1
|
Sarrio D, Colomo S, Moreno-Bueno G. Gasdermin-B (GSDMB) takes center stage in antibacterial defense, inflammatory diseases, and cancer. FEBS J 2024; 291:3060-3071. [PMID: 37997534 DOI: 10.1111/febs.17018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
One of the hottest topics in biomedical research is to decipher the functional implications of the Gasdermin (GSDM) protein family in human pathologies. These proteins are the key effectors of a lytic and pro-inflammatory cell death type termed pyroptosis (also known as "Gasdermin-mediated programmed cell death"). However, ever-growing evidence showed that GSDMs can play multiple and complex roles in a context-dependent manner. In this sense, Gasdermin-B (GSDMB; the only GSDM gene absent in mice and rats) has been implicated in antibacterial defense, numerous inflammatory pathologies (e.g., asthma, ulcerative colitis), and cancer, but both cell death-dependent and -independent functions have been reported in these diseases, fueling the debate on whether GSDMB has genuine pyroptotic capacity. Recently, a series of seminal papers cast light on the GSDMB multitasking capacity by showing that different GSDMB transcriptional isoforms have distinct biological activities. Nonetheless, there are still obscure areas to be clarified on the precise functional involvement of GSDMB translated variants in physiological and pathological conditions. In this viewpoint, we critically discuss the most recent and exciting data on this topic and propose a series of relevant challenges that need to be overcome before GSDMB-driven biomedical applications (as a biomarker of disease risk/progression/outcome or as specific therapeutic target) become a reality in clinical settings.
Collapse
Affiliation(s)
- David Sarrio
- Biochemistry Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm-CISC), Conexión Cáncer (UAM-CSIC), Universidad Autónoma de Madrid (UAM), Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Colomo
- Biochemistry Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm-CISC), Conexión Cáncer (UAM-CSIC), Universidad Autónoma de Madrid (UAM), Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Moreno-Bueno
- Biochemistry Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm-CISC), Conexión Cáncer (UAM-CSIC), Universidad Autónoma de Madrid (UAM), Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Fundación MD Anderson Internacional, Madrid, Spain
| |
Collapse
|
2
|
de Wit S, Geerlings L, Shi C, Dronkers J, Schouten EM, Blancke G, Andries V, Yntema T, Meijers WC, Koonen DPY, Vereecke L, Silljé HHW, Aboumsallem JP, de Boer RA. Heart failure-induced microbial dysbiosis contributes to colonic tumour formation in mice. Cardiovasc Res 2024; 120:612-622. [PMID: 38400709 DOI: 10.1093/cvr/cvae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
AIMS Heart failure (HF) and cancer are the leading causes of death worldwide. Epidemiological studies revealed that HF patients are prone to develop cancer. Preclinical studies provided some insights into this connection, but the exact mechanisms remain elusive. In colorectal cancer (CRC), gut microbial dysbiosis is linked to cancer progression and recent studies have shown that HF patients display microbial dysbiosis. This current study focussed on the effects of HF-induced microbial dysbiosis on colonic tumour formation. METHODS AND RESULTS C57BL/6J mice were subjected to myocardial infarction (MI), with sham surgery as control. After six weeks faeces were collected, processed for 16 s rRNA sequencing, and pooled for faecal microbiota transplantation. CRC tumour growth was provoked in germ-free mice by treating them with Azoxymethane/Dextran sodium sulphate. The CRC mice were transplanted with faeces from MI or sham mice. MI-induced HF resulted in microbial dysbiosis, characterized by a decreased α-diversity and microbial alterations on the genus level, several of which have been associated with CRC. We then performed faecal microbiota transplantation with faeces from HF mice in CRC mice, which resulted in a higher endoscopic disease score and an increase in the number of tumours in CRC mice. CONCLUSION We demonstrated that MI-induced HF contributes to colonic tumour formation by altering the gut microbiota composition, providing a mechanistic explanation for the observed association between HF and increased risk for cancer. Targeting the microbiome may present as a tool to mitigate HF-associated co-morbidities, especially cancer.
Collapse
Affiliation(s)
- Sanne de Wit
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Lotte Geerlings
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Canxia Shi
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
- Thorax Center, Department of Cardiology, Erasmus MC, Cardiovascular Institute, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Just Dronkers
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Elisabeth M Schouten
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Gillian Blancke
- Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, 9052, Ghent, Belgium
| | - Vanessa Andries
- Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, 9052, Ghent, Belgium
| | - Tess Yntema
- Department of Paediatrics, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Wouter C Meijers
- Thorax Center, Department of Cardiology, Erasmus MC, Cardiovascular Institute, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Debby P Y Koonen
- Department of Paediatrics, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Lars Vereecke
- Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, 9052, Ghent, Belgium
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Joseph-Pierre Aboumsallem
- Thorax Center, Department of Cardiology, Erasmus MC, Cardiovascular Institute, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Rudolf A de Boer
- Thorax Center, Department of Cardiology, Erasmus MC, Cardiovascular Institute, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
3
|
Tao Y, Wang L, Ye X, Qian X, Pan D, Dong X, Jiang Q, Hu P. Huang Qin decoction increases SLC6A4 expression and blocks the NFκB-mediated NLRP3/Caspase1/GSDMD pathway to disrupt colitis-associated carcinogenesis. Funct Integr Genomics 2024; 24:55. [PMID: 38467948 PMCID: PMC10927794 DOI: 10.1007/s10142-024-01334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Huang Qin decoction (HQD) is a traditional Chinese medicine formula for treating colitis, but the effects and molecular mechanism of action of HQD in colitis-associated carcinogenesis (CAC) are still unclear. Therefore, we aimed to determine the beneficial effects of HQD on CAC in mice and to reveal the underlying mechanism involved. AOM/DSS was used to induce CAC in mice, and the effects of HQD on tumorigenesis in mice were examined (with mesalazine serving as a positive control). Mesalazine or HQD treatment alleviated body weight loss and decreased the disease activity index in mice induced by AOM/DSS. Mesalazine or HQD treatment also suppressed the shortening of colon tissue length, the number of tumors, and the infiltration of inflammatory cells. The genes targeted by HQD were predicted and verified, followed by knockout experiments. Elevated SLC6A4 and inhibited serotonin production and inflammation were observed in HQD-treated mice. HQD inhibited the NFκB and NLRP3/caspase1/GSDMD pathways. The therapeutic effect of HQD was diminished in SLC6A4-deficient AOM/DSS mice. Additionally, the downregulation of SLC6A4 mitigated the inhibitory effect of HQD-containing serum on MODE-K cell pyroptosis. Our findings suggest that SLC6A4 is a pivotal regulator of HQD-alleviated CAC via its modulation of the NLRP3/caspase1/GSDMD pathway.
Collapse
Affiliation(s)
- Yili Tao
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Lai Wang
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaofeng Ye
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xin Qian
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Danye Pan
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaoyu Dong
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Qian Jiang
- Digestive Disease Diagnosis and Treatment Center of Integrated Traditional Chinese and Western Medicine, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Po Hu
- Department of Pulmonary Diseases, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China.
| |
Collapse
|
4
|
Liu N, Yan X, Lv B, Wu Y, Hu X, Zheng C, Tao S, Deng R, Dou J, Zeng B, Jiang G. A study on the association between gut microbiota, inflammation, and type 2 diabetes. Appl Microbiol Biotechnol 2024; 108:213. [PMID: 38358546 PMCID: PMC10869376 DOI: 10.1007/s00253-024-13041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM) was reported to be associated with impaired immune response and alterations in microbial composition and function. However, the underlying mechanism remains elusive. To investigate the association among retinoic acid-inducible gene-I-like receptors (RLRs) signaling pathway, intestinal bacterial microbiome, microbial tryptophan metabolites, inflammation, and a longer course of T2DM, 14 patients with T2DM and 7 healthy controls were enrolled. 16S rRNA amplicon sequencing and untargeted metabolomics were utilized to analyze the stool samples. RNA sequencing (RNA-seq) was carried out on the peripheral blood samples. Additionally, C57BL/6J specific pathogen-free (SPF) mice were used. It was found that the longer course of T2DM could lead to a decrease in the abundance of probiotics in the intestinal microbiome. In addition, the production of microbial tryptophan derivative skatole declined as a consequence of the reduced abundance of related intestinal microbes. Furthermore, low abundances of probiotics, such as Bacteroides and Faecalibacterium, could trigger the inflammatory response by activating the RLRs signaling pathway. The increased level of the member of TNF receptor-associated factors (TRAF) family, nuclear factor kappa-B (NF-κB) activator (TANK), in the animal colon activated nuclear factor kappa B subunit 2 (NFκB2), resulting in inflammatory damage. In summary, it was revealed that the low abundances of probiotics could activate the RLR signaling pathway, which could in turn activate its downstream signaling pathway, NF-κB, highlighting a relationship among gut microbes, inflammation, and a longer course of T2DM. KEY POINTS: Hyperglycemia may suppress tryptophanase activity. The low abundance of Bacteroides combined with the decrease of Dopa decarboxylase (DDC) activity may lead to the decrease of the production of tryptophan microbial derivative skatole, and the low abundance of Bacteroides or reduced skatole may further lead to the increase of blood glucose by downregulating the expression of glucagon-like peptide-1 (GLP1). A low abundance of anti-inflammatory bacteria may induce an inflammatory response by triggering the RLR signaling pathway and then activating its downstream NF-κB signaling pathway in prolonged T2DM.
Collapse
Affiliation(s)
- Nannan Liu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, No.393 Xin Medical Road, Urumqi, 830011, Xinjiang, China
| | - Bohan Lv
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Yanxiang Wu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Xuehong Hu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Chunyan Zheng
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Siyu Tao
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Ruxue Deng
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Jinfang Dou
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Binfang Zeng
- College of Traditional Chinese Medicine, Xinjiang Medical University, No.393 Xin Medical Road, Urumqi, 830011, Xinjiang, China
| | - Guangjian Jiang
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China.
| |
Collapse
|
5
|
Yang J, Jiang J. Gasdermins: a dual role in pyroptosis and tumor immunity. Front Immunol 2024; 15:1322468. [PMID: 38304430 PMCID: PMC10830654 DOI: 10.3389/fimmu.2024.1322468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The gasdermin (GSDM) protein family plays a pivotal role in pyroptosis, a process critical to the body's immune response, particularly in combatting bacterial infections, impeding tumor invasion, and contributing to the pathogenesis of various inflammatory diseases. These proteins are adept at activating inflammasome signaling pathways, recruiting immune effector cells, creating an inflammatory immune microenvironment, and initiating pyroptosis. This article serves as an introduction to the GSDM protein-mediated pyroptosis signaling pathways, providing an overview of GSDMs' involvement in tumor immunity. Additionally, we explore the potential applications of GSDMs in both innovative and established antitumor strategies.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
6
|
Bouges E, Segers C, Leys N, Lebeer S, Zhang J, Mastroleo F. Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotoxicity and Assessing Radioprotective Agents. Cancers (Basel) 2023; 15:5859. [PMID: 38136404 PMCID: PMC10741417 DOI: 10.3390/cancers15245859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.
Collapse
Affiliation(s)
- Eloïse Bouges
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Charlotte Segers
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Natalie Leys
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Jianbo Zhang
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, 1105 BK Amsterdam, The Netherlands
| | - Felice Mastroleo
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| |
Collapse
|
7
|
Privitera G, Rana N, Armuzzi A, Pizarro TT. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 2023; 20:366-387. [PMID: 36781958 PMCID: PMC10238632 DOI: 10.1038/s41575-023-00743-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Since the identification and characterization of gasdermin (GSDM) D as the main effector of inflammatory regulated cell death (or pyroptosis), literature on the GSDM family of pore-forming proteins is rapidly expanding, revealing novel mechanisms regulating their expression and functions that go beyond pyroptosis. Indeed, a growing body of evidence corroborates the importance of GSDMs within the gastrointestinal system, underscoring their critical contributions to the pathophysiology of gastrointestinal cancers, enteric infections and gut mucosal inflammation, such as inflammatory bowel disease. However, with this increase in knowledge, several important and controversial issues have arisen regarding basic GSDM biology and its role(s) during health and disease states. These include critical questions centred around GSDM-dependent lytic versus non-lytic functions, the biological activities of cleaved versus full-length proteins, the differential roles of GSDM-expressing mucosal immune versus epithelial cells, and whether GSDMs promote pathogenic or protective effects during specific disease settings. This Review provides a comprehensive summary and interpretation of the current literature on GSDM biology, specifically focusing on the gastrointestinal tract, highlighting the main controversial issues and their clinical implications, and addressing future areas of research to unravel the specific role(s) of this intriguing, yet enigmatic, family of proteins.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
8
|
Dissection of pyroptosis-related prognostic signature and CASP6-mediated regulation in pancreatic adenocarcinoma: new sights to clinical decision-making. Apoptosis 2023; 28:769-782. [PMID: 36882663 DOI: 10.1007/s10495-023-01823-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/09/2023]
Abstract
Recent studies have indicated that pyroptosis may participate in the regulation of tumorigenesis and immune microenvironment. However, the role of pyroptosis-related genes (PRGs) in pancreatic adenocarcinoma (PAAD) remains unclear. Through multiple bioinformatics analysis, we constructed a prognostic gene model and competing endogenous RNA network. The correlation between PRGs and prognosis, immune infiltration, immune checkpoints, and tumor mutational burden was analyzed by Kaplan-Meier curve, univariate Cox, multivariate regression, and Spearman's analysis in PAAD patients. The qRT-PCR, Western blotting, CCK-8, Wound healing, and Transwell assay were applied to examine the role of CASP6 in PANC-1 cell. Thirty-one PRGs were upregulated in PAAD. Functional enrichment analysis revealed that the PRGs were mainly involved in pyroptosis, NOD-like receptor signaling pathway, and response to bacteria. We established a novel 4-gene signature related to PRGs for evaluating the prognosis of PAAD patients. Patients with PAAD in the low-risk group had a better prognosis than those in the high-risk group. The nomogram suggested that the 1-, 3-, and 5-years survival probability exhibited robust predictive performance. Significant correlation was observed between prognostic PRGs and immune infiltration, immune checkpoints, and tumor mutational burden. We first identified the potential competing endogenous RNA regulatory axis in PAAD: lncRNA PVT1/hsa-miR-16-5p/CASP6/CASP8. Moreover, knockdown of CASP6 dramatically inhibited the proliferation, migration, and invasion ability of PANC-1 cell in vitro. In conclusion, CASP6 could be a potential biomarker, promoting the occurrence and progression in PAAD. The lncRNA PVT1/hsa-miR-16-5p/CASP6/CASP8 regulatory axis plays an vital role in regulating the anti-tumor immune responses for PAAD.
Collapse
|
9
|
Buret AG, Allain T. Gut microbiota biofilms: From regulatory mechanisms to therapeutic targets. J Exp Med 2023; 220:e20221743. [PMID: 36688957 PMCID: PMC9884580 DOI: 10.1084/jem.20221743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gut microbiota contain communities of viruses, bacteria, fungi, and Eukarya, and live as biofilms. In health, these biofilms adhere to the intestinal mucus surface without contacting the epithelium. Disruptions to the equilibrium between these biofilms and the host may create invasive pathobionts from these commensal communities and contribute to disease pathogenesis. Environmental factors appear to dominate over genetics in determining the shifts in microbiota populations and function, including when comparing microbiota between low-income and industrialized countries. The observations discussed herein carry enormous potential for the development of novel therapies targeting phenotype in microbiota dysbiosis.
Collapse
Affiliation(s)
- Andre G. Buret
- Department of Biological Sciences, Host-Parasite Interactions program, Inflammation Research Network, University of Calgary, Calgary, Canada
| | - Thibault Allain
- Department of Biological Sciences, Host-Parasite Interactions program, Inflammation Research Network, University of Calgary, Calgary, Canada
| |
Collapse
|
10
|
Vallino L, Garavaglia B, Visciglia A, Amoruso A, Pane M, Ferraresi A, Isidoro C. Cell-free Lactiplantibacillus plantarum OC01 supernatant suppresses IL-6-induced proliferation and invasion of human colorectal cancer cells: Effect on β-Catenin degradation and induction of autophagy. J Tradit Complement Med 2023; 13:193-206. [PMID: 36970462 PMCID: PMC10037073 DOI: 10.1016/j.jtcme.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Background and aim Gut microbiota is considered as a complex organ of human body. The interaction between the host and microbiota is dynamic and controlled by a huge number of factors, such as lifestyle, geography, pharmaceuticals, diet, and stress. The breakdown of this relationship could change microbiota composition favoring the onset of several diseases, including cancer. Metabolites released by microbiota bacterial strains have been reported to elicit protective effects on the mucosa that could contrast cancer development and progression. Here, we tested the ability of specific probiotic strain Lactiplantibacillus plantarum OC01-derived metabolites (NCIMB 30624) to contrast the malignant features of colorectal cancer (CRC) cells. Experimental procedure The study was performed on two cell lines, HCT116 and HT29, cultured in 2D and 3D, and focused on the hallmarks of cell proliferation and migration. Results and conclusion Probiotic metabolites reduced cell proliferation both in 2D and 3D-spheroid cultures, the latter model mimicking the growth in vivo. The bacterial metabolites also contrasted the pro-growth and pro-migratory activity of inteurleukin-6 (IL-6), an inflammatory cytokine abundantly found in the tumor microenvironment of CRC. These effects were associated with inhibition of the ERK and of the mTOR/p70S6k pathways and with the inhibition of the E-to N-Cadherin switch. In a parallel study, we found that sodium butyrate (a representative of the main probiotic metabolites) induced autophagy and β-Catenin degradation, which is consistent with the growth inhibitory activity. The present data indicate that the metabolites of Lactiplantibacillus plantarum OC01 (NCIMB 30624) elicits anti-tumor effect and support its possible inclusion as adjuvant therapy of CRC for limiting cancer growth and progression.
Collapse
Affiliation(s)
- Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| | | | - Angela Amoruso
- Probiotical Research Srl, via E. Mattei, 3, 28100, Novara, Italy
| | - Marco Pane
- Probiotical Research Srl, via E. Mattei, 3, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
11
|
Ivanov AI, Rana N, Privitera G, Pizarro TT. The enigmatic roles of epithelial gasdermin B: Recent discoveries and controversies. Trends Cell Biol 2023; 33:48-59. [PMID: 35821185 PMCID: PMC9789163 DOI: 10.1016/j.tcb.2022.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/06/2023]
Abstract
Gasdermin B (GSDMB) belongs to a family of structurally related proteins [(i.e., gasdermins (GSDMs)]. It distinguishes itself from other members by the lack of autoinhibition but clear bioactivity of its full-length form, its preference to bind to phosphatidylinositol phosphates and sulfatides, and the ability to promote both lytic and nonlytic cellular functions. It is the only gasdermin that lacks a mouse ortholog, making in vivo mechanistic studies challenging to perform. GSDMB is abundantly expressed in epithelial cells lining organs that directly interface with the external environment, such as the gastrointestinal tract, with emerging evidence supporting its role in enteric infections, inflammatory bowel disease (IBD), and colorectal cancer. This review discusses the unique features of GSDMB among other gasdermin family members and controversies surrounding GSDMB-dependent mammalian inflammatory cell death (i.e., pyroptosis), including recent discoveries revealing both lytic and nonlytic functions of epithelial-derived GSDMB, particularly during gut health and disease.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Rana R, Ranjan V, Kumar N, Chugh P, Khillan K, Gogia A, Rana DS, Ganguly NK. Association of underlying comorbidities and progression of COVID-19 infection amongst 2586 patients hospitalised in the National Capital Region of India: a retrospective cohort study. Mol Cell Biochem 2023; 478:149-160. [PMID: 35750979 PMCID: PMC9244570 DOI: 10.1007/s11010-022-04485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/20/2022] [Indexed: 01/17/2023]
Abstract
This study is conducted to observe the association of diabetes (DM), hypertension (HTN) and chronic kidney disease (CKD) on the prognosis and mortality of COVID-19 infection in hospital admitted patients with above mentioned comorbidities. This is a single centre, observational, retrospective study carried out at Sir Ganga Ram Hospital, Delhi, India. The burden of comorbidities on the prognosis and clinical outcome of COVID-19 patients admitted patients from April 8, 2020, to October 4, 2020. Chi-square and relative risk test were used to observe the association of comorbidities and disease prognosis. A total of 2586 patients were included in the study consisting of 69.6% of male patients. All the comorbidities were significantly associated with ICU admission and mortality. The relative risk showed that CKD is most prone to severity as well as mortality of the COVID-19 infection followed by HTN and DM. Further with the increase in number of underlying comorbidities, the risk of ICU admission and mortality also increases. Relative risk of the severity of COVID-19 infection in younger patients with underlying comorbidities are relatively at higher risk of severity of disease as well as to mortality compared to the elderly patients with similar underlying condition. Similarly, it is found that females are relatively at higher risk of mortality as compared to the males having same comorbid conditions except for the hypertensive patients. Diabetes, hypertension and CKD, all are associated with progression of COVID-19 disease to severity and higher mortality risk. The number of underlying comorbid condition is directly proportional to the progression of disease severity and mortality.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Vivek Ranjan
- Department of Blood Transfusion Medicine, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Naveen Kumar
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Parul Chugh
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Kamini Khillan
- Department of Blood Transfusion Medicine, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Atul Gogia
- Department of Internal Medicine, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | | | | |
Collapse
|
13
|
Yu C, Zhou Z, Liu B, Yao D, Huang Y, Wang P, Li Y. Investigation of trends in gut microbiome associated with colorectal cancer using machine learning. Front Oncol 2023; 13:1077922. [PMID: 36937384 PMCID: PMC10015000 DOI: 10.3389/fonc.2023.1077922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background The rapid growth of publications on the gut microbiome and colorectal cancer (CRC) makes it feasible for text mining and bibliometric analysis. Methods Publications were retrieved from the Web of Science. Bioinformatics analysis was performed, and a machine learning-based Latent Dirichlet Allocation (LDA) model was used to identify the subfield research topics. Results A total of 5,696 publications related to the gut microbiome and CRC were retrieved from the Web of Science Core Collection from 2000 to 2022. China and the USA were the most productive countries. The top 25 references, institutions, and authors with the strongest citation bursts were identified. Abstracts from all 5,696 publications were extracted for a text mining analysis that identified the top 50 topics in this field with increasing interest. The colitis animal model, expression of cytokines, microbiome sequencing and 16s, microbiome composition and dysbiosis, and cell growth inhibition were increasingly noticed during the last two years. The 50 most intensively investigated topics were identified and further categorized into four clusters, including "microbiome sequencing and tumor," "microbiome compositions, interactions, and treatment," "microbiome molecular features and mechanisms," and "microbiome and metabolism." Conclusion This bibliometric analysis explores the historical research tendencies in the gut microbiome and CRC and identifies specific topics of increasing interest. The developmental trajectory, along with the noticeable research topics characterized by this analysis, will contribute to the future direction of research in CRC and its clinical translation.
Collapse
|
14
|
Insights on Ferroptosis and Colorectal Cancer: Progress and Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010243. [PMID: 36615434 PMCID: PMC9821926 DOI: 10.3390/molecules28010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Patients with advanced-stage or treatment-resistant colorectal cancer (CRC) benefit less from traditional therapies; hence, new therapeutic strategies may help improve the treatment response and prognosis of these patients. Ferroptosis is an iron-dependent type of regulated cell death characterized by the accumulation of lipid reactive oxygen species (ROS), distinct from other types of regulated cell death. CRC cells, especially those with drug-resistant properties, are characterized by high iron levels and ROS. This indicates that the induction of ferroptosis in these cells may become a new therapeutic approach for CRC, particularly for eradicating CRC resistant to traditional therapies. Recent studies have demonstrated the mechanisms and pathways that trigger or inhibit ferroptosis in CRC, and many regulatory molecules and pathways have been identified. Here, we review the current research progress on the mechanism of ferroptosis, new molecules that mediate ferroptosis, including coding and non-coding RNA; novel inducers and inhibitors of ferroptosis, which are mainly small-molecule compounds; and newly designed nanoparticles that increase the sensitivity of cells to ferroptosis. Finally, the gene signatures and clusters that have predictive value on CRC are summarized.
Collapse
|
15
|
Li Z, Ke X, Zuo D, Wang Z, Fang F, Li B. New Insights into the Relationship between Gut Microbiota and Radiotherapy for Cancer. Nutrients 2022; 15:nu15010048. [PMID: 36615706 PMCID: PMC9824372 DOI: 10.3390/nu15010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second most common cause of death among humans in the world, and the threat that it presents to human health is becoming more and more serious. The mechanisms of cancer development have not yet been fully elucidated, and new therapies are changing with each passing day. Evidence from the literature has validated the finding that the composition and modification of gut microbiota play an important role in the development of many different types of cancer. The results also demonstrate that there is a bidirectional interaction between the gut microbiota and radiotherapy treatments for cancer. In a nutshell, the modifications of the gut microbiota caused by radiotherapy have an effect on tumor radiosensitivity and, as a result, affect the efficacy of radiotherapy and show a certain radiation toxicity, which leads to numerous side effects. What is of new research significance is that the "gut-organ axis" formed by the gut microbiota may be one of the most interesting potential mechanisms, although the relevant research is still very limited. In this review, we combine new insights into the relationship between the gut microbiota, cancer, and radiotherapy. Based on our current comprehensive understanding of this relationship, we give an overview of the new cancer treatments based on the gut microbiota.
Collapse
Affiliation(s)
- Zhipeng Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiyang Ke
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Ministry of Education, Beijing 100142, China
| | - Dan Zuo
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Fang Fang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-431-85619455
| | - Bo Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Peng LS, Duan SL, Li RQ, Wang D, Han YY, Huang T, Yu YP, Ou CL, Wang JP. Prognostic value and immune infiltration of the gasdermin family in lung adenocarcinoma. Front Oncol 2022; 12:1043862. [PMID: 36505798 PMCID: PMC9732578 DOI: 10.3389/fonc.2022.1043862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background The GSDM family includes six members, GSDMA, GSDMB, GSDMC, GSDMD, GSDME (DFNA5), and PJVK (Pejvakin, DFNB59), which can induce pyroptosis, thereby regulating the tumorigenesis of various cancers. However, the clinical characteristics and role of the GSDM family in LUAD are not well understood. Methods In this study, several important bioinformatics databases were used to integrate the analysis of the expression, prognostic value, and immune infiltration of GSDMs in LUAD. These databases include UALCAN, DiseaseMeth, GEPIA, THPA, cBioPortal, TIMER, WebGestalt, STRING database, and Cytoscape. Results The findings from the UALCAN database revealed that the expression of all six GSDMs based on the tumor stage in LUAD was increased (particularly GSDMD). Our IHC results verified it. Additionally, the DiseaseMeth database showed that the methylation levels of GSDMA, GSDMB, GSDMC, and GSDMD were decreased. The expression of six GSDMs was related to shorter overall survival in patients with LUAD, according to the GEPIA database. The cBioPortal database was further used to explore the alteration rate and correlated genes in LUAD. Subsequently, these genes were subjected to functional enrichment and protein-protein interaction network analyses. We identified that the GSDM family regulate several signaling pathways, including immune-associated signaling pathways. According to tumor-infiltrating immune cell analysis from the TIMER database, GSDM family members are associated with the infiltration of important immune cells and their signature markers. Conclusions GSDM family may be prognostic markers and novel strategies for the treatment of LUAD.
Collapse
Affiliation(s)
- Lu-Shan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sai-Li Duan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Run-Qi Li
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying-Ying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Pei Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Lin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Chun-Lin Ou, ; Jun-Pu Wang,
| | - Jun-Pu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Chun-Lin Ou, ; Jun-Pu Wang,
| |
Collapse
|
17
|
Hu J, Tian C, Zhao Y, Guo Y, Chen S. Prognostic prediction of systemic immune-inflammation status for patients with colorectal cancer: a novel pyroptosis-related model. World J Surg Oncol 2022; 20:234. [PMID: 35836259 PMCID: PMC9281056 DOI: 10.1186/s12957-022-02697-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis and related gasdermin family proteins play an important role in the tumorigenesis of colorectal cancer (CRC). However, the prognostic roles of pyroptosis-related genes (PRGs) and their relation to infiltrates of immune cells in the pathogenesis of CRC remain unclear. Using this study, we set up a prognostic gene pattern on the basis of 13 PRGs (AIM2, CASP1, CASP5, CASP6, CASP8, CASP9, ELANE, GPX4, GSDMD, NLRP7, NOD2, PJVK, and PRKACA) for CRC patients. A comprehensive bioinformatics analysis based on these genes was then performed. With the good AUC prediction value of the ROC curves, the group with high hazard first had a poorer survival prognosis than the group with low hazard. Second, we found that PRGs were significantly related to inflammation-associated genes and immune-associated genes in CRC. Then, we identified a correlation of PRGs with immune infiltrations in CRC. For instance, the abundances of resting NK cells resting and neutrophils were higher in the low hazard group than in the high hazard group. Overall, this work indicated that PRGs contributed to generate heterogeneity of the tumor microenvironment (TME) in CRC. This prognostic PRG model may provide a starting point for the early diagnosis and medication use of CRC.
Collapse
Affiliation(s)
- Jun Hu
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Caijuan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd., Tianjin, 300381, China
| | - Yanpeng Zhao
- Tianjin Yunquan Intelligent Technology Co., Ltd., Tianjin, 300381, China
| | - Yixian Guo
- Tianjin Yunquan Intelligent Technology Co., Ltd., Tianjin, 300381, China
| | - Shuo Chen
- Department of Colorectal Surgery, The People's Hospital of Tianjin, Tianjin, 300121, China.
| |
Collapse
|
18
|
Privitera G, Pizarro TT. Live or let die: Translational insights and clinical perspectives of gasdermin B-dependent intestinal epithelial cell fate. Clin Transl Med 2022; 12:e787. [PMID: 35485236 PMCID: PMC9052010 DOI: 10.1002/ctm2.787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Giuseppe Privitera
- Department of PathologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Theresa T. Pizarro
- Department of PathologyCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|