1
|
Dong X, Zhang J, Li W, Li Y, Jia L, Liu Z, Fu W, Zhang A. Yi-Shen-Hua-Shi regulates intestinal microbiota dysbiosis and protects against proteinuria in patients with chronic kidney disease: a randomized controlled study. PHARMACEUTICAL BIOLOGY 2024; 62:356-366. [PMID: 38720666 PMCID: PMC11085992 DOI: 10.1080/13880209.2024.2345080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
CONTEXT Yi-Shen-Hua-Shi (YSHS) is a traditional Chinese medicine that treats chronic kidney disease (CKD). However, its efficacy in reducing proteinuria and underlying mechanisms is unknown. OBJECTIVE This single-center randomized controlled trial explored whether YSHS could improve proteinuria and modulate the gut microbiota. MATERIALS AND METHODS 120 CKD patients were enrolled and randomized to receive the renin-angiotensin-aldosterone system (RAAS) inhibitor plus YSHS (n = 56) or RAAS inhibitor (n = 47) alone for 4 months, and 103 patients completed the study. We collected baseline and follow-up fecal samples and clinical outcomes from participants. Total bacterial DNA was extracted, and the fecal microbiome was analyzed using bioinformatics. RESULTS Patients in the intervention group had a significantly higher decrease in 24-h proteinuria. After 4 months of the YSHS intervention, the relative abundance of bacteria that have beneficial effects on the body, such as Faecalibacterium, Lachnospiraceae, Lachnoclostridium, and Sutterella increased significantly, while pathogenic bacteria such as the Eggerthella and Clostridium innocuum group decreased. However, we could not find these changes in the control group. Redundancy analysis showed that the decline in 24-h proteinuria during follow-up was significantly correlated with various taxa of gut bacteria, such as Lachnospiraceae and the Lachnoclostridium genus in the YSHS group. KEGG analysis also showed the potential role of YSHS in regulating glycan, lipid, and vitamin metabolism. DISCUSSION AND CONCLUSION The YSHS granule reduced proteinuria associated with mitigating intestinal microbiota dysbiosis in CKD patients. The definite mechanisms of YSHS to improve proteinuria need to be further explored. TRIAL REGISTRATION ChiCTR2300076136, retrospectively registered.
Collapse
Affiliation(s)
- Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen Li
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yinping Li
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Liu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjing Fu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Liu J, An Y, Yang N, Xu Y, Wang G. Longitudinal associations of dietary fiber and its source with 48-week weight loss maintenance, cardiometabolic risk factors and glycemic status under metformin or acarbose treatment: a secondary analysis of the March randomized trial. Nutr Diabetes 2024; 14:81. [PMID: 39358341 PMCID: PMC11447090 DOI: 10.1038/s41387-024-00340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS To examine longitudinal and dose-d ependent associations between dietary fiber intake and various clinical outcomes over 48 weeks of pharmacological treatment in T2DM patients. METHODS In this secondary analysis, we used data from the MARCH trial, which was designed to compare the efficacy of acarbose or metformin monotherapy as the initial therapy in Chinese patients newly diagnosed with T2DM. Dietary data were obtained using a 24-h dietary recall method to evaluate the intakes of dietary fiber from different sources as well as the carbohydrate-to-fiber ratio. RESULTS A total of 551 newly-diagnosed patients with T2DM complete dietary records (286 in the acarbose group and 265 in the metformin group) were included. Higher intake of total fiber and whole grain fiber was positively associated with better β-cell function, insulin sensitivity and postprandial glycemic control under acarbose treatment. Higher intake of legume fiber was associated with better glycemic control under both acarbose and metformin treatment but with better weight loss only under metformin treatment. A high-carbohydrate-low-fiber diet was associated with worse glycemic control and lower HDL-C under acarbose treatment but with higher insulin sensitivity and better weight loss under metformin treatment. CONCLUSIONS The notable effects of various dietary fibers when combined with different oral glucose-lowering medications should be considered to maximize therapeutic benefit.
Collapse
Affiliation(s)
- Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ning Yang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuan Xu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Dalsgaard NB, Gasbjerg LS, Hansen LS, Nielsen DS, Rasmussen TS, Knop FK. Two weeks of acarbose treatment shows no effect on gut microbiome composition in patients with type 2 diabetes: a randomised, placebo-controlled, double-blind, crossover study. Endocr Connect 2024; 13:e240052. [PMID: 38842918 PMCID: PMC11227053 DOI: 10.1530/ec-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
Aim The alpha-glucosidase inhibitor acarbose is approved for the treatment of type 2 diabetes (T2D). It acts in the lumen of the gut by reducing intestinal hydrolysis and absorption of ingested carbohydrates. This reduces postprandial blood glucose concentration and increases the content of carbohydrates in the distal parts of the intestine potentially influencing gut microbiome (GM) composition and possibly impacting the gut microbiome (GM) dysbiosis associated with T2D. Here, we investigated the effect of acarbose on GM composition in patients with T2D. Methods Faecal samples were collected in a previously conducted randomised, placebo-controlled, double-blind, crossover study in which 15 individuals with metformin-treated T2D (age 57-85 years, HbA1c 40-74 mmol/mol, BMI 23.6-34.6 kg/m2) were subjected to two 14-day treatment periods with acarbose and placebo, respectively, separated by a 6-week wash-out period. Faecal samples were collected before and by the end of each treatment period. The GM profiles were evaluated by 16S rRNA gene amplicon sequencing. Results The GM profiles after the treatment periods with acarbose or placebo remained unaffected (P > 0.7) when compared with the GM profiles before treatment. This applied to the analysis of within-sample diversity (α-diversity) and between-sample bacterial composition diversity (β-diversity). Additionally, no dominant bacterial species differentiated the treatment groups, and only minor increases in the relative abundances of Klebsiella spp. and Escherichia coli (P < 0.05) were observed after acarbose treatment. Conclusion In patients with metformin-treated T2D, 14 days of treatment with acarbose showed only minor effects on GM as seen in increased relative abundances of Klebsiella spp. and Escherichia coli.
Collapse
Affiliation(s)
- Niels B Dalsgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura S Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Dennis S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Torben S Rasmussen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
4
|
Chatzianagnostou K, Gaggini M, Suman Florentin A, Simonini L, Vassalle C. New Molecules in Type 2 Diabetes: Advancements, Challenges and Future Directions. Int J Mol Sci 2024; 25:6218. [PMID: 38892417 PMCID: PMC11173177 DOI: 10.3390/ijms25116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Although good glycemic control in patients with type 2 diabetes (T2D) can prevent cardiovascular complications, many diabetic patients still have poor optimal control. A new class of antidiabetic drugs (e.g., glucagon-like peptide-1-GLP-1 receptor agonists, sodium-glucose co-transporters-SGLT2 inhibitors), in addition to the low hypoglycemic effect, exert multiple beneficial effects at a metabolic and cardiovascular level, through mechanisms other than antihyperglycemic agents. This review aims to discuss the effects of these new antidiabetic drugs, highlighting cardiovascular and metabolic benefits, through the description of their action mechanisms as well as available data by preclinical and clinical studies. Moreover, new innovative tools in the T2D field will be described which may help to advance towards a better targeted T2D personalized care in future.
Collapse
Affiliation(s)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Adrian Suman Florentin
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Ludovica Simonini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
5
|
Mao T, Zhang C, Yang S, Bi Y, Li M, Yu J. Semaglutide alters gut microbiota and improves NAFLD in db/db mice. Biochem Biophys Res Commun 2024; 710:149882. [PMID: 38583231 DOI: 10.1016/j.bbrc.2024.149882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease associated with type 2 diabetes mellitus (T2D). NAFLD can progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and even cancer, all of which have a very poor prognosis. Semaglutide, a novel glucagon-like peptide-1 (GLP-1) receptor agonist, has been recognized as a specific drug for the treatment of diabetes. In this study, we used a gene mutation mouse model (db/db mice) to investigate the potential liver-improving effects of semaglutide. The results showed that semaglutide improved lipid levels and glucose metabolism in db/db mice. HE staining and oil red staining showed alleviation of liver damage and reduction of hepatic lipid deposition after injection of semaglutide. In addition, semaglutide also improved the integrity of gut barrier and altered gut microbiota, especially Alloprevotella, Alistpes, Ligilactobacillus and Lactobacillus. In summary, our findings validate that semaglutide induces modifications in the composition of the gut microbiota and ameliorates NAFLD, positioning it as a promising therapeutic candidate for addressing hepatic steatosis and associated inflammation.
Collapse
Affiliation(s)
- Tuohua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Chenxuan Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Shuang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Yingying Bi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Man Li
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.
| | - Jia Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.
| |
Collapse
|
6
|
Baghel K, Khan A, Kango N. Role of Synbiotics (Prebiotics and Probiotics) as Dietary Supplements in Type 2 Diabetes Mellitus Induced Health Complications. J Diet Suppl 2024; 21:677-708. [PMID: 38622882 DOI: 10.1080/19390211.2024.2340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Diabetes is a metabolic disorder whose prevalence has become a worrying condition in recent decades. Chronic diabetes can result in serious health conditions such as impaired kidney function, stroke, blindness, and myocardial infarction. Despite a variety of currently available treatments, cases of diabetes and its complications are on the rise. This review article provides a comprehensive account of the ameliorative effect of prebiotics and probiotics individually or in combination i.e. synbiotics on health complications induced by Type 2 Diabetes Mellitus (T2DM). Recent advances in the field underscore encouraging outcomes suggesting the consumption of synbiotics leads to favorable changes in the gut microbiota. These changes result in the production of bioactive metabolites such as short-chain fatty acids (crucial for lowering blood sugar levels), reducing inflammation, preventing insulin resistance, and encouraging the release of glucagon-like peptide-1 in the host. Notably, novel strategies supplementing synbiotics to support gut microbiota are gaining attraction as pivotal interventions in mitigating T2DM-induced health complications. Thus, by nurturing a symbiotic relationship between prebiotics and probiotics i.e. synbiotics, these interventions hold promise in reshaping the microbial landscape of the gut thereby offering a multifaceted approach to managing T2DM and its associated morbidities. Supporting the potential of synbiotics underscores a paradigm shift toward holistic and targeted interventions in diabetes management, offering prospects for improved outcomes and enhanced quality of life for affected individuals. Nevertheless, more research needs to be done to better understand the single and multispecies pre/pro and synbiotics in the prevention and management of T2DM-induced health complications.
Collapse
Affiliation(s)
- Kalpana Baghel
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Aamir Khan
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
7
|
Colloca A, Donisi I, Anastasio C, Balestrieri ML, D’Onofrio N. Metabolic Alteration Bridging the Prediabetic State and Colorectal Cancer. Cells 2024; 13:663. [PMID: 38667278 PMCID: PMC11049175 DOI: 10.3390/cells13080663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Prediabetes and colorectal cancer (CRC) represent compelling health burdens responsible for high mortality and morbidity rates, sharing several modifiable risk factors. It has been hypothesized that metabolic abnormalities linking prediabetes and CRC are hyperglycemia, hyperinsulinemia, and adipokines imbalance. The chronic stimulation related to these metabolic signatures can favor CRC onset and development, as well as negatively influence CRC prognosis. To date, the growing burden of prediabetes and CRC has generated a global interest in defining their epidemiological and molecular relationships. Therefore, a deeper knowledge of the metabolic impairment determinants is compelling to identify the pathological mechanisms promoting the onset of prediabetes and CRC. In this scenario, this review aims to provide a comprehensive overview on the metabolic alterations of prediabetes and CRC as well as an overview of recent preventive and therapeutic approaches for both diseases, focusing on the role of the metabolic state as a pivotal contributor to consider for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (I.D.); (C.A.); (M.L.B.)
| |
Collapse
|
8
|
Raut B, Upadhyaya SR, Bashyal J, Parajuli N. In Silico and In Vitro Analyses to Repurpose Quercetin as a Human Pancreatic α-Amylase Inhibitor. ACS OMEGA 2023; 8:43617-43631. [PMID: 38027372 PMCID: PMC10666247 DOI: 10.1021/acsomega.3c05082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Human pancreatic α-amylase (HPA), situated at the apex of the starch digestion hierarchy, is an attractive therapeutic approach to precisely regulate blood glucose levels, thereby efficiently managing diabetes. Polyphenols offer a natural and multifaceted approach to moderate postprandial sugar spikes, with their slight modulation in carbohydrate digestion and potential secondary benefits, such as antioxidant and anti-inflammatory effects. Taking into consideration the unfavorable side effects of currently available commercial medications, we aimed to study a library of polyphenols attributed to their remarkable antidiabetic properties and screened the most potent HPA inhibitor via a comprehensive in silico study encompassing molecular docking, molecular mechanics with generalized Born and surface area solvation (MM/GBSA) calculation, molecular dynamics (MD) simulation, density functional theory (DFT) study, and pharmacokinetic properties followed by an in vitro assay. Significant hydrogen bonding with the catalytic triad residues of HPA, prominent MM/GBSA binding energy of -27.03 kcal/mol, and the stable nature of the protein-ligand complex with regard to 100 ns MD simulation screened quercetin as the best HPA inhibitor. Additionally, quercetin showed strong reactivity in the substrate-binding pocket of HPA and exhibited favorable pharmacokinetic properties with a considerable inhibitory concentration (IC50) of 57.37 ± 0.9 μg/mL against α-amylase. This study holds prospects for HPA inhibition and suggests quercetin as an approach to therapy for diabetes; however, it is imperative to conduct further research.
Collapse
Affiliation(s)
- Bimal
K. Raut
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Siddha Raj Upadhyaya
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Jyoti Bashyal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| |
Collapse
|
9
|
Gan L, Inamura Y, Shimizu Y, Yokoi Y, Ohnishi Y, Song Z, Kumaki Y, Kikukawa T, Demura M, Ito M, Ayabe T, Nakamura K, Aizawa T. A Basic Study of the Effects of Mulberry Leaf Administration to Healthy C57BL/6 Mice on Gut Microbiota and Metabolites. Metabolites 2023; 13:1003. [PMID: 37755283 PMCID: PMC10535692 DOI: 10.3390/metabo13091003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Mulberry leaves contain α-glucosidase inhibitors, which have hypoglycemic effects and are considered functional foods. However, few reports have covered the effects of mulberry leaf components on normal gut microbiota and gut metabolites. Herein, gut microbiota analysis and NMR-based metabolomics were performed on the feces of mulberry leaf powder (MLP)-treated mice to determine the effects of long-term MLP consumption. Gut microbiota in the mouse were analyzed using 16S-rRNA gene sequencing, and no significant differences were revealed in the diversity and community structure of the gut microbiota in the C57BL/6 mice with or without MLP supplementation. Thirty-nine metabolites were identified via 1H-NMR analysis, and carbohydrates and amino acids were significantly (p < 0.01-0.05) altered upon MLP treatment. In the MLP-treated group, there was a marked increase and decrease in maltose and glucose concentrations, respectively, possibly due to the degradation inhibitory activity of oligosaccharides. After 5 weeks, all amino acid concentrations decreased. Furthermore, despite clear fluctuations in fecal saccharide concentrations, short-chain fatty acid production via intestinal bacterial metabolism was not strongly affected. This study provides the knowledge that MLP administration can alter the gut metabolites without affecting the normal gut microbiota, which is useful for considering MLP as a healthy food source.
Collapse
Affiliation(s)
- Li Gan
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Yuga Inamura
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
- Laboratory of Biological Information Analysis Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Yu Shimizu
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Yuki Ohnishi
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Zihao Song
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Yasuhiro Kumaki
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Takashi Kikukawa
- Laboratory of Biological Information Analysis Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Makoto Demura
- Laboratory of Biological Information Analysis Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Masaaki Ito
- National Institute of Technology, Okinawa College, Nago 905-2192, Okinawa, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Tomoyasu Aizawa
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
10
|
Su J, Luo Y, Hu S, Tang L, Ouyang S. Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. Int J Mol Sci 2023; 24:13381. [PMID: 37686185 PMCID: PMC10487533 DOI: 10.3390/ijms241713381] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetes mellitus is a chronic multifaceted disease with multiple potential complications, the treatment of which can only delay and prolong the terminal stage of the disease, i.e., type 2 diabetes mellitus (T2DM). The World Health Organization predicts that diabetes will be the seventh leading cause of death by 2030. Although many antidiabetic medicines have been successfully developed in recent years, such as GLP-1 receptor agonists and SGLT-2 inhibitors, single-target drugs are gradually failing to meet the therapeutic requirements owing to the individual variability, diversity of pathogenesis, and organismal resistance. Therefore, there remains a need to investigate the pathogenesis of T2DM in more depth, identify multiple therapeutic targets, and provide improved glycemic control solutions. This review presents an overview of the mechanisms of action and the development of the latest therapeutic agents targeting T2DM in recent years. It also discusses emerging target-based therapies and new potential therapeutic targets that have emerged within the last three years. The aim of our review is to provide a theoretical basis for further advancement in targeted therapies for T2DM.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Yingsheng Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Lu Tang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
11
|
Naja K, Anwardeen N, Al-Hariri M, Al Thani AA, Elrayess MA. Pharmacometabolomic Approach to Investigate the Response to Metformin in Patients with Type 2 Diabetes: A Cross-Sectional Study. Biomedicines 2023; 11:2164. [PMID: 37626661 PMCID: PMC10452592 DOI: 10.3390/biomedicines11082164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin constitutes the foundation therapy in type 2 diabetes (T2D). Despite its multiple beneficial effects and widespread use, there is considerable inter-individual variability in response to metformin. Our objective is to identify metabolic signatures associated with poor and good responses to metformin, which may improve our ability to predict outcomes for metformin treatment. In this cross-sectional study, clinical and metabolic data for 119 patients with type 2 diabetes taking metformin were collected from the Qatar Biobank. Patients were empirically dichotomized according to their HbA1C levels into good and poor responders. Differences in the level of metabolites between these two groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. Good responders showed increased levels of sphingomyelins, acylcholines, and glutathione metabolites. On the other hand, poor responders showed increased levels of metabolites resulting from glucose metabolism and gut microbiota metabolites. The results of this study have the potential to increase our knowledge of patient response variability to metformin and carry significant implications for enabling personalized medicine.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
| | | | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (K.N.); (N.A.); (A.A.A.T.)
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
12
|
Lugones-Sánchez C, Santos-Mínguez S, Salvado R, González-Sánchez S, Tamayo-Morales O, Hoya-González A, Ramírez-Manent JI, Magallón-Botaya R, Quesada-Rico JA, Garcia-Cubillas MD, Rodríguez-Sánchez E, Gómez-Marcos MA, Benito-Sanchez R, Mira A, Hernandez-Rivas JM, Garcia-Ortiz L. Lifestyles, arterial aging, and its relationship with the intestinal and oral microbiota (MIVAS III study): a research protocol for a cross-sectional multicenter study. Front Public Health 2023; 11:1164453. [PMID: 37457284 PMCID: PMC10344706 DOI: 10.3389/fpubh.2023.1164453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background The microbiota is increasingly recognized as a significant factor in the pathophysiology of many diseases, including cardiometabolic diseases, with lifestyles probably exerting the greatest influence on the composition of the human microbiome. The main objectives of the study are to analyze the association of lifestyles (diet, physical activity, tobacco, and alcohol) with the gut and oral microbiota, arterial aging, and cognitive function in subjects without cardiovascular disease in the Iberian Peninsula. In addition, the study will examine the mediating role of the microbiome in mediating the association between lifestyles and arterial aging as well as cognitive function. Methods and analysis MIVAS III is a multicenter cross-sectional study that will take place in the Iberian Peninsula. One thousand subjects aged between 45 and 74 years without cardiovascular disease will be selected. The main variables are demographic information, anthropometric measurements, and habits (tobacco and alcohol). Dietary patterns will be assessed using a frequency consumption questionnaire (FFQ) and the Mediterranean diet adherence questionnaire. Physical activity levels will be evaluated using the International Physical Activity Questionnaire (IPAQ), Marshall Questionnaire, and an Accelerometer (Actigraph). Body composition will be measured using the Inbody 230 impedance meter. Arterial aging will be assessed through various means, including measuring medium intimate carotid thickness using the Sonosite Micromax, conducting analysis with pulse wave velocity (PWA), and measuring pulse wave velocity (cf-PWV) using the Sphygmocor System. Additional cardiovascular indicators such as Cardio Ankle Vascular Index (CAVI), ba-PWV, and ankle-brachial index (Vasera VS-2000®) will also be examined. The study will analyze the intestinal microbiota using the OMNIgene GUT kit (OMR-200) and profile the microbiome through massive sequencing of the 16S rRNA gene. Linear discriminant analysis (LDA), effect size (LEfSe), and compositional analysis, such as ANCOM-BC, will be used to identify differentially abundant taxa between groups. After rarefying the samples, further analyses will be conducted using MicrobiomeAnalyst and R v.4.2.1 software. These analyses will include various aspects, such as assessing α and β diversity, conducting abundance profiling, and performing clustering analysis. Discussion Lifestyle acts as a modifier of microbiota composition. However, there are no conclusive results demonstrating the mediating effect of the microbiota in the relationship between lifestyles and cardiovascular diseases. Understanding this relationship may facilitate the implementation of strategies for improving population health by modifying the gut and oral microbiota. Trial registration clinicaltrials.gov/ct2/show/NCT04924907, ClinicalTrials.gov, identifier: NCT04924907. Registered on 21 April 2021.
Collapse
Affiliation(s)
- Cristina Lugones-Sánchez
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Healthcare Management, Castilla y León Regional Health Authority (SACyL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
| | - Sandra Santos-Mínguez
- Cancer Research Centre, Institute of Biomedical Research of Salamanca (IBSAL), Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Rita Salvado
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Healthcare Management, Castilla y León Regional Health Authority (SACyL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Susana González-Sánchez
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Healthcare Management, Castilla y León Regional Health Authority (SACyL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
| | - Olaya Tamayo-Morales
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Healthcare Management, Castilla y León Regional Health Authority (SACyL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
| | - Amaya Hoya-González
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Healthcare Management, Castilla y León Regional Health Authority (SACyL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José I. Ramírez-Manent
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
- Calvià Primary Care Center, Balearic Islands Health Research Institute (IDIBSA), Health Service of Balearic Islands, Calvià, Spain
- Department of Medicine, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Rosa Magallón-Botaya
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | - José A. Quesada-Rico
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
- Department of Clinical Medicine, Miguel Hernandez University of Elche, Sant Joan d'Alacant, Spain
| | - Miriam D. Garcia-Cubillas
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Healthcare Management, Castilla y León Regional Health Authority (SACyL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Emiliano Rodríguez-Sánchez
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Healthcare Management, Castilla y León Regional Health Authority (SACyL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Manuel A. Gómez-Marcos
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Healthcare Management, Castilla y León Regional Health Authority (SACyL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Rocío Benito-Sanchez
- Cancer Research Centre, Institute of Biomedical Research of Salamanca (IBSAL), Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Alex Mira
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| | - Jesus M. Hernandez-Rivas
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Luis Garcia-Ortiz
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Healthcare Management, Castilla y León Regional Health Authority (SACyL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| | | |
Collapse
|
13
|
Jia L, Huang S, Sun B, Shang Y, Zhu C. Pharmacomicrobiomics and type 2 diabetes mellitus: A novel perspective towards possible treatment. Front Endocrinol (Lausanne) 2023; 14:1149256. [PMID: 37033254 PMCID: PMC10076675 DOI: 10.3389/fendo.2023.1149256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), a major driver of mortality worldwide, is more likely to develop other cardiometabolic risk factors, ultimately leading to diabetes-related mortality. Although a set of measures including lifestyle intervention and antidiabetic drugs have been proposed to manage T2DM, problems associated with potential side-effects and drug resistance are still unresolved. Pharmacomicrobiomics is an emerging field that investigates the interactions between the gut microbiome and drug response variability or drug toxicity. In recent years, increasing evidence supports that the gut microbiome, as the second genome, can serve as an attractive target for improving drug efficacy and safety by manipulating its composition. In this review, we outline the different composition of gut microbiome in T2DM and highlight how these microbiomes actually play a vital role in its development. Furthermore, we also investigate current state-of-the-art knowledge on pharmacomicrobiomics and microbiome's role in modulating the response to antidiabetic drugs, as well as provide innovative potential personalized treatments, including approaches for predicting response to treatment and for modulating the microbiome to improve drug efficacy or reduce drug toxicity.
Collapse
Affiliation(s)
- Liyang Jia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiqiong Huang
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Boyu Sun
- Department of Pharmacy, The Third People’s Hospital of Qingdao, Qingdao, China
| | - Yongguang Shang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yongguang Shang, ; Chunsheng Zhu,
| | - Chunsheng Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yongguang Shang, ; Chunsheng Zhu,
| |
Collapse
|
14
|
Ojo O, Wang X, Ojo OO, Brooke J, Jiang Y, Dong Q, Thompson T. The Effect of Prebiotics and Oral Anti-Diabetic Agents on Gut Microbiome in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. Nutrients 2022; 14:nu14235139. [PMID: 36501168 PMCID: PMC9739188 DOI: 10.3390/nu14235139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Nutritional interventions such as the use of prebiotics can promote eubiosis of gut microbiome and maintain glucose homeostasis in patients with type 2 diabetes (T2D). However, it would appear that results of the effects of prebiotics on the community of microbes in the gut are not consistent. Aim: To examine the effect of prebiotics and oral antidiabetic agents on gut microbiome in patients with T2D. Methods: The PRISMA Extension Statement for Systematic Reviews and Network Meta-analyses was used to conduct this review. Searches were carried out in EMBASE, EBSCO-host databases, Google Scholar and the reference lists of articles for studies that are relevant to the research question, from database inception to 15 August 2022. The search strategy was based on PICOS framework. Network Meta-analysis which allows the estimation of relative treatment effects by combing both direct trial evidence (e.g., treatment A vs. treatment B) and indirect evidence was conducted. Furthermore, pairwise meta-analysis was also carried out to estimate effect sizes based on head-to-head comparisons of treatments and/or control conditions. Results: Findings of the Network meta-analysis revealed that prebiotics significantly reduced HbA1c compared with control and the SMD was −0.43 [95% CI, −0.77, −0.08; p = 0.02], whereas there was no significant difference (p > 0.05) between the other treatments and control. In addition, anti-diabetic agents including glipizide and metformin also reduced HbA1C, although these were not significantly different (p > 0.05) from control. While prebiotics promoted Bifidobacterium and Akkermansia, the improvements were not significantly different (p > 0.05) from control. On the other hand, metformin decreased the relative abundance of Bifidobacterium, but increased Lactobacillus and Akkermansia, although the differences were not significant (p > 0.05) compared with control. With respect to fasting blood glucose and BMI, the effects of prebiotics and oral antidiabetic agents did not differ significantly (p > 0.05) from controls. Conclusions: The findings of the systematic review and Network meta-analysis demonstrated prebiotics were significantly (p < 0.05) more effective in reducing HbA1c than control in patients with T2D. However, the effects of prebiotics and oral antidiabetic agents did not differ significantly (p > 0.05) from the controls in relation to fasting blood glucose, post-prandial blood glucose, body mass index and the genera of gut bacteria examined. More studies are required to fully investigate the effects of prebiotics and oral antidiabetic agents in patients with T2D
Collapse
Affiliation(s)
- Omorogieva Ojo
- School of Health Sciences, Avery Hill Campus, University of Greenwich, London SE9 2UG, UK
- Correspondence:
| | - Xiaohua Wang
- The School of Nursing, Soochow University, Suzhou 215006, China
| | | | - Joanne Brooke
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Yiqing Jiang
- The School of Nursing, Soochow University, Suzhou 215006, China
| | - Qingqing Dong
- The School of Nursing, Soochow University, Suzhou 215006, China
| | - Trevor Thompson
- School of Human Sciences, Avery Hill Campus, University of Greenwich, London SE9 2UG, UK
| |
Collapse
|
15
|
Takeuchi Y, Mizukami H, Kudoh K, Osonoi S, Sasaki T, Kushibiki H, Ogasawara S, Hara Y, Igawa A, Pan X, Yamada T, Yamazaki K, Mikami T, Daimon M, Yagihashi S, Hakamada K, Nakaji S. The diversity and abundance of gut microbiota are associated with the pain sensation threshold in the Japanese population. Neurobiol Dis 2022; 173:105839. [PMID: 35988875 DOI: 10.1016/j.nbd.2022.105839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022] Open
Abstract
Small fibre neuropathy (SFN) is an initial pathology of diabetic polyneuropathy (DPN). Serum lipopolysaccharide binding protein levels are positively correlated with the pain threshold in the foot, suggesting that the abundance of gut Gram-negative bacilli, which are a source of lipopolysaccharides, may be involved in the development of DPN. Furthermore, the abundance of the gut and oral microbiota is assumed to be involved in the pathogenesis of diabetes. Nevertheless, the association between SFN and the microbiota has not been clarified. A total of 1056 individuals were recruited in the 2018 Iwaki Health Promotion Project. Pain sensation was evaluated based on the pain threshold from intraepidermal electrical stimulation (PINT). Patients with PINT scores <0.15 mA were categorized into the low-PINT group (n = 718); otherwise, they were categorized into the high-PINT group (n = 283). Furthermore, each group was divided into the subjects with or without glucose tolerance based on HbA1c levels, fasting blood glucose levels and diabetic history. Principal coordinate analysis and α- and β-diversity of the microbiota were evaluated. The correlation between clinical and microbiota data was examined. Oral microbiota diversity showed no structural differences according to PINT scores, whereas principal coordinate analysis and α- and β-diversity revealed significant structural differences in gut microbiota (p < 0.01, p < 0.05 and p < 0.05, respectively), even after the participants with glucose intolerance were excluded (p < 0.01, p < 0.05 and p < 0.05, respectively). The relative abundance of the genus Bacteroides was significantly lower in high-PINT participants compared with low-PINT participants (10 ± 6.7% vs. 11.3 ± 7.0%, p < 0.01), even after the exclusion of subjects with diabetes and impaired fasting glucose (10.0 ± 6.5% vs. 11.2 ± 6.9%, p < 0.05). In univariate linear regression analyses, PINT was significantly correlated with metabolic syndrome parameters, eGFR, uric acid level and the abundance of Bacteroides. The correlation between Bacteroides and PINT scores remained significant after adjustment for multiple factors (β = -0.07181, p < 0.05). Changes of bacterial diversity and a low abundance of gut Bacteroides were correlated with elevated PINT scores in the Japanese population. This correlation may represent a new therapeutic option for SFN.
Collapse
Affiliation(s)
- Yuki Takeuchi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yutaro Hara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Akiko Igawa
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Xuekai Pan
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Takahiro Yamada
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
16
|
Zhao Q, Shi J, Chen S, Hao D, Wan S, Niu H, Zhang Y. Salidroside Affects Gut Microbiota Structure in db/db Mice by Affecting Insulin, Blood Glucose and Body Weight. Diabetes Metab Syndr Obes 2022; 15:2619-2631. [PMID: 36060789 PMCID: PMC9438798 DOI: 10.2147/dmso.s372192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the regulatory effect of salidroside on the intestinal flora of mice with type 2 diabetes (T2DM) and its protective effect in the body. PATIENTS AND METHODS We acclimated 8-week-old mice for 7 days, divided them into 4 groups, and continued dosing for 8 weeks. We recorded weekly blood glucose levels and body weight for each mouse. After the completion of the feeding cycle, the 16S rRNA of the intestinal flora in the mice was sequenced, and the insulin and C-peptide levels in each group of mice were measured. Four samples were taken from each group for liver and kidney section staining. RESULTS Our results showed that gut microbiota diversity and function were significantly different between the diabetic mice and healthy mice and that insulin levels, body weight, and blood glucose levels could significantly influence gut microbiota changes at the genus level. The gut microbiota diversity and function of db/db mice were also altered after salidroside administration. Salidroside could attenuate inflammatory damage, lipid accumulation and inflammatory changes in the diabetic liver, as well as diabetic kidney damage. Candidatus arthromitus and Odoribacter are important species of the microbiota during diabetes and may serve as potential therapeutic targets. CONCLUSION Our investigation of the associated pathological conditions and fecal microbiota in db/db mice provides new insights into the pathogenesis of T2DM and provides implications for the diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- Qin Zhao
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Jing Shi
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Siyuan Chen
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Doudou Hao
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Sha Wan
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
| | - Haomeng Niu
- Medical School, Tibet University, Lhasa, Tibet Autonomous Region, People’s Republic of China
| | - Yongqun Zhang
- Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan Povince, People’s Republic of China
- Correspondence: Yongqun Zhang, Biobank, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital.C.T.), No. 20 Ximianqiao Road, Chengdu, Sichuan Povince, 610041, People’s Republic of China, Tel +86-28-85593218, Fax +86 28-85558071, Email
| |
Collapse
|