1
|
Sun H, Xiao D, Li X, Sun T, Meng F, Shao X, Ding Y, Li Y. Study on the chemical composition and anti-fungi activities of anthraquinones and its glycosides from Rumex japonicus Houtt. J Nat Med 2024; 78:929-951. [PMID: 39103726 DOI: 10.1007/s11418-024-01834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Fungi, such as Trichophyton rubrum (T. rubrum) and Microsporum canis Bodin Anamorph (M. canis Bodin Anamorph) are the main pathogens of dermatophysis. According to ancient books records, Rumex japonicus Houtt. (RJH) has a miraculous effect on the treatment of dermatophysis. To reveal the anti-fungi (T. rubrum and M. canis Bodin Anamorph) components and its mechanism of the Rumex japonicus Houtt. The vinegar extraction and alcohol precipitation, HPLC and nuclear magnetic resonance spectroscopy (NMR) were employed for analyzing the chemical compositions of RJH; in vitro anti-fungal experiment was investigated including test the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC), spore germination rate, nucleic acid, protein leakage rate, biofilm structure, and the mechanism of anti-fungal and anti-fungal biofilms in RJH. Seven anthraquinones and their glycoside compounds were obtained in this study respectively, such as chrysophanol, physcion, aloe-emodin, emodin, rhein, emodin-8-O-β-D-glucoside and chrysophanol-8-O-β-D-glucoside. In vitro anti-fungal experiment results showed that RJH extracts have good anti-fungal activity for dermatophytic fungi. Among them, the MIC of the rhein, emodin and aloe-emodin against T. rubrum are 1.9 µg/ml, 3.9 µg/ml and 15.6 µg/ml, respectively; the MIC of emodin and aloe-emodin against M. canis Bodin Anamorph are 7.8 µg/ml and 62.5 µg/ml, respectively. In addition, its active components can inhibit fungal spore germination and the formation of bud tube, change cell membrane permeability, prevent hyphal growth, destroy biofilm structure, and down-regulate the expression of agglutinin-like sequence family 1 of the adhesion phase of biofilm growth. The study shows that RJH play a fungicidal role.
Collapse
Affiliation(s)
- He Sun
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Dandan Xiao
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756, Korea
| | - Xue Li
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Tong Sun
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Fanying Meng
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Xinting Shao
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Yuling Ding
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China.
| | - Yong Li
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China.
| |
Collapse
|
2
|
Abdel Azim S, Whiting C, Friedman AJ. Applications of nitric oxide-releasing nanomaterials in dermatology: Skin infections and wound healing. Nitric Oxide 2024; 146:10-18. [PMID: 38458595 DOI: 10.1016/j.niox.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nitric oxide (NO) is produced in most cells in the skin and is an important regulator of essential cutaneous functions, including responses to UV irradiation, microbial defense, wound healing, melanogenesis and epidermal permeability barrier homeostasis. Harnessing the physiological activities of NO for therapeutic use is difficult because the molecule is highly reactive and unstable. A variety of exogenous NO delivery platforms have been developed and evaluated; however, they have limited clinical applications in dermatology due to instability and poor cutaneous penetration. NO-releasing nanomaterials overcome these limitations, providing targeted tissue delivery, and sustained and controlled NO release. This review provides a comprehensive and up-to-date evaluation of the use of NO-releasing nanomaterials in dermatology for the treatment of skin and soft tissue infections and wound healing.
Collapse
Affiliation(s)
- Sara Abdel Azim
- Georgetown University School of Medicine, Washington, DC, USA
| | - Cleo Whiting
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam J Friedman
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
3
|
Gupta AK, Elewski B, Joseph WS, Lipner SR, Daniel CR, Tosti A, Guenin E, Ghannoum M. Treatment of onychomycosis in an era of antifungal resistance: Role for antifungal stewardship and topical antifungal agents. Mycoses 2024; 67:e13683. [PMID: 38214375 DOI: 10.1111/myc.13683] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
A growing body of literature has marked the emergence and spread of antifungal resistance among species of Trichophyton, the most prevalent cause of toenail and fingernail onychomycosis in the United States and Europe. We review published data on rates of oral antifungal resistance among Trichophyton species; causes of antifungal resistance and methods to counteract it; and in vitro data on the role of topical antifungals in the treatment of onychomycosis. Antifungal resistance among species of Trichophyton against terbinafine and itraconazole-the two most common oral treatments for onychomycosis and other superficial fungal infections caused by dermatophytes-has been detected around the globe. Fungal adaptations, patient characteristics (e.g., immunocompromised status; drug-drug interactions), and empirical diagnostic and treatment patterns may contribute to reduced antifungal efficacy and the development of antifungal resistance. Antifungal stewardship efforts aim to ensure proper antifungal use to limit antifungal resistance and improve clinical outcomes. In the treatment of onychomycosis, critical aspects of antifungal stewardship include proper identification of the fungal infection prior to initiation of treatment and improvements in physician and patient education. Topical ciclopirox, efinaconazole and tavaborole, delivered either alone or in combination with oral antifungals, have demonstrated efficacy in vitro against susceptible and/or resistant isolates of Trichophyton species, with low potential for development of antifungal resistance. Additional real-world long-term data are needed to monitor global rates of antifungal resistance and assess the efficacy of oral and topical antifungals, alone or in combination, in counteracting antifungal resistance in the treatment of onychomycosis.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., London, Ontario, Canada
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Boni Elewski
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Warren S Joseph
- Arizona College of Podiatric Medicine, Midwestern University, Glendale, Arizona, USA
| | | | - C Ralph Daniel
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Eric Guenin
- Ortho Dermatologics (a division of Bausch Health US, LLC), Bridgewater, New Jersey, USA
| | - Mahmoud Ghannoum
- Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Valdez AF, Zamith-Miranda D, Nimrichter L, Nosanchuk JD. Micro- and nanoparticles as platforms for the treatment of fungal infections: present and future perspectives. Future Microbiol 2023; 18:1007-1011. [PMID: 37721209 PMCID: PMC10718170 DOI: 10.2217/fmb-2023-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/18/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Alessandro F Valdez
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro – RJ, 21941-902, Brazil
- Departments of Medicine (Division of Infectious Diseases) & Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) & Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro – RJ, 21941-902, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro – RJ, 21941-902, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) & Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
5
|
Costa-Orlandi CB, Bila NM, Bonatti JLC, Vaso CO, Santos MB, Polaquini CR, Santoni Biasioli MM, Herculano RD, Regasini LO, Fusco-Almeida AM, Mendes-Giannini MJS. Membranolytic Activity Profile of Nonyl 3,4-Dihydroxybenzoate: A New Anti-Biofilm Compound for the Treatment of Dermatophytosis. Pharmaceutics 2023; 15:pharmaceutics15051402. [PMID: 37242644 DOI: 10.3390/pharmaceutics15051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 05/28/2023] Open
Abstract
The ability of dermatophytes to live in communities and resist antifungal drugs may explain treatment recurrence, especially in onychomycosis. Therefore, new molecules with reduced toxicity that target dermatophyte biofilms should be investigated. This study evaluated nonyl 3,4-dihydroxybenzoate (nonyl) susceptibility and mechanism of action on planktonic cells and biofilms of T. rubrum and T. mentagrophytes. Metabolic activities, ergosterol, and reactive oxygen species (ROS) were quantified, and the expression of genes encoding ergosterol was determined by real-time PCR. The effects on the biofilm structure were visualized using confocal electron microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). T. rubrum and T. mentagrophytes biofilms were susceptible to nonyl and resistant to fluconazole, griseofulvin (all strains), and terbinafine (two strains). The SEM results revealed that nonyl groups seriously damaged the biofilms, whereas synthetic drugs caused little or no damage and, in some cases, stimulated the development of resistance structures. Confocal microscopy showed a drastic reduction in biofilm thickness, and transmission electron microscopy results indicated that the compound promoted the derangement and formation of pores in the plasma membrane. Biochemical and molecular assays indicated that fungal membrane ergosterol is a nonyl target. These findings show that nonyl 3,4-dihydroxybenzoate is a promising antifungal compound.
Collapse
Affiliation(s)
- Caroline B Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Níura M Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
- Department of Para-Clinic, School of Veterinary, Eduardo Modlane University (UEM), Maputo 257, Mozambique
| | - Jean Lucas C Bonatti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Carolina O Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Mariana B Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (U.N.E.S.P.), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Carlos R Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (U.N.E.S.P.), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Mariana M Santoni Biasioli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Rondinelli D Herculano
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (U.N.E.S.P.), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Maria José S Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| |
Collapse
|
6
|
Seabra AB, Pieretti JC, de Melo Santana B, Horue M, Tortella GR, Castro GR. Pharmacological applications of nitric oxide-releasing biomaterials in human skin. Int J Pharm 2022; 630:122465. [PMID: 36476664 DOI: 10.1016/j.ijpharm.2022.122465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Joana C Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI - Facultad de Ciencias Exactas, Universidad Nacional de La Plata- CONICET (CCT La Plata), Argentina
| | - Gonzalo R Tortella
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnologica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Guillermo R Castro
- Nanobiotechnology Area, Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG) - CONICET. Maipú 1065, S2000 Rosario, Santa Fe, Argentina; Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
7
|
Falotico JM, Lipner SR. Updated Perspectives on the Diagnosis and Management of Onychomycosis. Clin Cosmet Investig Dermatol 2022; 15:1933-1957. [PMID: 36133401 PMCID: PMC9484770 DOI: 10.2147/ccid.s362635] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022]
Abstract
Onychomycosis is the most common nail disease encountered in clinical practice and can cause pain, difficulty with ambulation, and psycho-social problems. A thorough history and physical examination, including dermoscopy, should be performed for each patient presenting with nail findings suggestive of onychomycosis. Several approaches are available for definitive diagnostic testing, including potassium hydroxide and microscopy, fungal culture, histopathology, polymerase chain reaction, or a combination of techniques. Confirmatory testing should be performed for each patient prior to initiating any antifungal therapies. There are several different therapeutic options available, including oral and topical medications as well as device-based treatments. Oral antifungals are generally recommended for moderate to severe onychomycosis and have higher cure rates, while topical antifungals are recommended for mild to moderate disease and have more favorable safety profiles. Oral terbinafine, itraconazole, and griseofulvin and topical ciclopirox 8% nail lacquer, efinaconazole 10% solution, and tavaborole 5% solution are approved by the Food and Drug Administration for treatment of onychomycosis in the United States and amorolfine 5% nail lacquer is approved in Europe. Laser treatment is approved in the United States for temporary increases in clear nail, but clinical results are suboptimal. Oral fluconazole is not approved in the United States for onychomycosis treatment, but is frequently used off-label with good efficacy. Several novel oral, topical, and over-the-counter therapies are currently under investigation. Physicians should consider the disease severity, infecting pathogen, medication safety, efficacy and cost, and patient age, comorbidities, medication history, and likelihood of compliance when determining management plans. Onychomycosis is a chronic disease with high recurrence rates and patients should be counseled on an appropriate plan to minimize recurrence risk following effective antifungal therapy.
Collapse
Affiliation(s)
- Julianne M Falotico
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Shari R Lipner
- Weill Cornell Medicine, Department of Dermatology, New York, NY, USA
| |
Collapse
|
8
|
Essghaier B, Toukabri N, Dridi R, Hannachi H, Limam I, Mottola F, Mokni M, Zid MF, Rocco L, Abdelkarim M. First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using Scabiosa atropurpurea subsp. maritima Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties. NANOMATERIALS 2022; 12:nano12091585. [PMID: 35564294 PMCID: PMC9104986 DOI: 10.3390/nano12091585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023]
Abstract
Candida and dermatophyte infections are difficult to treat due to increasing antifungal drugs resistance such as fluconazole, as well as the emergence of multi-resistance in clinical bacteria. Here, we first synthesized silver nanoparticles using aqueous fruit extracts from Scabiosa atropurpurea subsp. maritima (L.). The characterization of the AgNPs by means of UV, XRD, FTIR, and TEM showed that the AgNPs had a uniform spherical shape with average sizes of 40–50 nm. The biosynthesized AgNPs showed high antioxidant activity when investigated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The AgNPs displayed strong antibacterial potential expressed by the maximum zone inhibition and the lowest MIC and MBC values. The AgNPs revealed a significant antifungal effect against the growth and biofilm of Candida species. In fact, the AgNPs were efficient against Trichophyton rubrum, Trichophyton interdigitale, and Microsporum canis. The antifungal mechanisms of action of the AgNPs seem to be due to the disruption of membrane integrity and a reduction in virulence factors (biofilm and hyphae formation and a reduction in germination). Finally, the silver nanoparticles also showed important cytotoxic activity against the human multiple myeloma U266 cell line and the human breast cancer cell line MDA-MB-231. Therefore, we describe new silver nanoparticles with promising biomedical application in the development of novel antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Department of Biology, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia
- Correspondence: (B.E.); (L.R.)
| | - Nourchéne Toukabri
- Unité de Mycologie, Laboratoire de Recherche Infections et Santé Publique LR18SP01, Service de Dermatologie et de Vénéréologie, Hôpital La Rabta Jebbari, Tunis 1007, Tunisia; (N.T.); (M.M.)
| | - Rihab Dridi
- Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Department of Chimie, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia; (R.D.); (M.F.Z.)
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint LR18ES04, Department of Biology, Faculty of Science, University of Tunis El Manar II, Tunis 2092, Tunisia;
| | - Inès Limam
- Laboratory of Oncohematology, PRF of Oncohematology, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1006, Tunisia; (I.L.); (M.A.)
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “L. Vanvitelli”, 81100 Caserta, Italy;
| | - Mourad Mokni
- Unité de Mycologie, Laboratoire de Recherche Infections et Santé Publique LR18SP01, Service de Dermatologie et de Vénéréologie, Hôpital La Rabta Jebbari, Tunis 1007, Tunisia; (N.T.); (M.M.)
| | - Mohamed Faouzi Zid
- Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Department of Chimie, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia; (R.D.); (M.F.Z.)
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “L. Vanvitelli”, 81100 Caserta, Italy;
- Correspondence: (B.E.); (L.R.)
| | - Mohamed Abdelkarim
- Laboratory of Oncohematology, PRF of Oncohematology, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1006, Tunisia; (I.L.); (M.A.)
| |
Collapse
|
9
|
Synthesis and Evaluation of the Antifungal and Toxicological Activity of Nitrofuran Derivatives. Pharmaceutics 2022; 14:pharmaceutics14030593. [PMID: 35335969 PMCID: PMC8950151 DOI: 10.3390/pharmaceutics14030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal diseases affect more than 1 billion people worldwide. The constant global changes, the advent of new pandemics, and chronic diseases favor the diffusion of fungal pathogens such as Candida, Cryptococcus, Aspergillus, Trichophyton, Histoplasma capsulatum, and Paracoccidioides brasiliensis. In this work, a series of nitrofuran derivatives were synthesized and tested against different fungal species; most of them showed inhibitory activity, fungicide, and fungistatic profile. The minimal inhibitory concentration (MIC90) values for the most potent compounds range from 0.48 µg/mL against H. capsulatum (compound 11) and P. brasiliensis (compounds 3 and 9) to 0.98 µg/mL against Trichophyton rubrum and T. mentagrophytes (compounds 8, 9, 12, 13 and 8, 12, 13, respectively), and 3.9 µg/mL against Candida and Cryptococcus neoformans strains (compounds 1 and 5, respectively). In addition, all compounds showed low toxicity when tested in vitro on lung cell lines (A549 and MRC-5) and in vivo in Caenorhabditis elegans larvae. Many of them showed high selectivity index values. Thus, these studied nitrofuran derivatives proved to be potent against different fungal species, characterized by low toxicity and high selectivity; for these reasons, they may become promising compounds for the treatment of mycoses.
Collapse
|