1
|
Ibeanu GC, Rowaiye AB, Okoli JC, Eze DU. Microbiome Differences in Colorectal Cancer Patients and Healthy Individuals: Implications for Vaccine Antigen Discovery. Immunotargets Ther 2024; 13:749-774. [PMID: 39698218 PMCID: PMC11652712 DOI: 10.2147/itt.s486731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Background Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with numerous risk factors contributing to its development. Recent research has illuminated the significant role of the gut microbiota in CRC pathogenesis, identifying various microbial antigens as potential targets for vaccine development. Aim This review aimed at exploring the potential sources of microbial antigens that could be harnessed to create effective CRC vaccines and understand the role of microbiome-CRC interactions in carcinogenesis. Methods A comprehensive search of original research and review articles on the pathological links between key microbial candidates, particularly those more prevalent in CRC tissues, was conducted. This involved extensive use of the PubMed and Medline databases, as well as the Google Scholar search engine, utilizing pertinent keywords. A total of one hundred and forty-three relevant articles in English, mostly published between 2018 and 2024, were selected. Results Numerous microbes, particularly bacteria and viruses, are significantly overrepresented in CRC tissues and have been shown to promote tumorigenesis by inducing inflammation and modulating the immune system. This makes them promising candidates for antigens in the development of CRC vaccines. Conclusion The selection of microbial antigens focuses on their capacity to trigger a strong immune response and their link to tumor presence and progression. Identifying and validating these antigens through preclinical testing is essential in developing a CRC vaccine.
Collapse
Affiliation(s)
- Gordon C Ibeanu
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Adekunle B Rowaiye
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
- Department of Agricultural Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Joy C Okoli
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Daniel U Eze
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| |
Collapse
|
2
|
Gaetano C, Atlante S, Gottardi Zamperla M, Barbi V, Gentilini D, Illi B, Malavolta M, Martelli F, Farsetti A. The COVID-19 legacy: consequences for the human DNA methylome and therapeutic perspectives. GeroScience 2024:10.1007/s11357-024-01406-7. [PMID: 39497009 DOI: 10.1007/s11357-024-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
The COVID-19 pandemic has left a lasting legacy on human health, extending beyond the acute phase of infection. This article explores the evidence suggesting that SARS-CoV-2 infection can induce persistent epigenetic modifications, particularly in DNA methylation patterns, with potential long-term consequences for individuals' health and aging trajectories. The review discusses the potential of DNA methylation-based biomarkers, such as epigenetic clocks, to identify individuals at risk for accelerated aging and tailor personalized interventions. Integrating epigenetic clock analysis into clinical management could mark a new era of personalized treatment for COVID-19, possibly helping clinicians to understand patient susceptibility to severe outcomes and establish preventive strategies. Several valuable reviews address the role of epigenetics in infectious diseases, including the Sars-CoV-2 infection. However, this article provides an original overview of the current understanding of the epigenetic dimensions of COVID-19, offering insights into the long-term health implications of the pandemic. While acknowledging the limitations of current data, we emphasize the need for future research to unravel the precise mechanisms underlying COVID-19-induced epigenetic changes and to explore potential approaches to target these modifications.
Collapse
Affiliation(s)
- Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | | | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Fabio Martelli
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy.
| |
Collapse
|
3
|
Blanco R, Muñoz JP. HPV and HCMV in Cervical Cancer: A Review of Their Co-Occurrence in Premalignant and Malignant Lesions. Viruses 2024; 16:1699. [PMID: 39599814 PMCID: PMC11599080 DOI: 10.3390/v16111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Cervical cancer remains a significant global health concern, particularly in low- and middle-income countries. While persistent infection with high-risk human papillomavirus (HR-HPV) is essential for cervical cancer development, it is not sufficient on its own, suggesting the involvement of additional cofactors. The human cytomegalovirus (HCMV) is a widespread β-herpesvirus known for its ability to establish lifelong latency and reactivate under certain conditions, often contributing to chronic inflammation and immune modulation. Emerging evidence suggests that HCMV may play a role in various cancers, including cervical cancer, through its potential to influence oncogenic pathways and disrupt host immune responses. This review explores clinical evidence regarding the co-presence of HR-HPV and HCMV in premalignant lesions and cervical cancer. The literature reviewed indicates that HCMV is frequently detected in cervical lesions, particularly in those co-infected with HPV, suggesting a potential synergistic interaction that could enhance HPV's oncogenic effects, thereby facilitating the progression from low-grade squamous intraepithelial lesions (LSIL) to high-grade squamous intraepithelial lesions (HSIL) and invasive cancer. Although the precise molecular mechanisms were not thoroughly investigated in this review, the clinical evidence suggests the importance of considering HCMV alongside HPV in the management of cervical lesions. A better understanding of the interaction between HR-HPV and HCMV may lead to improved diagnostic, therapeutic, and preventive strategies for cervical cancer.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
4
|
Neerumalla P, Jain R, Aboujaoude MT, Hudock TR, Song JJ, Cao BH, Chobrutskiy A, Chobrutskiy BI, Blanck G. Chemical Complementarity of Blood-Sourced, Breast Cancer-Related TCR CDR3s and the CMV UL29 and IE1 Antigens is Associated with Worse Overall Survival. Biochem Genet 2024:10.1007/s10528-024-10934-y. [PMID: 39356353 DOI: 10.1007/s10528-024-10934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
Cytomegalovirus (CMV) infection is common and becomes a particular concern in immunocompromised patients. Understanding the potential role CMV plays in breast cancer patients' disease progression is important for providing more patient-specific treatments. In this study, we analyzed whether a breast cancer patient's blood-sourced T-cell receptor (TCR) complementarity determining-3 (CDR3) amino acid (AA) sequences could provide an indication of the impact of a systemic CMV infection. Specifically, we assessed the chemical complementarity of patient TCR CDR3 AAs and CMV antigens to determine whether patients with greater complementarity also represented different survival probabilities. Initially, we examined five distinct CMV antigens, of which two, IE1 and UL29, represented TCR (TRA+ RB)-CDR3-CMV antigen complementarity scores (CSs) whereby cases representing the upper 50th percentile of CSs had a worse overall survival (log-rank p = 5.034E-3, for IE1). Then, an analysis of CSs representing previously identified, TCR IE1 epitopes indicated that greater TRB CDR3-IE1 epitope complementarities represented a worse OS (log-rank p = 0.0111). These results raise the question of whether a systemic, anti-CMV response leads to increased systemic inflammation, which is either directly or indirectly supportive of tumor growth; or are patients succumbing to a direct impact of CMV functions on tumor growth or metastasis?
Collapse
Affiliation(s)
- Pooja Neerumalla
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Rahul Jain
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Michael T Aboujaoude
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Tabitha R Hudock
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Bryan H Cao
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Barrionuevo CCLB, Baptista PPA, da Silva EF, da Silva BM, Goulart CDL, de Melo SA, da Silva VA, de Souza LLA, Monte RL, Almeida-Val FF, Feitoza PVS, Bastos MDS. Unveiling the Impact of Human Herpesviruses-Associated on CNS Infections: An Observational Study. Viruses 2024; 16:1437. [PMID: 39339913 PMCID: PMC11437476 DOI: 10.3390/v16091437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Human Herpesviruses (HHVs) play a significant role in neurological diseases such as encephalitis and meningitis, adding significant morbidity. This study aims to retrospectively analyze the effect of HHVs on patients with neurological symptoms, focusing on the Herpesviridae family's contributions to central nervous system (CNS) infections. METHODS This retrospective cohort study included 895 patients suspected of viral CNS infections, utilizing molecular diagnosis via qPCR to identify HHVs in cerebrospinal fluid (CSF) samples. This was conducted at a reference tertiary care hospital for infectious diseases in the western Brazilian Amazon from January 2015 to December 2022, focusing on the Herpesviridae family's clinical repercussions and of Cytomegalovirus in CNS infections. RESULTS The findings revealed that 7.5% of the analyzed samples tested positive for HHVs, with Human Cytomegalovirus (HCMV) and Epstein-Barr Virus (EBV) being the most prevalent. A significant association was found between HHVs and neurological diseases such as encephalitis and meningitis, especially among people living with HIV/AIDS (PLWHA), highlighting the opportunistic nature of these viruses. The study underscores the critical role of CSF analysis in diagnosing CNS infections and the complexity of managing these infections in HIV patients due to their immunocompromised status. CONCLUSIONS The results emphasize the need for comprehensive diagnostic approaches and tailored treatment strategies for CNS infections in immunocompromised individuals. The study calls for ongoing research and advancements in clinical practice to improve patient outcomes facing CNS infections, particularly those caused by HHVs.
Collapse
Affiliation(s)
- Caio Cesar L B Barrionuevo
- Programa de Pós Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055-038, Brazil
| | - Pedro P A Baptista
- Faculdade de Educação Física e Fisioterapia, Universidade Federal do Amazonas, Manaus 69060-001, Brazil
| | - Ewerton F da Silva
- Gerência de Bacteriologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Bernardo M da Silva
- Programa de Pós Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055-038, Brazil
| | - Cássia da L Goulart
- Programa de Pós Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055-038, Brazil
| | - Sabrina A de Melo
- Gerência de Bacteriologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | | | - Lara Laycia A de Souza
- Programa de Pós Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055-038, Brazil
| | - Rossicleia L Monte
- Gerência de Bacteriologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Fernando F Almeida-Val
- Programa de Pós Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055-038, Brazil
| | - Pablo Vinícius S Feitoza
- Departamento de Clínica Cirúrgica, Faculdade de Medicina, Universidade Federal do Amazonas, Manaus 69020-170, Brazil
| | - Michele de S Bastos
- Gerência de Bacteriologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Programa de Pós-Graduação em Ciências da Saúde (PPGCIS), Manaus 69020-180, Brazil
| |
Collapse
|
6
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
7
|
Jin Z, Liu M, Xie B, Wen W, Yan Y, Zhang Y, Li H, Shen Z, Jiang L, Gao M, Chen K, Zhao F. Generation of a medicine food homology formula and its likely mechanism in treatment of microvascular angina. Front Pharmacol 2024; 15:1404874. [PMID: 39281275 PMCID: PMC11401076 DOI: 10.3389/fphar.2024.1404874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Microvascular angina (MVA) is the most common cause of cardiac ischemic chest pain in patients without obstructive coronary artery disease (CAD) and lacks of effective treatment means. Medicine food homology (MFH) involves substances with both nutritional and medicinal qualities that have the potential to improve MVA symptoms as medicines, dietary supplements. However, research on MFH formula (MFHF) for MVA is not available. The study aims to generate a core MFHF for MVA through data mining and offer scientific backing for the utilization of edible medications in the prevention and alleviation of MVA. 11 databases were utilized to construct a database of MFH drugs, and the MFHF was generated through frequency analysis, association rule analysis, and clustering analysis. The composition of the formula is Codonopsis Radix, Astragali Radix, Platycodonis Radix, Persicae Semen, Glycyrrhizae Radix Et Rhizoma, Angelicae Sinensis Radix, and Allii Macrostemonis Bulbus. Through network pharmacology and molecular docking, we identified five major active components of MFHF: Adenosine, Nonanoic Acid, Lauric Acid, Caprylic Acid, and Enanthic Acid, along with nine core targets (NFKB1, ALB, AKT1, ACTB, TNF, IL6, ESR1, CASP3, and PTGS) for the improvement of MVA. These 5 active components have various biological activities, such as reducing oxidative stress, anti-inflammation, analgesia effect, inhibiting platelet aggregation, vasodilatation, vascular endothelial protection, and cardio-protection. GO and KEGG enrichment analyses revealed that MFHF mainly acted on the response to xenobiotic stimulus, integrative component of the plasma membrane, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding, pathways in cancer, lipid and atherosclerosis, human cytomegalovirus infection, and the PI3K-Akt signaling pathway, which are the main pathogenesis of MVA.
Collapse
Affiliation(s)
- Zhidie Jin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beili Xie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Yan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yangfang Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haohao Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - ZhengYu Shen
- Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Lulian Jiang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Mengjie Gao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fuhai Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Yan T, Pang X, Liang B, Meng Q, Wei H, Li W, Liu D, Hu Y. Comprehensive bioinformatics analysis of human cytomegalovirus pathway genes in pan-cancer. Hum Genomics 2024; 18:65. [PMID: 38886862 PMCID: PMC11181644 DOI: 10.1186/s40246-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a herpesvirus that can infect various cell types and modulate host gene expression and immune response. It has been associated with the pathogenesis of various cancers, but its molecular mechanisms remain elusive. METHODS We comprehensively analyzed the expression of HCMV pathway genes across 26 cancer types using the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We also used bioinformatics tools to study immune invasion and tumor microenvironment in pan-cancer. Cox regression and machine learning were used to analyze prognostic genes and their relationship with drug sensitivity. RESULTS We found that HCMV pathway genes are widely expressed in various cancers. Immune infiltration and the tumor microenvironment revealed that HCMV is involved in complex immune processes. We obtained prognostic genes for 25 cancers and significantly found 23 key genes in the HCMV pathway, which are significantly enriched in cellular chemotaxis and synaptic function and may be involved in disease progression. Notably, CaM family genes were up-regulated and AC family genes were down-regulated in most tumors. These hub genes correlate with sensitivity or resistance to various drugs, suggesting their potential as therapeutic targets. CONCLUSIONS Our study has revealed the role of the HCMV pathway in various cancers and provided insights into its molecular mechanism and therapeutic significance. It is worth noting that the key genes of the HCMV pathway may open up new doors for cancer prevention and treatment.
Collapse
Affiliation(s)
- Tengyue Yan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xianwu Pang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, China
| | - Boying Liang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qiuxia Meng
- School of Information and Managent, Guangxi Medical University, Nanning, China
| | - Huilin Wei
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Wen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, People's Republic of China.
| | - Yanling Hu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China.
| |
Collapse
|
9
|
Mohamed HT, El-Shinawi M, Mohamed MM. Editorial: Inflammatory tumor microenvironment: role of cytokines and virokines in breast cancer progression and metastasis. Front Cell Dev Biol 2024; 12:1414734. [PMID: 38903531 PMCID: PMC11188433 DOI: 10.3389/fcell.2024.1414734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
- Hossam Taha Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Science, Galala University, Suez, Egypt
| | | | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
10
|
Gunasegaran B, Ashley CL, Marsh-Wakefield F, Guillemin GJ, Heng B. Viruses in glioblastoma: an update on evidence and clinical trials. BJC REPORTS 2024; 2:33. [PMID: 39516641 PMCID: PMC11524015 DOI: 10.1038/s44276-024-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 02/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a lethal and aggressive brain tumour. While molecular characteristics of GB is studied extensively, the aetiology of GB remains uncertain. The interest in exploring viruses as a potential contributor to the development of GB stems from the notion that viruses are known to play a key role in pathogenesis of other human cancers such as cervical cancer. Nevertheless, the role of viruses in GB remains controversial. METHODS This review delves into the current body of knowledge surrounding the presence of viruses in GB as well as provide updates on clinical trials examining the potential inclusion of antiviral therapies as part of the standard of care protocol. CONCLUSIONS The review summarises current evidences and important gaps in our knowledge related to the presence of viruses in GB.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Caroline L Ashley
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Felix Marsh-Wakefield
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Centenary Institute, Camperdown, NSW, Australia
| | | | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Durocher Y. CHO cells for virus-like particle and subunit vaccine manufacturing. Vaccine 2024; 42:2530-2542. [PMID: 38503664 DOI: 10.1016/j.vaccine.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| |
Collapse
|
12
|
Toniutti M, Sasso AL, Carai A, Colafati GS, Piccirilli E, Del Baldo G, Mastronuzzi A. Central nervous system tumours in neonates: what should the neonatologist know? Eur J Pediatr 2024; 183:1485-1497. [PMID: 38206395 PMCID: PMC11001680 DOI: 10.1007/s00431-023-05404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Central nervous system (CNS) tumours in neonates are relatively rare and present differently when compared with those occurring later in childhood in terms of aetiology, clinical features, location, histology and prognosis. The clinical presentation is extremely variable. Even if the most frequent clinical sign is a macrocephaly, there are many other non-specific symptoms associated. The prognosis is usually poor with overall survival of less than 30%. Surgery continues to be the primary treatment for neonatal CNS tumours, aiming for a gross total resection, directly correlated with prognosis and the overall outcome. The chemotherapy is the only adjuvant therapy whereas the radiotherapy is avoided under three years of age because of the severe sequelae. Hence the importance of molecular characterization of these neoplasms in order to improve the accuracy of the diagnosis and identify new therapeutic targets. The aim of this review is to describe the main characteristics of these tumours and the recent advances in their treatment in order to recognize these pathologies in the prenatal period and create a multidisciplinary team providing the best possible treatment while minimising the risk of long-term complications. Neonatologists play a key role in the early detection, diagnostic evaluation, management and supportive care of these neonates. Conclusion: The aim of this review is to describe the main characteristics of these tumours and the recent advances in their treatment in order to ensure the essential knowledge that will help the neonatologist identify them and create a multidisciplinary team providing the best possible treatment while minimising the risk of long-term complications. What is Known: • Neonatal CNS tumours are relatively rare and their early identification is important to identify the best diagnostic-therapeutic management. • Surgery is the main treatment of neonatal CNS tumours. The extent of surgical resection directly correlates with prognosis and outcome. What is New: • Predisposing conditions such as Cancer Predisposition Syndromes must be considered. • Targeted drugs and other therapeutic strategies can be identified through molecular characterization.
Collapse
Affiliation(s)
- Maristella Toniutti
- Department of Medicine DAME-Division of Pediatrics, University of Udine, Udine, Italy
| | - Annalisa Lo Sasso
- Department of Medicine DAME-Division of Pediatrics, University of Udine, Udine, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Department of Diagnostic Imaging Oncological Neuroradiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eleonora Piccirilli
- Department of Diagnostic Imaging Oncological Neuroradiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
13
|
Isaguliants MG, Ivanov AV, Buonaguro FM. Chronic Viral Infections and Cancer, Openings for Therapies and Vaccines. Cancers (Basel) 2024; 16:818. [PMID: 38398209 PMCID: PMC10886681 DOI: 10.3390/cancers16040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024] Open
Abstract
Infections are responsible for approximately one out of six cases of cancer worldwide [...].
Collapse
Affiliation(s)
- Maria G. Isaguliants
- Institute of Microbiology and Virology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy;
| |
Collapse
|
14
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
15
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
16
|
Dai L, Wilson LG, Nakagawa M, Qin Z. Coinfections with additional oncoviruses in HPV+ individuals: Status, function and potential clinical implications. J Med Virol 2024; 96:e29363. [PMID: 38178584 PMCID: PMC10783544 DOI: 10.1002/jmv.29363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Oncovirus infections account for an estimated 12%-20% of human cancers worldwide. High-risk human papillomavirus (HPV) infection is the etiological agent of some malignancies such as cervical, oropharyngeal, anal, penile, vaginal, and vulvar cancers. However, HPV infection is not the only cause of these cancers or may not be sufficient to initiate cancer development. Actually, certain other risk factors including additional oncoviruses coinfections have been reported to increase the risk of patients exposed to HPV for developing different HPV-related cancers. In the current review, we summarize recent findings about coinfections with different oncoviruses in HPV+ patients from both clinical and mechanistic studies. We believe such efforts may lead to an interesting direction for improving our understanding and developing new treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Lillie G. Wilson
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Mayumi Nakagawa
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| |
Collapse
|
17
|
Šudomová M, Hassan STS. Herpesvirus Diseases in Humans and Animals: Recent Developments, Challenges, and Charting Future Paths. Pathogens 2023; 12:1422. [PMID: 38133305 PMCID: PMC10745940 DOI: 10.3390/pathogens12121422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Herpesviruses, a family of enveloped DNA viruses, pose significant threats to both humans and animals [...].
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
18
|
Jian C, Jing Z, Yinhang W, Jinlong D, Yuefen P, Quan Q, Shuwen H. Colorectal cancer and gut viruses: a visualized analysis based on CiteSpace knowledge graph. Front Microbiol 2023; 14:1239818. [PMID: 37928670 PMCID: PMC10622771 DOI: 10.3389/fmicb.2023.1239818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Background Gut microbiome is a complex community of microbes present in the human gut and plays an important role in the occurrence and progression of colorectal cancer (CRC). However, the relationship between virus and CRC has not been fully understood. Objective To explore the hot spots and research trends in the field of CRC and virus. Methods By using the bibliometric analysis tool CiteSpace and based on the articles of the Web of Science Core Collection (WoSCC) database, the country, institution, highly cited literature, keywords and so on were visually analyzed. Results A total of 356 research articles on CRC from 2001 to 2023 were thoroughly analyzed. The USA and China have made the largest contribution in the field of virus and CRC. The Helmholtz Association published the most papers. There were relatively few cooperations among institutions from different countries. The results of keyword cluster analysis proved that the literature on the relationship between human cytomegalovirus (CMV) and CRC was the most widely studied aspect in this field. "Gut microbiota," "inflammatory bowel disease," "hepatitis b virus," and "human papillomavirus infection" are the current research hotspots; "oncolytic virus," "apoptosis," and "gut microbiome" are the recent research frontiers and should be paid closer attention. Conclusion By using CiteSpace bibliometric software, the visual analysis reflected the research trends and hot topics of virus and CRC. In addition, the prevalence and mechanism of specific virus on CRC were also reviewed, which provides valuable references for future CRC research.
Collapse
Affiliation(s)
- Chu Jian
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Zhuang Jing
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Wu Yinhang
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Duan Jinlong
- Huzhou Hospital of Traditional Chinese Medicine, Huzhou, China
| | - Pan Yuefen
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Qi Quan
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Han Shuwen
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| |
Collapse
|
19
|
El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene 2023; 42:3047-3061. [PMID: 37634008 PMCID: PMC10555822 DOI: 10.1038/s41388-023-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Human cytomegalovirus (HCMV) infection has been implicated in epithelial ovarian cancer (OC). Polyploidy giant cancer cells (PGCCs) have been observed in high-grade serous ovarian carcinoma (HGSOC); they possess cancer stem cell-like characteristics and give rise to progeny cells expressing epithelial-mesenchymal transition (EMT) markers. EZH2 plays a potential oncogenic role, correlating with high proliferative index and tumor grade in OC. Herein, we present the experimental evidence for HCMV as a reprogramming vector that elicited human ovarian epithelial cells (OECs) transformation leading to the generation of "CMV-transformed Ovarian cells" (CTO). The infection with the two high-risk clinical strains, namely HCMV-DB and BL provoked a distinct cellular and molecular mechanisms in infected OECs. EZH2 upregulation and cellular proliferation were curtailed by using EZH2 inhibitors. The HGSOC biopsies were characterized by an elevated EZH2 expression, possessing a strong positive correlation between the aforementioned marker and HCMV. From HGSOC biopsies, we isolated three HCMV clinical strains that transformed OECs generating CTO cells which displayed proliferative potentials in addition to EZH2 upregulation and PGCCs generation; these features were reduced upon EZH2 inhibition. High-risk HCMV strains transformed OECs confirming an HCMV-induced epithelial ovarian cancer model and highlighting EZH2 tumorigenic properties. Our findings might be highly relevant in the pathophysiology of ovarian tumors thereby nominating new targeted therapeutics.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Racha Mansar
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|