1
|
Khogali R, Bastos A, Getange D, Bargul JL, Kalayou S, Ongeso N, Verhoeven JTP, Kabii J, Ngiela J, Masiga D, Villinger J. Exploring the microbiomes of camel ticks to infer vector competence: insights from tissue-level symbiont-pathogen relationships. Sci Rep 2025; 15:5574. [PMID: 39955302 PMCID: PMC11830091 DOI: 10.1038/s41598-024-81313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 02/17/2025] Open
Abstract
Ticks are blood-feeding ectoparasites that harbor diverse pathogens and endosymbionts. Their microbial communities vary based on tick species, stage, sex, geographical location, surrounding environment, and tissue type. Understanding tick microbiota at the tissue level is crucial for unraveling how microbiomes are distributed in tick tissues and influence pathogen transmission. We used V1-V2 16 S rRNA gene sequencing to analyze tissue-specific bacterial compositions (hemolymph, saliva, salivary glands, and midgut) of Amblyomma gemma, Rhipicephalus pulchellus, Hyalomma dromedarii, and Hyalomma rufipes ticks collected from camels in Marsabit County, northern Kenya. The V1-V2 region of the 16 S rRNA gene effectively differentiated 43 Rickettsia africae and 16 Rickettsia aeschlimannii tick samples from other rickettsial species, as well as Coxiella endosymbionts from Coxiella burnetii. In contrast, the V3-V4 region sequences of these species could not be clearly distinguished. Coxiella endosymbionts were most common in Am. gemma and Rh. pulchellus, while Francisella endosymbionts predominated in Hyalomma ticks; both were primarily localized in the salivary glands. High abundances of Coxiella endosymbionts, as well as Pseudomonas, were associated with the absence or low abundance of Rickettsia pathogens in both Am. gemma and Rh. pulchellus, suggesting competitive interactions between these microbes. Additionally, Proteus mirabilis, an opportunistic pathogen of the urinary tract in humans, was found predominantly in Hyalomma ticks, except for the salivary glands, which were most abundant with Francisella endosymbionts. Furthermore, we detected the Acinetobacter, Pseudomonas, and Corynebacterium genera in all the tick tissues, supporting the hypothesis that these bacteria might circulate between camel blood and ticks. Saliva and hemolymph generally harbored more extracellular bacteria than the salivary glands and midgut. This study provides a new approach to unravel tick-endosymbiont-pathogen interactions by examining the tissue localization of tick-borne pathogens and symbionts in Am. gemma, Rh. pulchellus, Hy. dromedarii, and Hy. rufipes from camels in northern Kenya. Our findings establish a baseline for developing an understanding of the functional capacities of symbionts and for designing symbiont-based control strategies.
Collapse
Affiliation(s)
- Rua Khogali
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa.
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, Khartoum North, Sudan.
| | - Armanda Bastos
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - Shewit Kalayou
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Nehemiah Ongeso
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern, CH-3012, Switzerland
| | - Joost Theo Petra Verhoeven
- Centre for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - John Ngiela
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
2
|
Kratou M, Maitre A, Abuin-Denis L, Selmi R, Belkahia H, Alanazi AD, Gattan H, Al-Ahmadi BM, Shater AF, Mateos-Hernández L, Obregón D, Messadi L, Cabezas-Cruz A, Ben Said M. Microbial community variations in adult Hyalomma dromedarii ticks from single locations in Saudi Arabia and Tunisia. Front Microbiol 2025; 16:1543560. [PMID: 40008044 PMCID: PMC11850374 DOI: 10.3389/fmicb.2025.1543560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction The camel-infesting tick, Hyalomma dromedarii, is a prominent ectoparasite in the Middle East and North Africa (MENA) region, critically impacting camel health and acting as a vector for tick-borne pathogens. Despite prior studies on its microbiota, the effects of geographic origin and sex on microbial community structure and functional stability remain poorly understood. Methods To address this, we characterized the bacterial microbiota of H. dromedarii ticks collected from camels in Tunisia (TUN) and Saudi Arabia (SA) using 16S rRNA gene sequencing, microbial network analysis, and metabolic pathway prediction. Results Our findings indicate a dominant presence of Francisella endosymbionts in Tunisian ticks, suggesting adaptive roles of H. dromedarii ticks in arid ecosystems. Keystone taxa, particularly Staphylococcus and Corynebacterium, were identified as central to microbial network structure and resilience. Moreover, network robustness analyses demonstrated enhanced ecological stability in the Tunisian tick microbiota under perturbation, indicative of higher resilience to environmental fluctuations compared to Saudi Arabian ticks. Additionally, functional pathway predictions further revealed geographically distinct metabolic profiles between both groups (Tunisia vs. Saudi Arabia and males vs. females), underscoring environmental and biological influences on H. dromedarii microbiota assembly. Discussion These results highlight region-specific and sex-specific microbial adaptations in H. dromedarii, with potential implications for pathogen transmission dynamics and vector resilience. Understanding these microbial interactions may contribute to improved strategies for tick control and tick-borne disease prevention.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Hanène Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Abdullah D. Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Hattan Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| | - Bassam M. Al-Ahmadi
- Department of Biology, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia
| |
Collapse
|
3
|
Zając V, Bell-Sakyi L, Wójcik-Fatla A. Use of Tick Cell Lines in Co-Infection Studies with a Preliminary Study of Co-Culture of Borrelia burgdorferi and Anaplasma phagocytophilum. Pathogens 2025; 14:78. [PMID: 39861039 PMCID: PMC11769331 DOI: 10.3390/pathogens14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Ixodes ricinus is an important vector of infectious human and livestock diseases in Europe. Co-infections of pathogens in ticks and hosts have been reported. Tick cell lines offer a useful model system for study of co-infections. We present a review of the existing literature on co-infections in tick cell lines. Previous studies have demonstrated the usefulness of tick cell lines in studies on co-infection of different pathogens and their interaction with the tick microbiome. We also carried out a preliminary study to investigate the effects of co-culturing Borrelia burgdorferi and Anaplasma phagocytophilum on their growth and interactions with the Ixodes ricinus cell line IRE/CTVM19 over a 13-day period. Replication of both pathogens was quantified by real-time PCR. The presence of A. phagocytophilum appeared to have a slight inhibitory effect on the multiplication of B. burgdorferi, that were added subsequently. In contrast, the prior presence of B. burgdorferi appeared to have a stimulatory effect on A. phagocytophilum after 6 days in culture. We conclude that the IRE/CTVM19 tick cell line is suitable for simultaneous and continuous cultivation of both bacteria and can be applied in future research.
Collapse
Affiliation(s)
- Violetta Zając
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK;
| | - Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| |
Collapse
|
4
|
Zhong Z, Wang K, Wang J. Tick symbiosis. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101163. [PMID: 38244689 DOI: 10.1016/j.cois.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As obligate blood-feeders, ticks serve as vectors for a variety of pathogens that pose threats on both human and livestock health. The microbiota that ticks harbor play important roles in influencing tick nutrition, development, reproduction, and vector. These microbes also affect the capacity of ticks to transmit pathogens (vector competence). Therefore, comprehending the functions of tick microbiota will help in developing novel and effective tick control strategies. Here, we summarize the effects of main tick symbiotic bacteria on tick physiology and vector competency.
Collapse
Affiliation(s)
- Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Kun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China.
| |
Collapse
|
5
|
Mota TF, Fukutani ER, Martins KA, Salgado VR, Andrade BB, Fraga DBM, Queiroz ATL. Another tick bites the dust: exploring the association of microbial composition with a broad transmission competence of tick vector species. Microbiol Spectr 2023; 11:e0215623. [PMID: 37800912 PMCID: PMC10714957 DOI: 10.1128/spectrum.02156-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Some tick species are competent to transmit more than one pathogen while other species are, until now, known to be competent to transmit only one single or any pathogen. Such a difference in vector competence for one or more pathogens might be related to the microbiome, and understanding what differentiates these two groups of ticks could help us control several diseases aiming at the bacteria groups that contribute to such a broad vector competence. Using 16S rRNA from tick species that could be classified into these groups, genera such as Rickettsia and Staphylococcus seemed to be associated with such a broad vector competence. Our results highlight differences in tick species when they are divided based on the number of pathogens they are competent to transmit. These findings are the first step into understanding the relationship between one single tick species and the pathogens it transmits.
Collapse
Affiliation(s)
- Tiago F. Mota
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Eduardo R. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Kelsilandia A. Martins
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Vanessa R. Salgado
- Faculdade de Medicina Veterinária da União Metropolitana de Educação e Cultura (UNIME), Lauro de Freitas, Bahia, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Deborah B. M. Fraga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| |
Collapse
|
6
|
Boulanger N, Insonere JLM, Van Blerk S, Barthel C, Serres C, Rais O, Roulet A, Servant F, Duron O, Lelouvier B. Cross-alteration of murine skin and tick microbiome concomitant with pathogen transmission after Ixodes ricinus bite. MICROBIOME 2023; 11:250. [PMID: 37952001 PMCID: PMC10638774 DOI: 10.1186/s40168-023-01696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Ticks are major vectors of diseases affecting humans such as Lyme disease or domestic animals such as anaplasmosis. Cross-alteration of the vertebrate host skin microbiome and the tick microbiome may be essential during the process of tick feeding and for the mechanism of pathogen transmission. However, it has been poorly investigated. METHODS We used mice bitten by field-collected ticks (nymphs and adult ticks) in different experimental conditions to investigate, by 16S rRNA gene metabarcoding, the impact of blood feeding on both the mouse skin microbiome and the tick microbiome. We also investigated by PCR and 16S rRNA gene metabarcoding, the diversity of microorganisms transmitted to the host during the process of tick bite at the skin interface and the dissemination of the pathogen in host tissues (blood, heart, and spleen). RESULTS Most of the commensal bacteria present in the skin of control mice were replaced during the blood-feeding process by bacteria originating from the ticks. The microbiome of the ticks was also impacted by the blood feeding. Several pathogens including tick-borne pathogens (Borrelia/Borreliella, Anaplasma, Neoehrlichia, Rickettsia) and opportunistic bacteria (Williamsia) were transmitted to the skin microbiome and some of them disseminated to the blood or spleen of the mice. In the different experiments of this study, skin microbiome alteration and Borrelia/Borreliella transmission were different depending on the tick stages (nymphs or adult female ticks). CONCLUSIONS Host skin microbiome at the bite site was deeply impacted by the tick bite, to an extent which suggests a role in the tick feeding, in the pathogen transmission, and a potentially important impact on the skin physiopathology. The diversified taxonomic profiles of the tick microbiome were also modified by the blood feeding. Video Abstract.
Collapse
Affiliation(s)
- Nathalie Boulanger
- UR7290: Virulence bactérienne précoce: groupe Borrelia, FMTS, University of Strasbourg, Strasbourg, France.
| | | | | | - Cathy Barthel
- UR7290: Virulence bactérienne précoce: groupe Borrelia, FMTS, University of Strasbourg, Strasbourg, France
| | - Céline Serres
- Vaiomer, 516 rue Pierre et Marie Curie, 31670, Labège, France
| | - Olivier Rais
- Laboratoire d'écologie et d'épidémiologie parasitaires Institut de Biologie, University of Neuchatel, 2000, Neuchâtel, Switzerland
| | - Alain Roulet
- Vaiomer, 516 rue Pierre et Marie Curie, 31670, Labège, France
| | | | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), 911 Avenue Agropolis, 34394, Montpellier, France
| | | |
Collapse
|
7
|
Cao ML, Nie Y, Fu YT, Li R, Yi XL, Xiong J, Liu GH. Characterization of the complete mitochondrial genomes of five hard ticks and phylogenetic implications. Parasitol Res 2023:10.1007/s00436-023-07891-7. [PMID: 37329345 DOI: 10.1007/s00436-023-07891-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
Ticks are blood-sucking ectoparasites with significant medical and veterinary importance, capable of transmitting bacteria, protozoa, fungi, and viruses that cause a variety of human and animal diseases worldwide. In the present study, we sequenced the complete mitochondrial (mt) genomes of five hard tick species and analyzed features of their gene contents and genome organizations. The complete mt genomes of Haemaphysalis verticalis, H. flava, H. longicornis, Rhipicephalus sanguineus and Hyalomma asiaticum were 14855 bp, 14689 bp, 14693 bp, 14715 bp and 14722 bp in size, respectively. Their gene contents and arrangements are the same as those of most species of metastriate Ixodida, but distinct from species of genus Ixodes. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes with two different computational algorithms (Bayesian inference and maximum likelihood) revealed the monophylies of the genera Rhipicephalus, Ixodes and Amblyomma, however, rejected the monophyly of the genus Haemaphysalis. To our knowledge, this is the first report of the complete mt genome of H. verticalis. These datasets provide useful mtDNA markers for further studies of the identification and classification of hard ticks.
Collapse
Affiliation(s)
- Mei-Ling Cao
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Yu Nie
- College of Biotechnology, Hunan University of Environment and Biology, Hengyang, 421001, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Rong Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Xi-Long Yi
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Jun Xiong
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China.
| |
Collapse
|
8
|
Fernández-Ruiz N, Pinecki-Socias S, Estrada-Peña A, Wu-Chuang A, Maitre A, Obregón D, Cabezas-Cruz A, de Blas I, Nijhof AM. Decontamination protocols affect the internal microbiota of ticks. Parasit Vectors 2023; 16:189. [PMID: 37286996 DOI: 10.1186/s13071-023-05812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023] Open
Abstract
Studies on the microbiota of ticks have promoted hypotheses about the combined effects of the bacterial community, its functional contributions to the tick's physiology or probable competition effects with some tick-borne pathogens. However, knowledge on the origin of the microbiota of newly hatched larvae is missing. This study aimed to elucidate the source(s) of the microbiota in unfed tick larvae, addressing the composition of the "core microbiota" and the best ways to decontaminate eggs for microbiota studies. We applied laboratory degree bleach washes and/or ultraviolet light treatments on engorged Rhipicephalus australis females and/or their eggs. No significant effects of these treatments on the reproductive parameters of females and the hatching rates of eggs were observed. However, the different treatments did show striking effects on the composition of the microbiota. The results indicated that bleach washes disrupted the internal tick microbiota in females, implying that bleach may have entered the tick and subsequently affected the microbiota. Furthermore, the analyses of results demonstrated that the ovary is a main source of tick microbiota, while the contribution of Gené's organ (a part of the female reproductive system that secretes a protective wax coat onto tick eggs) or the male's spermatophore requires further investigation. Further studies are needed to identify best practice protocols for the decontamination of ticks for microbiota studies.
Collapse
Affiliation(s)
- Natalia Fernández-Ruiz
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain.
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013, Zaragoza, Spain.
| | - Sophia Pinecki-Socias
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Agustín Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013, Zaragoza, Spain
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Ignacio de Blas
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
| | - Ard M Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|