bello
- Department of Radiology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | - Antonio Tejada
- Intensive Care Unit, Miguel Servet University Hospital, Zaragoza, Spain
| | - Salvador Bello
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain.
| |
Collapse
|
19
|
Wang L, Ma X, Chen Y, Gao S, Pan W, Chen J, Su L, He H, Long Y, Yin C, Zhou X. Factors influencing DVT formation in sepsis. Thromb J 2024; 22:11. [PMID: 38229151 DOI: 10.1186/s12959-024-00582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
INTRODUCTION Sepsis is a global public health burden. Deep vein thrombosis (DVT) is the third most common cause of death from cardiovascular disease after heart attacks and strokes. We designed this experiment to investigate the factors influencing DVT formation in patients with sepsis. METHODS In this survey, 918 septic patients admitted to Peking Union Medical College Hospital, who underwent DVT screening were enrolled. The data were collected from June 8, 2013 to October 12, 2022. The differences between septic patients with and without DVT were studied from following aspects: basic information, comorbidities, inflammatory cytokines, albumin, source of infection, sequential organ failure assessment (SOFA) score, coagulation and prognosis. MAIN RESULTS In this study, the prevalence of DVT in patients with sepsis was 0.23. Elderly patients with sepsis were prone to DVT (p value < 0.001). In terms of comorbidities, septic patients with hypertension and atrial fibrillation were prone to DVT (p value 0.045 and 0.048). Inflammatory cytokines, such as procalcitonin (PCT), C-reactive protein (CRP), interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, had no significant correlation with DVT in patients with sepsis (p value 0.364, 0.882, 0.912, 0.789, 0.245, and 0.780). Levels of serum albumin correlated with DVT in patients with sepsis (p value 0.003). The SOFA total score had no relationship with DVT formation (p value 0.254). Coagulation and respiration function were negatively correlated with DVT (p value 0.018). Liver function was positively correlated with DVT (p value 0.020). Patients in the DVT group had longer duration of mechanical ventilation and longer intensive care unit (ICU) stays (p value < 0.001 and 0.006). There was no significant difference in survival in septic patients with and without DVT (p value 0.868). CONCLUSIONS The SOFA total score had no relationship with DVT formation. The function of each organ had different effects on DVT formation. Better coagulation and respiration function, easier DVT formation. Poorer liver function, easier DVT formation. DVT was associated with longer duration of mechanical ventilation and longer ICU stays.
Collapse
Affiliation(s)
- Lu Wang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xudong Ma
- Department of Medical Administration, National Health Commission of the People's Republic of China, Beijing, 100044, China
| | - Yujie Chen
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sifa Gao
- Department of Medical Administration, National Health Commission of the People's Republic of China, Beijing, 100044, China
| | - Wei Pan
- Information Center Department, Department of Information Management, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieqing Chen
- Information Center Department, Department of Information Management, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chang Yin
- National Institute of Hospital Administration, Beijing, 100730, China.
| | - Xiang Zhou
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Information Center Department, Department of Information Management, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
20
|
Li Z, Yuan T. Neutrophil extracellular traps in adult diseases and neonatal bacterial infectious diseases: A review. Heliyon 2024; 10:e23559. [PMID: 38173520 PMCID: PMC10761809 DOI: 10.1016/j.heliyon.2023.e23559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Neutrophils, the most abundant type of white blood cells, are pivotal in fighting bacterial infections due to their immunological and anti-infection capabilities. In recent years, scientists have discovered a novel mechanism known as neutrophil extracellular traps, which are fibrous networks primarily released by neutrophils that combat bacterial infections. There is a growing interest in studying NETs and their role in human infectious diseases, particularly in neonates susceptible to bacterial infections. NETs and their components have been found in various samples from neonatal-infected patients, providing a new route for early diagnosis of neonatal infectious diseases. This paper aims to summarize the studies on NETs in adult diseases and mainly discuss NETs in neonatal sepsis, necrotizing enterocolitis, and purulent meningitis, to provide scientific evidence for early monitoring, diagnosis, and treatment of neonatal infections.
Collapse
Affiliation(s)
- Ziheng Li
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| |
Collapse
|
21
|
Islam MM, Takeyama N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int J Mol Sci 2023; 24:15805. [PMID: 37958788 PMCID: PMC10649138 DOI: 10.3390/ijms242115805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neutrophils are the principal trouper of the innate immune system. Activated neutrophils undergo a noble cell death termed NETosis and release a mesh-like structure called neutrophil extracellular traps (NETs) as a part of their defensive strategy against microbial pathogen attack. This web-like architecture includes a DNA backbone embedded with antimicrobial proteins like myeloperoxidase (MPO), neutrophil elastase (NE), histones and deploys in the entrapment and clearance of encountered pathogens. Thus NETs play an inevitable beneficial role in the host's protection. However, recent accumulated evidence shows that dysregulated and enhanced NET formation has various pathological aspects including the promotion of sepsis, pulmonary, cardiovascular, hepatic, nephrological, thrombotic, autoimmune, pregnancy, and cancer diseases, and the list is increasing gradually. In this review, we summarize the NET-mediated pathophysiology of different diseases and focus on some updated potential therapeutic approaches against NETs.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram 4202, Bangladesh
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
| |
Collapse
|
22
|
McGrouther DA. Hand infection: a management approach based on a new understanding of combined bacterial and neutrophil mediated tissue damage. J Hand Surg Eur Vol 2023; 48:838-848. [PMID: 37218740 DOI: 10.1177/17531934231174819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Concepts of tissue damage from sepsis are rooted in the works of Pasteur regarding colonization by microorganisms, and Lister's observation of avoiding suppuration by their exclusion. The reactive inflammation has been considered a beneficial defence mechanism. A more complex biology is now unfolding of pathogenic mechanisms with toxins produced by the organisms now being placed in a broad category of virulence factors. Neutrophils are key cells in providing innate immunity and their trafficking to sites of infection results in entry to the extracellular space where they attack pathogens by release of the contents of neutrophil granules and neutrophil extracellular traps. There is now considerable evidence that much of the tissue damage in infection is due to excessive host innate immunological reaction; a hyperinflammatory response, whether localized or systemic. In addition to traditional surgical methods of drainage and decompression there is now a focus on dilution of inflammatory mediators. This emerging knowledge can potentially alter the way we approach hand infections.
Collapse
|
23
|
Pleskova SN, Bezrukov NA, Gorshkova EN, Bobyk SZ, Lazarenko EV. Exploring the Process of Neutrophil Transendothelial Migration Using Scanning Ion-Conductance Microscopy. Cells 2023; 12:1806. [PMID: 37443839 PMCID: PMC10340179 DOI: 10.3390/cells12131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The dynamics of neutrophil transendothelial migration was investigated in a model of experimental septicopyemia. Scanning ion-conductance microscopy allowed us to determine changes in morphometric characteristics of endothelial cells during this process. In the presence of a pyogenic lesion simulated by Staphylococcus aureus, such migration was accompanied by both compensatory reactions and alteration of both neutrophils and endothelial cells. Neutrophils demonstrated crawling along the contact sites between endothelial cells, swarming phenomenon, as well as anergy and formation of neutrophil extracellular traps (NETs) as a normergic state. Neutrophil swarming was accompanied by an increase in the intercellular spaces between endothelial cells. Endothelial cells decreased the area of adhesion to the substrate, which was determined by a decrease in the cell projection area, and the cell membrane was smoothed. However, endothelial cell rigidity was paradoxically unchanged compared to the control. Over time, neutrophil migration led to a more significant alteration of endothelial cells: first, shallow perforations in the membrane were formed, which were repaired rather quickly, then stress fibrils were formed, and finally, endothelial cells died and multiple perforations were formed on their membrane.
Collapse
Affiliation(s)
- Svetlana N. Pleskova
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (N.A.B.); (E.N.G.); (S.Z.B.); (E.V.L.)
- Department “Nanotechnology and Biotechnology”, Nizhny Novgorod State Technical University n. a. R.E. Alekseev, 603115 Nizhny Novgorod, Russia
| | - Nikolay A. Bezrukov
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (N.A.B.); (E.N.G.); (S.Z.B.); (E.V.L.)
| | - Ekaterina N. Gorshkova
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (N.A.B.); (E.N.G.); (S.Z.B.); (E.V.L.)
| | - Sergey Z. Bobyk
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (N.A.B.); (E.N.G.); (S.Z.B.); (E.V.L.)
| | - Ekaterina V. Lazarenko
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (N.A.B.); (E.N.G.); (S.Z.B.); (E.V.L.)
| |
Collapse
|
24
|
Sato R. Mechanisms and roles of the first stage of nodule formation in lepidopteran insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 37405874 DOI: 10.1093/jisesa/iead049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Nodule formation is a process of cellular immunity in insects and other arthropods with open circulatory systems. Based on histological observations, nodule formation occurs in 2 stages. The first stage occurs immediately after microbial inoculation and includes aggregate formation by granulocytes. The second stage occurs approximately 2-6 h later and involves the attachment of plasmatocytes to melanized aggregates produced during the first stage. The first stage response is thought to play a major role in the rapid capture of invading microorganisms. However, little is known regarding how granulocytes in the hemolymph form aggregates, or how the first stage of the immunological response protects against invading microorganisms. Since the late 1990s, our understanding of the molecules and immune pathways that contribute to nodule formation has improved. The first stage of nodule formation involves a hemocyte-induced response that is triggered by pathogen-associated molecular pattern (PAMP) recognition proteins in the hemolymph regulated by a serine proteinase cascade and cytokine (Spätzle) and Toll signaling pathways. Hemocyte agglutination proceeds through stepwise release of biogenic amine, 5-HT, and eicosanoids that act downstream of the Toll pathway. The first stage of nodule formation is closely linked to melanization and antimicrobial peptide (AMP) production, which is critical for insect humoral immunity. Nodule formation in response to artificial inoculation with millions of microorganisms has long been studied. It has recently been suggested that this system is the original natural immune system, and enables insects to respond to a single invading microorganism in the hemocoel.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
25
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
26
|
Nong Y, Wei X, Yu D. Inflammatory mechanisms and intervention strategies for sepsis-induced myocardial dysfunction. Immun Inflamm Dis 2023; 11:e860. [PMID: 37249297 PMCID: PMC10187025 DOI: 10.1002/iid3.860] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is the leading cause of death in patients with sepsis in the intensive care units. The main manifestations of SIMD are systolic and diastolic dysfunctions of the myocardium. Despite our initial understanding of the SIMD over the past three decades, the incidence and mortality of SIMD remain high. This may be attributed to the large degree of heterogeneity among the initiating factors, disease processes, and host states involved in SIMD. Previously, organ dysfunction caused by sepsis was thought to be an impairment brought about by an excessive inflammatory response. However, many recent studies have shown that SIMD is a consequence of a combination of factors shaped by the inflammatory responses between the pathogen and the host. In this article, we review the mechanisms of the inflammatory responses and potential novel therapeutic strategies in SIMD.
Collapse
Affiliation(s)
- Yuxin Nong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xuebiao Wei
- Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Danqing Yu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
27
|
He W, Xi Q, Cui H, Zhang P, Huang R, Wang T, Wang D. Liang-Ge Decoction Ameliorates Coagulation Dysfunction in Cecal Ligation and Puncture-Induced Sepsis Model Rats through Inhibiting PAD4-Dependent Neutrophil Extracellular Trap Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5042953. [PMID: 37159591 PMCID: PMC10163969 DOI: 10.1155/2023/5042953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 05/11/2023]
Abstract
Liang-Ge (LG) decoction could ameliorate coagulation dysfunction in septic model rats. However, the mechanism of LG in treating sepsis still needs to be clarified. Our current study established a septic rat model to evaluate the effect of LG on coagulation dysfunction in septic rats first. Second, we investigated the effect of LG on NET formation in septic rats. Finally, NETs and PAD4 inhibitors were further used to clarify if LG could improve the mechanism of sepsis coagulation dysfunction by inhibiting NET formation. Our findings indicated that treatment with LG improved the survival rate, reduced inflammatory factor levels, enhanced hepatic and renal function, and reduced pathological changes in rats with sepsis. LG could also alleviate coagulation dysfunction in septic model rats. Besides, LG treatment reduced NETs formation and decreased PAD4 expression in neutrophiles. In addition, LG treatment showed a similar result in comparison to the treatment with either NET inhibitors or PAD4 inhibitors alone. In conclusion, this study confirmed that LG has therapeutic effects on septic rats. Furthermore, the improvement of coagulation dysfunction in septic rats by LG was achieved through inhibiting PAD4-mediated NET formation.
Collapse
Affiliation(s)
- Wenju He
- Department of Integration of Traditional Chinese and Western Medicine, First Central Hospital Affiliated to Nankai University, Tianjin First Central Hospital, Tianjin, China
| | - Qiang Xi
- Department of Practice and Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Pingping Zhang
- Department of Integration of Traditional Chinese and Western Medicine, First Central Hospital Affiliated to Nankai University, Tianjin First Central Hospital, Tianjin, China
| | - Rui Huang
- Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Taihuan Wang
- Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongqiang Wang
- Department of Integration of Traditional Chinese and Western Medicine, First Central Hospital Affiliated to Nankai University, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
28
|
Maneta E, Aivalioti E, Tual-Chalot S, Emini Veseli B, Gatsiou A, Stamatelopoulos K, Stellos K. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol 2023; 14:1144229. [PMID: 37081895 PMCID: PMC10110956 DOI: 10.3389/fimmu.2023.1144229] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Sepsis is a life-threatening clinical syndrome characterized by multiorgan dysfunction caused by a dysregulated or over-reactive host response to infection. During sepsis, the coagulation cascade is triggered by activated cells of the innate immune system, such as neutrophils and monocytes, resulting in clot formation mainly in the microcirculation, a process known as immunothrombosis. Although this process aims to protect the host through inhibition of the pathogen’s dissemination and survival, endothelial dysfunction and microthrombotic complications can rapidly lead to multiple organ dysfunction. The development of treatments targeting endothelial innate immune responses and immunothrombosis could be of great significance for reducing morbidity and mortality in patients with sepsis. Medications modifying cell-specific immune responses or inhibiting platelet–endothelial interaction or platelet activation have been proposed. Herein, we discuss the underlying mechanisms of organ-specific endothelial dysfunction and immunothrombosis in sepsis and its complications, while highlighting the recent advances in the development of new therapeutic approaches aiming at improving the short- or long-term prognosis in sepsis.
Collapse
Affiliation(s)
- Eleni Maneta
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
- *Correspondence: Eleni Maneta, ; Konstantinos Stellos, ;
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Besa Emini Veseli
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Eleni Maneta, ; Konstantinos Stellos, ;
| |
Collapse
|
29
|
Hogwood J, Gray E, Mulloy B. Heparin, Heparan Sulphate and Sepsis: Potential New Options for Treatment. Pharmaceuticals (Basel) 2023; 16:271. [PMID: 37259415 PMCID: PMC9959362 DOI: 10.3390/ph16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 08/31/2023] Open
Abstract
Sepsis is a life-threatening hyperreaction to infection in which excessive inflammatory and immune responses cause damage to host tissues and organs. The glycosaminoglycan heparan sulphate (HS) is a major component of the cell surface glycocalyx. Cell surface HS modulates several of the mechanisms involved in sepsis such as pathogen interactions with the host cell and neutrophil recruitment and is a target for the pro-inflammatory enzyme heparanase. Heparin, a close structural relative of HS, is used in medicine as a powerful anticoagulant and antithrombotic. Many studies have shown that heparin can influence the course of sepsis-related processes as a result of its structural similarity to HS, including its strong negative charge. The anticoagulant activity of heparin, however, limits its potential in treatment of inflammatory conditions by introducing the risk of bleeding and other adverse side-effects. As the anticoagulant potency of heparin is largely determined by a single well-defined structural feature, it has been possible to develop heparin derivatives and mimetic compounds with reduced anticoagulant activity. Such heparin mimetics may have potential for use as therapeutic agents in the context of sepsis.
Collapse
Affiliation(s)
- John Hogwood
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms EN6 3QG, UK
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| |
Collapse
|
30
|
Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, Miao C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med 2023; 13:e1170. [PMID: 36629024 PMCID: PMC9832433 DOI: 10.1002/ctm2.1170] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Sepsis is a persistent systemic inflammatory condition involving multiple organ failures resulting from a dysregulated immune response to infection, and one of the hallmarks of sepsis is endothelial dysfunction. During its progression, neutrophils are the first line of innate immune defence against infection. Aside from traditional mechanisms, such as phagocytosis or the release of inflammatory cytokines, reactive oxygen species and other antibacterial substances, activated neutrophils also release web-like structures composed of tangled decondensed DNA, histone, myeloperoxidase and other granules called neutrophil extracellular traps (NETs), which can efficiently ensnare bacteria in the circulation. In contrast, excessive neutrophil activation and NET release may induce endothelial cells to shift toward a pro-inflammatory and pro-coagulant phenotype. Furthermore, neutrophils and NETs can degrade glycocalyx on the endothelial cell surface and increase endothelium permeability. Consequently, the endothelial barrier collapses, contributing to impaired microcirculatory blood flow, tissue hypoperfusion and life-threatening organ failure in the late phase of sepsis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Yanghanzhao Wang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Mengdi Qu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Wenqian Li
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
| | - Dan Wu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative MedicineThe University of Texas‐MD Anderson Cancer CenterHoustonTexasUSA
- Anesthesiology and Surgical Oncology Research GroupHoustonTexasUSA
| | - Changhong Miao
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| |
Collapse
|
31
|
Role of neutrophil extracellular traps in inflammatory evolution in severe acute pancreatitis. Chin Med J (Engl) 2022; 135:2773-2784. [PMID: 36729096 PMCID: PMC9945416 DOI: 10.1097/cm9.0000000000002359] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
ABSTRACT Severe acute pancreatitis (SAP) is a life-threatening acute abdominal disease with two peaks of death: the first in the early stage, characterized by systemic inflammatory response-associated organ failure; and the second in the late stage, characterized by infectious complications. Neutrophils are the main immune cells participating in the whole process of SAP. In addition to the traditional recognition of neutrophils as the origination of chemokine and cytokine cascades or phagocytosis and degranulation of pathogens, neutrophil extracellular traps (NETs) also play an important roles in inflammatory reactions. We reviewed the role of NETs in the occurrence and development of SAP and its fatal complications, including multiple organs injury, infected pancreatic necrosis, and thrombosis. This review provides novel insights into the involvement of NETs throughout the entire process of SAP, showing that targeting NETs might be a promising strategy in SAP treatment. However, precision therapeutic options targeting NETs in different situations require further investigation.
Collapse
|
32
|
Wan Y, Shen J, Ouyang J, Dong P, Hong Y, Liang L, Liu J. Bibliometric and visual analysis of neutrophil extracellular traps from 2004 to 2022. Front Immunol 2022; 13:1025861. [PMID: 36341351 PMCID: PMC9634160 DOI: 10.3389/fimmu.2022.1025861] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/27/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs) are specialized structures formed by neutrophils that were initially found to be important in killing pathogenic bacteria during infection. With the development of related research, the relationship between NETs and diseases such as sepsis, cancer, and systemic lupus erythematosus has received close attention. However, there is a lack of reports that comprehensively and objectively present the current status of NETs-related studies. Therefore, this study aims to visually analyze the current status and trends of NETs-related research by means of bibliometrics and knowledge mapping. Methods NETs-related articles and reviews were retrieved using the Web of Science core collection subject search, and bibliometric analysis was performed in Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 4866 publications from 2004 to 2022 were included in the bibliometric analysis. The number of publications shows an increasing trend from year to year. Collaborative network analysis shows that the United States and Germany are the most influential countries in this field, with the highest number of publications and citations. The journal with the most publications is Frontiers in Immunology. Brinkmann Volker is an authoritative author in this field, and his publication "Neutrophil extracellular traps kill bacteria" is the most frequently cited. The literature and keyword analysis shows that the relationship between NETs and diseases (hematological diseases, sepsis, cancer, etc.) and cell death (apoptosis, necroptosis, pyroptosis, etc.) is a popular research topic. Currently, NETs and SARS-CoV-2-related studies are at the forefront of the field. Conclusion This study is the first to visualize the research in NETs-related fields using bibliometric methods, revealing the trends and frontiers of NETs research. This study will provide valuable references for scholars to find research focus questions and partners.
Collapse
Affiliation(s)
- Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jiafu Ouyang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lixin Liang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Jinghua Liu,
| |
Collapse
|
33
|
The Controversial Role of LPS in Platelet Activation In Vitro. Int J Mol Sci 2022; 23:ijms231810900. [PMID: 36142813 PMCID: PMC9505944 DOI: 10.3390/ijms231810900] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Circulating platelets are responsible for hemostasis and thrombosis but are also primary sensors of pathogens and are involved in innate immunity, inflammation, and sepsis. Sepsis is commonly caused by an exaggerated immune response to bacterial, viral, and fungal infections, and leads to severe thrombotic complications. Among others, the endotoxin lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria is the most common trigger of sepsis. Since the discovery of the expression of the LPS receptor TLR4 in platelets, several studies have investigated the ability of LPS to induce platelet activation and to contribute to a prothrombotic phenotype, per se or in combination with plasma proteins and platelet agonists. This issue, however, is still controversial, as different sources, purity, and concentrations of LPS, different platelet-purification protocols, and different methods of analysis have been used in the past two decades, giving contradictory results. This review summarizes and critically analyzes past and recent publications about LPS-induced platelet activation in vitro. A methodological section illustrates the principal platelet preparation protocols and significant differences. The ability of various sources of LPS to elicit platelet activation in terms of aggregation, granule secretion, cytokine release, ROS production, and interaction with leukocytes and NET formation is discussed.
Collapse
|
34
|
Lian H, Zhang H, Ding X, Wang X. The importance of a sepsis layered early warning system for critical patients. Am J Transl Res 2022; 14:5229-5242. [PMID: 36105025 PMCID: PMC9452367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Critical illness, particularly sepsis, is associated with high mortality, so prevention is more important than effective therapy. Advances in medical science have provided more opportunities for early warning and early intervention to avoid the development of critical illness. Existing early warning systems (EWS) have the advantages of high efficiency and convenience. However, with the development of medical technology, they do not completely meet clinical needs. EWS should contain elements that meet many dimensions of clinical requirements, including risk warning, response warning, injury warning, critical warning, and death warning. By summarizing previous studies, we outlined a layered EWS that follows RISK bundles. RISK represents different warning sign categories: R: host response, I: organ injury, S: changes in vital signs, and K: gradual appearance of "killed" organs. We plan to construct a complete layered EWS to guide clinical activities and subsequent clinical studies in the near future.
Collapse
Affiliation(s)
- Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, P. R. China
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, P. R. China
| | - Xin Ding
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, P. R. China
| | - Xiaoting Wang
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, P. R. China
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, P. R. China
| |
Collapse
|
35
|
Gasdermin D-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis. NATURE CARDIOVASCULAR RESEARCH 2022; 1:732-747. [PMID: 35967457 PMCID: PMC9362711 DOI: 10.1038/s44161-022-00108-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 12/20/2022]
|
36
|
Beyer D, Hoff J, Sommerfeld O, Zipprich A, Gaßler N, Press AT. The liver in sepsis: molecular mechanism of liver failure and their potential for clinical translation. Mol Med 2022; 28:84. [PMID: 35907792 PMCID: PMC9338540 DOI: 10.1186/s10020-022-00510-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
Liver failure is a life-threatening complication of infections restricting the host's response to infection. The pivotal role of the liver in metabolic, synthetic, and immunological pathways enforces limits the host's ability to control the immune response appropriately, making it vulnerable to ineffective pathogen resistance and tissue damage. Deregulated networks of liver diseases are gradually uncovered by high-throughput, single-cell resolved OMICS technologies visualizing an astonishing diversity of cell types and regulatory interaction driving tolerogenic signaling in health and inflammation in disease. Therefore, this review elucidates the effects of the dysregulated host response on the liver, consequences for the immune response, and possible avenues for personalized therapeutics.
Collapse
Affiliation(s)
- Dustin Beyer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany
| | - Oliver Sommerfeld
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Nikolaus Gaßler
- Pathology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany. .,Medical Faculty, Friedrich-Schiller-University Jena, Kastanienstr. 1, 07747, Jena, Germany.
| |
Collapse
|
37
|
Sharma A, Chauhan A, Chauhan P, Evans DL, Szlabick RE, Aaland MO, Mishra BB, Sharma J. Glycolipid Metabolite β-Glucosylceramide Is a Neutrophil Extracellular Trap-Inducing Ligand of Mincle Released during Bacterial Infection and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:391-400. [PMID: 35768151 PMCID: PMC9347214 DOI: 10.4049/jimmunol.2100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Neutrophil extracellular traps (NETs) are implicated in host defense and inflammatory pathologies alike. A wide range of pathogen- and host-derived factors are known to induce NETs, yet the knowledge about specific receptor-ligand interactions in this response is limited. We previously reported that macrophage-inducible C-type lectin (Mincle) regulates NET formation. In this article, we identify glycosphingolipid β-glucosylceramide (β-GlcCer) as a specific NET-inducing ligand of Mincle. We found that purified β-GlcCer induced NETs in mouse primary neutrophils in vitro and in vivo, and this effect was abrogated in Mincle deficiency. Cell-free β-GlcCer accumulated in the lungs of pneumonic mice, which correlated with pulmonary NET formation in wild-type, but not in Mincle-/-, mice infected intranasally with Klebsiella pneumoniae Although leukocyte infiltration by β-GlcCer administration in vivo did not require Mincle, NETs induced by this sphingolipid were important for bacterial clearance during Klebsiella infection. Mechanistically, β-GlcCer did not activate reactive oxygen species formation in neutrophils but required autophagy and glycolysis for NET formation, because ATG4 inhibitor NSC185058, as well as glycolysis inhibitor 2-deoxy-d-glucose, abrogated β-GlcCer-induced NETs. Forced autophagy activation by tamoxifen could overcome the inhibitory effect of glycolysis blockage on β-GlcCer-mediated NET formation, suggesting that autophagy activation is sufficient to induce NETs in response to this metabolite in the absence of glycolysis. Finally, β-GlcCer accumulated in the plasma of patients with systemic inflammatory response syndrome, and its levels correlated with the extent of systemic NET formation in these patients. Overall, our results posit β-GlcCer as a potent NET-inducing ligand of Mincle with diagnostic and therapeutic potential in inflammatory disease settings.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| | - Arun Chauhan
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| | - Pooja Chauhan
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| | - Dustin L Evans
- Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND
| | - Randolph E Szlabick
- Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND
| | - Mary O Aaland
- Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND
| | - Bibhuti B Mishra
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| | - Jyotika Sharma
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| |
Collapse
|
38
|
Galli E, Maggio E, Pomero F. Venous Thromboembolism in Sepsis: From Bench to Bedside. Biomedicines 2022; 10:biomedicines10071651. [PMID: 35884956 PMCID: PMC9313423 DOI: 10.3390/biomedicines10071651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Septic patients were commonly affected by coagulation disorders; thus, they are at high risk of thrombotic complications. In the last decades, novel knowledge has emerged about the interconnected and reciprocal influence of immune and coagulation systems. This phenomenon is called immunothrombosis, and it indicates an effective response whereby immune cells and the coagulation cascade cooperate to limit pathogen invasion and endothelial damage. When this network becomes dysregulated due to a systemic inflammatory activation, as occurs during sepsis, it can result in pathological thrombosis. Endothelium, platelets and neutrophils are the main characters involved in this process, together with the TF and coagulation cascade, playing a critical role in both the host defense and in thrombogenesis. A deeper understanding of this relationship may allow us to answer the growing need for clinical instruments to establish the thrombotic risk and treatments that consider more the connection between coagulation and inflammation. Heparin remains the principal therapeutical response to this phenomenon, although not sufficiently effective. To date, no other significant alternatives have been found yet. In this review, we discuss the role of sepsis-related inflammation in the development and resolution of venous thromboembolism and its clinical implications, from bench to bedside.
Collapse
Affiliation(s)
- Eleonora Galli
- Internal Medicine Residency Program, University of Turin, 10100 Turin, TO, Italy;
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
| | - Elena Maggio
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
| | - Fulvio Pomero
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
- Correspondence: ; Tel.: +39-01721408100
| |
Collapse
|
39
|
Gu J, Ran X, Deng J, Zhang A, Peng G, Du J, Wen D, Jiang B, Xia F. Glycyrrhizin alleviates sepsis-induced acute respiratory distress syndrome via suppressing of HMGB1/TLR9 pathways and neutrophils extracellular traps formation. Int Immunopharmacol 2022; 108:108730. [DOI: 10.1016/j.intimp.2022.108730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
|
40
|
Endothelial Dysfunction Induced by Extracellular Neutrophil Traps Plays Important Role in the Occurrence and Treatment of Extracellular Neutrophil Traps-Related Disease. Int J Mol Sci 2022; 23:ijms23105626. [PMID: 35628437 PMCID: PMC9147606 DOI: 10.3390/ijms23105626] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major focus of tissue damage, which is highly related to many inflammatory diseases. Therefore, this review summarizes the latest advances in the primary and secondary mechanisms between NETs and ED regarding inflammation as a mediator. Moreover, the detailed molecular mechanisms with emphasis on the disadvantages from NETs are elaborated: NETs can use its own enzymes, release particles as damage-associated molecular patterns (DAMPs) and activate the complement system to interact with endothelial cells (ECs), drive ECs damage and eventually aggravate inflammation. In view of the role of NETs-induced ED in different diseases, we also discussed possible molecular mechanisms and the treatments of NETs-related diseases.
Collapse
|
41
|
Murao A, Kato T, Yamane T, Honda G, Eguchi Y. Benefit Profile of Thrombomodulin Alfa Combined with Antithrombin Concentrate in Patients with Sepsis-Induced Disseminated Intravascular Coagulation. Clin Appl Thromb Hemost 2022; 28:10760296221077096. [PMID: 35166576 PMCID: PMC8851499 DOI: 10.1177/10760296221077096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Thrombomodulin alfa (TM-α, recombinant human soluble thrombomodulin) and antithrombin (AT) concentrate are anticoagulant agents for the treatment of disseminated intravascular coagulation (DIC). A post hoc analysis using data from 1198 patients with infection-induced DIC from the post-marketing surveillance of TM-α was conducted. To identify subgroups that benefit from combination therapy, the patients were a priori stratified into four groups by a platelet (Plt) count of 50 × 103/μL and plasma AT level of 50% (groups 1, 2, 3, and 4, with high Plt/high AT, high Plt/low AT, low Plt/high AT, and low Plt/low AT, respectively). Kaplan-Meier survival analysis showed significantly worse survival in groups 2 and 4 had than in group 1 (p = 0.0480, p < 0.0001, respectively), and multivariate analysis showed that concomitant AT concentrate was independently correlated with reduced 28-day mortality only in group 4 (hazard ratio 0.6193; 95% confidence interval, 0.3912-0.9805). The adverse drug reactions (ADRs) and bleeding ADRs were not different among the groups. Patients with both severe thrombocytopenia and AT deficiency are candidates for combined anticoagulant therapy with TM-α and AT concentrate.
Collapse
Affiliation(s)
- Atsushi Murao
- Division of Emergency and Intensive Care Unit, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan
| | - Takayuki Kato
- Division of Emergency and Intensive Care Unit, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan
| | - Tetsunobu Yamane
- Division of Emergency and Intensive Care Unit, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan
| | - Goichi Honda
- Medical Affairs Division, Asahi Kasei Pharma Corporation, Yurakucho, Chiyoda-ku, Tokyo, Japan
| | - Yutaka Eguchi
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, Japan
| |
Collapse
|
42
|
Telerman A, Granot G, Leibovitch C, Yarchovsky-Dolberg O, Shacham-Abulafia A, Partouche S, Yeshurun M, Ellis MH, Raanani P, Wolach O. Neutrophil Extracellular Traps Are Increased in Chronic Myeloid Leukemia and Are Differentially Affected by Tyrosine Kinase Inhibitors. Cancers (Basel) 2021; 14:cancers14010119. [PMID: 35008283 PMCID: PMC8750902 DOI: 10.3390/cancers14010119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neutrophil extracellular traps (NETs) are a recently described form of neutrophil cellular death that has been associated with a thrombotic tendency in many diseases. We studied NET formation in neutrophils derived from patients with chronic myeloid leukemia (CML) and in CML neutrophil cell lines and demonstrated that NETs are increased in CML and that certain drugs used to treat CML (tyrosine kinase inhibitors—TKIs) increase NET formation. These findings may shed light on a novel mechanism linking CML, TKIs and vascular toxicity. Abstract Cardiovascular complications are increasingly reported with the use of certain tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML). We studied neutrophil extracellular trap (NET) formation in CML and evaluated the effect of TKIs on NET formation. Neutrophils isolated from treatment-naïve patients with CML showed a significant increase in NET formation compared to matched controls at baseline and after stimulation with ionomycin (IO) and phorbol 12-myristate 13-acetate (PMA). Expression of citrullinated histone H3 (H3cit), peptidyl arginine deiminase 4 (PAD4) and reactive oxygen species (ROS) was significantly higher in CML samples compared to controls. Pre-treatment of neutrophils with TKIs was associated with a differential effect on NET formation, and ponatinib significantly augmented NET-associated elastase and ROS levels as compared to controls and other TKIs. BCR-ABL1 retroviral transduced HoxB8-immortalized mouse hematopoietic progenitors, which differentiate into neutrophils in-vitro, demonstrated increased H3cit & myeloperoxidase (MPO) expression consistent with excess NET formation. This was inhibited by Cl-amidine, a PAD4 inhibitor, but not by the NADPH inhibitor diphenyleneiodonium (DPI). Ponatinib pre-exposure significantly increased H3cit expression in HoxB8-BCR-ABL1 cells after stimulation with IO. In summary, CML is associated with increased NET formation, which is augmented by ponatinib, suggesting a possible role for NETs in promoting vascular toxicity in CML.
Collapse
Affiliation(s)
- Alona Telerman
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva 4941492, Israel; (A.T.); (G.G.); (S.P.)
| | - Galit Granot
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva 4941492, Israel; (A.T.); (G.G.); (S.P.)
| | - Chiya Leibovitch
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Osnat Yarchovsky-Dolberg
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar Saba 4428164, Israel
| | - Adi Shacham-Abulafia
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Shirly Partouche
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva 4941492, Israel; (A.T.); (G.G.); (S.P.)
| | - Moshe Yeshurun
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Martin H. Ellis
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar Saba 4428164, Israel
| | - Pia Raanani
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Ofir Wolach
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
- Correspondence: ; Tel.: +972-50-406-5590
| |
Collapse
|
43
|
Zhou Y, Tao W, Shen F, Du W, Xu Z, Liu Z. The Emerging Role of Neutrophil Extracellular Traps in Arterial, Venous and Cancer-Associated Thrombosis. Front Cardiovasc Med 2021; 8:786387. [PMID: 34926629 PMCID: PMC8674622 DOI: 10.3389/fcvm.2021.786387] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.
Collapse
Affiliation(s)
- Yilu Zhou
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weimin Tao
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuyi Shen
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weijia Du
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Xu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqiang Liu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
44
|
Neutrophil-Derived Extracellular Vesicles Activate Platelets after Pneumolysin Exposure. Cells 2021; 10:cells10123581. [PMID: 34944089 PMCID: PMC8700313 DOI: 10.3390/cells10123581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin of Streptococcus pneumoniae that contributes substantially to the inflammatory processes underlying pneumococcal pneumonia and lung injury. Host responses against S. pneumoniae are regulated in part by neutrophils and platelets, both individually and in cooperative interaction. Previous studies have shown that PLY can target both neutrophils and platelets, however, the mechanisms by which PLY directly affects these cells and alters their interactions are not completely understood. In this study, we characterize the effects of PLY on neutrophils and platelets and explore the mechanisms by which PLY may induce neutrophil–platelet interactions. In vitro studies demonstrated that PLY causes the formation of neutrophil extracellular traps (NETs) and the release of extracellular vesicles (EVs) from both human and murine neutrophils. In vivo, neutrophil EV (nEV) levels were increased in mice infected with S. pneumoniae. In platelets, treatment with PLY induced the cell surface expression of P-selectin (CD62P) and binding to annexin V and caused a significant release of platelet EVs (pl-EVs). Moreover, PLY-induced nEVs but not NETs promoted platelet activation. The pretreatment of nEVs with proteinase K inhibited platelet activation, indicating that the surface proteins of nEVs play a role in this process. Our findings demonstrate that PLY activates neutrophils and platelets to release EVs and support an important role for neutrophil EVs in modulating platelet functions in pneumococcal infections.
Collapse
|
45
|
Yen CC, Wang CK, Chaou CH, Chen SY, Lin JP, Ng CJ. Anticoagulant Therapy Is Associated With Decreased Long-Term Mortality in Splenic Infarction Patients: A Multicenter Study. Front Med (Lausanne) 2021; 8:778198. [PMID: 34912831 PMCID: PMC8666632 DOI: 10.3389/fmed.2021.778198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Patients with splenic infarction (SI) are associated with a prothrombotic state and are vulnerable to subsequent thromboembolic complications. However, due to its rarity, there is no established treatment modality in this population. We aimed to examine the effect of anticoagulant therapy in SI patients. Methods: We performed a multicenter retrospective cohort study of 86 SI patients. Patients were categorized as anticoagulant users and anticoagulant non-users. The associations between anticoagulant therapy, all-cause mortality, thromboembolic events and bleeding events were evaluated. Results: Forty-five patients (52.3%) received anticoagulant therapy during the follow-up periods. The all-cause mortality rate was 6.86 per 100 patient-years. Anticoagulant therapy was associated with 94% improved survival (HR = 0.06; Cl 0.007–0.48; p = 0.008), while the risk factors for all-cause mortality were prior stroke (HR = 13.15; Cl 2.39–72.27; p = 0.003) and liver cirrhosis (HR = 8.71; Cl 1.29–59.01; p = 0.027). Patients with anticoagulant therapy had a higher event-free survival curve for thromboembolic complications (p = 0.03) but did not achieve a significant difference after adjustment using the Cox regression model as a time-dependent covariate (HR = 0.57; Cl 0.13–2.45; p = 0.446). There was no significant difference in the risk of bleeding events between the groups (p = 0.728). Conclusions: Anticoagulant therapy in patients with SI was associated with better survival and was not related to an increased bleeding risk.
Collapse
Affiliation(s)
- Chieh-Ching Yen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chih-Kai Wang
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Hsien Chaou
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Medical Education Research Center, Taoyuan, Taiwan
| | - Shou-Yen Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Medical Education Research Center, Taoyuan, Taiwan
| | - Jhe-Ping Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chip-Jin Ng
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
46
|
Mao JY, Zhang JH, Cheng W, Chen JW, Cui N. Effects of Neutrophil Extracellular Traps in Patients With Septic Coagulopathy and Their Interaction With Autophagy. Front Immunol 2021; 12:757041. [PMID: 34707618 PMCID: PMC8542927 DOI: 10.3389/fimmu.2021.757041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) act as a critical trigger of inflammation and coagulation. We hypothesized that NETs are associated with septic hypercoagulability. Materials and Methods In total, 82 patients admitted with sepsis in the Department of Critical Care Medicine of Peking Union Medical College Hospital were enrolled between February 2017 and April 2018. Clinical and hematological parameters and thrombotic or hemorrhagic events were recorded. Blood samples were obtained to assess biomarkers of NET formation, including neutrophil elastase 2 (ELA2) and citrullinated histone H3, and endothelial-derived biomarker syndecan-1. Autophagy levels and their regulation pathway were also examined to explore their interaction with NETs. Result Sepsis patients with disseminated intravascular coagulation (DIC) showed significantly higher levels of NET formation [ELA2, 1,247 (86–625) vs. 2,039 (1,544–2,534), p < 0.0001; H3, 140 (47–233) vs. 307 (199–415), p < 0.0001]. NET formation was independently associated with DIC risk [ELA2, OR 1.0028, 95% CI, 1.0010–1.0045; H3, OR 1.0104, 95% CI, 1.0032–1.0176] and mortality [ELA2, HR 1.0014, 95% CI, 1.0004–1.0024; H3, HR 1.0056, 95% CI, 1.0008–1.0115]. The area under the curve value for ELA2 in predicting DIC occurrence was 0.902 (95% CI, 0.816–0.957), and that of H3 was 0.870 (95% CI, 0.778–0.934). Furthermore, biomarkers of NET formation, endothelial cells, and autophagy exhibited a significant correlation [ELA2 and Syn (r = 0.5985, p < 0.0001), LC3B (r = −0.4224, p < 0.0001); H3 and Syn (r = 0.6383, p < 0.0001), LC3B (r = −0.3005, p = 0.0061)]. Conclusion Increased NET formation is significantly associated with sepsis-induced DIC incidence and mortality in sepsis patients, revealing a significant relationship with the autophagy pathway. Clinical Trial Registration chictr.org.cn, identifier ChiCTR-ROC-17010750.
Collapse
Affiliation(s)
- Jia-Yu Mao
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jia-Hui Zhang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Cheng
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jian-Wei Chen
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Lamponi S. Bioactive Natural Compounds with Antiplatelet and Anticoagulant Activity and Their Potential Role in the Treatment of Thrombotic Disorders. Life (Basel) 2021; 11:1095. [PMID: 34685464 PMCID: PMC8540276 DOI: 10.3390/life11101095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Natural anticoagulant drugs can be obtained from plants, rich in secondary bioactive metabolites which, in addition to being effective antioxidants, also possess anticoagulant and antiplatelet properties and, for this reason, can be excellent candidates for the treatment of thrombotic diseases. This review reports an overview of the hemostatic process and thrombotic disorders together with data on plants, more and less common from around the world, containing bioactive compounds characterized by antiplatelet and anticoagulant activity. The reported literature was obtained from Medline, PubMed, Elsevier, Web of Science, Google Scholar considering only articles in the English language, published in peer-reviewed journals. The number of citations of the articles and the impact factor of the journals were other parameters used to select the scientific papers to be included in the review. The analysis of the literature data selected demonstrates that many plants' bioactive compounds show antiplatelet and anticoagulant activity that make them potential candidates to be used as new natural compounds able to interfere with both primary and secondary hemostasis. Moreover, they could be used together with anticoagulants currently administered in clinical practice to increase their efficacy and to reduce complications in the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Stefania Lamponi
- Department of Biotechnologies, Chemistry and Pharmacy and SienabioACTIVE, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
48
|
Kaiser R, Leunig A, Pekayvaz K, Popp O, Joppich M, Polewka V, Escaig R, Anjum A, Hoffknecht ML, Gold C, Brambs S, Engel A, Stockhausen S, Knottenberg V, Titova A, Haji M, Scherer C, Muenchhoff M, Hellmuth JC, Saar K, Schubert B, Hilgendorff A, Schulz C, Kääb S, Zimmer R, Hübner N, Massberg S, Mertins P, Nicolai L, Stark K. Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight 2021; 6:e150862. [PMID: 34403366 PMCID: PMC8492337 DOI: 10.1172/jci.insight.150862] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils provide a critical line of defense in immune responses to various pathogens, inflicting self-damage upon transition to a hyperactivated, procoagulant state. Recent work has highlighted proinflammatory neutrophil phenotypes contributing to lung injury and acute respiratory distress syndrome (ARDS) in patients with coronavirus disease 2019 (COVID-19). Here, we use state-of-the art mass spectrometry-based proteomics and transcriptomic and correlative analyses as well as functional in vitro and in vivo studies to dissect how neutrophils contribute to the progression to severe COVID-19. We identify a reinforcing loop of both systemic and neutrophil intrinsic IL-8 (CXCL8/IL-8) dysregulation, which initiates and perpetuates neutrophil-driven immunopathology. This positive feedback loop of systemic and neutrophil autocrine IL-8 production leads to an activated, prothrombotic neutrophil phenotype characterized by degranulation and neutrophil extracellular trap (NET) formation. In severe COVID-19, neutrophils directly initiate the coagulation and complement cascade, highlighting a link to the immunothrombotic state observed in these patients. Targeting the IL-8-CXCR-1/-2 axis interferes with this vicious cycle and attenuates neutrophil activation, degranulation, NETosis, and IL-8 release. Finally, we show that blocking IL-8-like signaling reduces severe acute respiratory distress syndrome of coronavirus 2 (SARS-CoV-2) spike protein-induced, human ACE2-dependent pulmonary microthrombosis in mice. In summary, our data provide comprehensive insights into the activation mechanisms of neutrophils in COVID-19 and uncover a self-sustaining neutrophil-IL-8 axis as a promising therapeutic target in severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rainer Kaiser
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alexander Leunig
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
| | - Markus Joppich
- Department of Informatics, Ludwig-Maximilians University Munich, Munich, Germany
| | - Vivien Polewka
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Raphael Escaig
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Afra Anjum
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Marie-Louise Hoffknecht
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Christoph Gold
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Sophia Brambs
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Anouk Engel
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Sven Stockhausen
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Viktoria Knottenberg
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Anna Titova
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
| | - Mohamed Haji
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
| | - Clemens Scherer
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Max von Pettenkofer Institute and GeneCenter, Virology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Johannes C. Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Medical Clinic and Polyclinic III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Kathrin Saar
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
| | - Benjamin Schubert
- Institute of Computational Biology, Helmholtz Zentrum München (German Research Center for Environmental Health), Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
- The COMBAT C19IR study group is detailed in the Acknowledgments
| | - Anne Hilgendorff
- The COMBAT C19IR study group is detailed in the Acknowledgments
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Germany
- Center for Comprehensive Developmental Care at the interdisciplinary Social Pediatric Center, Haunersches Children’s Hospital, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilians University Munich, Munich, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- DZHK, partner site Berlin, Berlin, Germany
| | - Leo Nicolai
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Konstantin Stark
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
49
|
Moriyama K, Nishida O. Targeting Cytokines, Pathogen-Associated Molecular Patterns, and Damage-Associated Molecular Patterns in Sepsis via Blood Purification. Int J Mol Sci 2021; 22:8882. [PMID: 34445610 PMCID: PMC8396222 DOI: 10.3390/ijms22168882] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Sepsis is characterized by a dysregulated immune response to infections that causes life-threatening organ dysfunction and even death. When infections occur, bacterial cell wall components (endotoxin or lipopolysaccharide), known as pathogen-associated molecular patterns, bind to pattern recognition receptors, such as toll-like receptors, to initiate an inflammatory response for pathogen elimination. However, strong activation of the immune system leads to cellular dysfunction and ultimately organ failure. Damage-associated molecular patterns (DAMPs), which are released by injured host cells, are well-recognized triggers that result in the elevation of inflammatory cytokine levels. A cytokine storm is thus amplified and sustained in this vicious cycle. Interestingly, during sepsis, neutrophils transition from powerful antimicrobial protectors into dangerous mediators of tissue injury and organ dysfunction. Thus, the concept of blood purification has evolved to include inflammatory cells and mediators. In this review, we summarize recent advances in knowledge regarding the role of lipopolysaccharides, cytokines, DAMPs, and neutrophils in the pathogenesis of sepsis. Additionally, we discuss the potential of blood purification, especially the adsorption technology, for removing immune cells and molecular mediators, thereby serving as a therapeutic strategy against sepsis. Finally, we describe the concept of our immune-modulating blood purification system.
Collapse
Affiliation(s)
- Kazuhiro Moriyama
- Laboratory for Immune Response and Regulatory Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan;
| |
Collapse
|
50
|
The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection. Cells 2021; 10:cells10081891. [PMID: 34440659 PMCID: PMC8391883 DOI: 10.3390/cells10081891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
The first formal description of the microbicidal activity of extracellular traps (ETs) containing DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types of ETs have been described—suicidal and vital ETs, with or without the death of the producer cell. The studies showed that the same cell type may have more than one ETs formation mechanism and that different cells may have similar ETs formation mechanisms. ETs can act by controlling or promoting the mechanisms involved in the development and evolution of various infectious and non-infectious diseases, such as autoimmune, cardiovascular, thrombotic, and neoplastic diseases, among others. This review discusses the presence of ETs in neutrophils, macrophages, mast cells, eosinophils, basophils, plasmacytoid dendritic cells, and recent evidence of the presence of ETs in B lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes. Moreover, due to recently collected information, the effect of ETs on COVID-19 is also discussed.
Collapse
|