1
|
Tariq H, Bukhari SZ, An R, Dong J, Ihsan A, Younis MR. Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy. Mater Today Bio 2025; 30:101440. [PMID: 39866781 PMCID: PMC11758955 DOI: 10.1016/j.mtbio.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently. Exosomes are involved in strategic phases of the onset and development of atherosclerosis because they have been identified to control pathophysiologic pathways including inflammation, angiogenesis, or senescence. This review investigates the potential role of stem cell-derived exosomes in atherosclerosis management. We briefly introduced atherosclerosis and stem cell therapy including stem cell-derived exosomes. The biogenesis of exosomes along with their secretion and isolation have been elaborated. The design engineering of exosomes has been summarized to present how drug loading and surface modification with targeting ligands can improve the therapeutic and targeting capacity of exosomes, demonstrating atheroprotective action. Moreover, the mechanism of action (endothelial dysfunction, reduction of dyslipidemia, macrophage polarization, vascular calcification, and angiogenesis) of drug-loaded exosomes to treat atherosclerosis has been discussed in detail. In the end, a comparative and balanced viewpoint has been given regarding the current challenges and potential solutions to advance exosome engineering for cardiovascular therapeutic applications.
Collapse
Affiliation(s)
- Hassan Tariq
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan Younis
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Lee WJ, Cho KJ, Kim GW. Mitigation of Atherosclerotic Vascular Damage and Cognitive Improvement Through Mesenchymal Stem Cells in an Alzheimer's Disease Mouse Model. Int J Mol Sci 2024; 25:13210. [PMID: 39684920 DOI: 10.3390/ijms252313210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive memory loss and other cognitive disturbances. Patients with AD can be vulnerable to vascular damage, and damaged vessels can lead to cognitive impairment. Mesenchymal stem cell (MSC) treatment has shown potential in ameliorating AD pathogenesis, but its effect on vascular function remains unclear. This study aimed to improve cognitive function by alleviating atherosclerosis-induced vessel damage using MSCs in mice with a genetic AD background. In this study, a 5xFAD mouse model of AD was used, and atherosclerotic vessel damage was induced by high-fat diets (HFDs). MSCs were injected into the tail vein along with mannitol in 5xFAD mice on an HFD. MSCs were detected in the brain, and vascular damage was improved following MSC treatment. Behavioral tests showed that MSCs enhanced cognitive function, as measured by the Y-maze and passive avoidance tests. Additionally, muscle strength measured by the rotarod test was also increased by MSCs in AD mice with vessel damage induced by HFDs. Overall, our results suggest that stem cells can alleviate vascular damage caused by metabolic diseases, including HFDs, and vascular disease in individuals carrying the AD gene. Consequently, this alleviates cognitive decline related to vascular dementia symptoms.
Collapse
Affiliation(s)
- Woong Jin Lee
- Department of Neurology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung Joo Cho
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Gyung Whan Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
4
|
Yuce K. The Application of Mesenchymal Stem Cells in Different Cardiovascular Disorders: Ways of Administration, and the Effectors. Stem Cell Rev Rep 2024; 20:1671-1691. [PMID: 39023739 DOI: 10.1007/s12015-024-10765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The heart is an organ with a low ability to renew and repair itself. MSCs have cell surface markers such as CD45-, CD34-, CD31-, CD4+, CD11a+, CD11b+, CD15+, CD18+, CD25+, CD49d+, CD50+, CD105+, CD73+, CD90+, CD9+, CD10+, CD106+, CD109+, CD127+, CD120a+, CD120b+, CD124+, CD126+, CD140a+, CD140b+, adherent properties and the ability to differentiate into cells such as adipocytes, osteoblasts and chondrocytes. Autogenic, allogeneic, normal, pretreated and genetically modified MSCs and secretomes are used in preclinical and clinical studies. MSCs and their secretomes (the total released molecules) generally have cardioprotective effects. Studies on cardiovascular diseases using MSCs and their secretomes include myocardial infraction/ischemia, fibrosis, hypertrophy, dilated cardiomyopathy and atherosclerosis. Stem cells or their secretomes used for this purpose are administered to the heart via intracoronary (Antegrade intracoronary and retrograde coronary venous injection), intramyocardial (Transendocardial and epicardial injection) and intravenous routes. The protective effects of MSCs and their secretomes on the heart are generally attributed to their differentiation into cardiomyocytes and endothelial cells, their immunomodulatory properties, paracrine effects, increasing blood vessel density, cardiac remodeling, and ejection fraction and decreasing apoptosis, the size of the wound, end-diastolic volume, end-systolic volume, ventricular myo-mass, fibrosis, matrix metalloproteins, and oxidative stress. The present review aims to assist researchers and physicians in selecting the appropriate cell type, secretomes, and technique to increase the chance of success in designing therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Kemal Yuce
- Physiology, Department of Basic Medical Sciences, Medicine Faculty, Selcuk University, Konya, Türkiye.
| |
Collapse
|
5
|
Wang L, Huang S, Liang X, Zhou J, Han Y, He J, Xu D. Immuno-modulatory role of baicalin in atherosclerosis prevention and treatment: current scenario and future directions. Front Immunol 2024; 15:1377470. [PMID: 38698839 PMCID: PMC11063305 DOI: 10.3389/fimmu.2024.1377470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Atherosclerosis (AS) is recognized as a chronic inflammatory condition characterized by the accumulation of lipids and inflammatory cells within the damaged walls of arterial vessels. It is a significant independent risk factor for ischemic cardiovascular disease, ischemic stroke, and peripheral arterial disease. Despite the availability of current treatments such as statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and lifestyle modifications for prevention, AS remains a leading cause of morbidity and economic burden worldwide. Thus, there is a pressing need for the development of new supplementary and alternative therapies or medications. Huangqin (Scutellaria baicalensis Georgi. [SBG]), a traditional Chinese medicine, exerts a significant immunomodulatory effect in AS prevention and treatment, with baicalin being identified as one of the primary active ingredients of traditional Chinese medicine. Baicalin offers a broad spectrum of pharmacological activities, including the regulation of immune balance, antioxidant and anti-inflammatory effects, and improvement of lipid metabolism dysregulation. Consequently, it exerts beneficial effects in both AS onset and progression. This review provides an overview of the immunomodulatory properties and mechanisms by which baicalin aids in AS prevention and treatment, highlighting its potential as a clinical translational therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiangshan He
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Danping Xu
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
6
|
Egea V. Caught in action: how MSCs modulate atherosclerotic plaque. Front Cell Dev Biol 2024; 12:1379091. [PMID: 38601079 PMCID: PMC11004314 DOI: 10.3389/fcell.2024.1379091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Atherosclerosis (AS) is a medical condition marked by the stiffening and constriction of the arteries. This is caused by the accumulation of plaque, a substance made up of fat, cholesterol, calcium, and other elements present in the blood. Over time, this plaque solidifies and constricts the arteries, restricting the circulation of oxygen-rich blood to the organs and other body parts. The onset and progression of AS involve a continuous inflammatory response, including the infiltration of inflammatory cells, foam cells derived from monocytes/macrophages, and inflammatory cytokines and chemokines. Mesenchymal stromal cells (MSCs), a type of multipotent stem cells originating from various body tissues, have recently been demonstrated to have a protective and regulatory role in diseases involving inflammation. Consequently, the transplantation of MSCs is being proposed as a novel therapeutic strategy for atherosclerosis treatment. This mini-review intends to provide a summary of the regulatory effects of MSCs at the plaque site to lay the groundwork for therapeutic interventions.
Collapse
Affiliation(s)
- Virginia Egea
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
7
|
Zhang L, Wu X, Hong L. Endothelial Reprogramming in Atherosclerosis. Bioengineering (Basel) 2024; 11:325. [PMID: 38671747 PMCID: PMC11048243 DOI: 10.3390/bioengineering11040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Atherosclerosis (AS) is a severe vascular disease that results in millions of cases of mortality each year. The development of atherosclerosis is associated with vascular structural lesions, characterized by the accumulation of immune cells, mesenchymal cells, lipids, and an extracellular matrix at the intimal resulting in the formation of an atheromatous plaque. AS involves complex interactions among various cell types, including macrophages, endothelial cells (ECs), and smooth muscle cells (SMCs). Endothelial dysfunction plays an essential role in the initiation and progression of AS. Endothelial dysfunction can encompass a constellation of various non-adaptive dynamic alterations of biology and function, termed "endothelial reprogramming". This phenomenon involves transitioning from a quiescent, anti-inflammatory state to a pro-inflammatory and proatherogenic state and alterations in endothelial cell identity, such as endothelial to mesenchymal transition (EndMT) and endothelial-to-immune cell-like transition (EndIT). Targeting these processes to restore endothelial balance and prevent cell identity shifts, alongside modulating epigenetic factors, can attenuate atherosclerosis progression. In the present review, we discuss the role of endothelial cells in AS and summarize studies in endothelial reprogramming associated with the pathogenesis of AS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Xiao W, Shi J. Application of adipose-derived stem cells in ischemic heart disease: theory, potency, and advantage. Front Cardiovasc Med 2024; 11:1324447. [PMID: 38312236 PMCID: PMC10834651 DOI: 10.3389/fcvm.2024.1324447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) represent an innovative candidate to treat ischemic heart disease (IHD) due to their abundance, renewable sources, minor invasiveness to obtain, and no ethical limitations. Compared with other mesenchymal stem cells, ASCs have demonstrated great advantages, especially in the commercialization of stem cell-based therapy. Mechanistically, ASCs exert a cardioprotective effect not only through differentiation into functional cells but also via robust paracrine of various bioactive factors that promote angiogenesis and immunomodulation. Exosomes from ASCs also play an indispensable role in this process. However, due to the distinct biological functions of ASCs from different origins or donors with varing health statuses (such as aging, diabetes, or atherosclerosis), the heterogeneity of ASCs deserves more attention. This prompts scientists to select optimal donors for clinical applications. In addition, to overcome the primary obstacle of poor retention and low survival after transplantation, a variety of studies have been dedicated to the engineering of ASCs with biomaterials. Besides, clinical trials have confirmed the safety and efficacy of ASCs therapy in the context of heart failure or myocardial infarction. This article reviews the theory, efficacy, and advantages of ASCs-based therapy, the factors affecting ASCs function, heterogeneity, engineering strategies and clinical application of ASCs.
Collapse
Affiliation(s)
| | - Jiahai Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
9
|
Li H, Ji XQ, Zhang SM, Bi RH. Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive properties of human umbilical cord mesenchymal stem cells. World J Stem Cells 2023; 15:999-1016. [PMID: 38058960 PMCID: PMC10696190 DOI: 10.4252/wjsc.v15.i11.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have great potential for the treatment of various immune diseases due to their unique immunomodulatory properties. However, MSCs exposed to the harsh inflammatory environment of damaged tissue after intravenous transplantation cannot exert their biological effects, and therefore, their therapeutic efficacy is reduced. In this challenging context, an in vitro preconditioning method is necessary for the development of MSC-based therapies with increased immunomodulatory capacity and transplantation efficacy. AIM To determine whether hypoxia and inflammatory factor preconditioning increases the immunosuppressive properties of MSCs without affecting their biological characteristics. METHODS Umbilical cord MSCs (UC-MSCs) were pretreated with hypoxia (2% O2) exposure and inflammatory factors (interleukin-1β, tumor necrosis factor-α, interferon-γ) for 24 h. Flow cytometry, polymerase chain reaction, enzyme-linked immunosorbent assay and other experimental methods were used to evaluate the biological characteristics of pretreated UC-MSCs and to determine whether pretreatment affected the immunosuppressive ability of UC-MSCs in coculture with immune cells. RESULTS Pretreatment with hypoxia and inflammatory factors caused UC-MSCs to be elongated but did not affect their viability, proliferation or size. In addition, pretreatment significantly decreased the expression of coagulation-related tissue factors but did not affect the expression of other surface markers. Similarly, mitochondrial function and integrity were retained. Although pretreatment promoted UC-MSC apoptosis and senescence, it increased the expression of genes and proteins related to immune regulation. Pretreatment increased peripheral blood mononuclear cell and natural killer (NK) cell proliferation rates and inhibited NK cell-induced toxicity to varying degrees. CONCLUSION In summary, hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics.
Collapse
Affiliation(s)
- Hang Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiao-Qing Ji
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Shu-Ming Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ri-Hui Bi
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Hospital Affiliated to Shanxi Medical University, The Third Hospital of Shanxi Medical University, Taiyuan 030002, Shanxi Province, China.
| |
Collapse
|
10
|
Al-Dhalimy AMB, Salim HM, Shather AH, Naser IH, Hizam MM, Alshujery MK. The pathological and therapeutically role of mesenchymal stem cell (MSC)-derived exosome in degenerative diseases; Particular focus on LncRNA and microRNA. Pathol Res Pract 2023; 250:154778. [PMID: 37683391 DOI: 10.1016/j.prp.2023.154778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
By releasing exosomes, which create the ideal milieu for the resolution of inflammation, mesenchymal stem cells (MSCs) enhance tissue healing and have strong immunomodulatory capabilities. MSCs-derived exosome also can affect tumor progress by a myriad of mechanisms. Exosomes function as a cell-cell communication tool to affect cellular activity in recipient cells and include an array of efficient bioactive chemicals. Understanding the fundamental biology of inflammation ablation, tissue homeostasis, and the creation of therapeutic strategies is particularly interested in the horizontal transfer of exosomal long non-coding RNAs (lncRNA) and microRNAs (miRNAs) to recipient cells, where they affect target gene expression. Herein, we propose an exosomal lncRNA and microRNA profile in neurological, renal, cardiac, lung, and liver diseases as well as skin wounds and arthritis.
Collapse
Affiliation(s)
| | - Haitham Mukhlif Salim
- Ministry of Health, Directorat of the Public Health, Health Promotion Departments, Baghdad, Iraq
| | - A H Shather
- Department of Computer Engineering Technology, Al Kitab University, Altun Kopru, Kirkuk 00964, Iraq
| | - Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001 Hillah, Babil, Iraq
| | - Manar Mohammed Hizam
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | |
Collapse
|
11
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
12
|
Sekenova A, Li Y, Issabekova A, Saparov A, Ogay V. TNF-α Preconditioning Improves the Therapeutic Efficacy of Mesenchymal Stem Cells in an Experimental Model of Atherosclerosis. Cells 2023; 12:2262. [PMID: 37759485 PMCID: PMC10526914 DOI: 10.3390/cells12182262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory disease involving multiple factors in its initiation and development. In recent years, the potential application of mesenchymal stem cells (MSCs) for treating AS has been investigated. This study examined the effect of TNF-α preconditioning on MSCs' therapeutic efficacy in treating AS in ApoE KO mice. TNF-α-treated MSCs were administered to high-fat diet-treated ApoE KO mice. Cytokine and serum lipid levels were measured before and after treatment. Cryosections of the atherosclerotic aorta were stained with Oil-Red-O, and the relative areas of atherosclerotic lesions were measured. The level of Tregs were increased in TNF-α-MSC-treated animals compared to the MSCs group. In addition, the systemic administration of TNF-α-MSCs to ApoE KO mice reduced the level of proinflammatory cytokines such as TNF-α and IFN-γ and increased the level of the immunosuppressive IL-10 in the blood serum. Total cholesterol and LDL levels were decreased, and HDL levels were increased in the TNF-α-MSCs group of ApoE KO mice. A histological analysis showed that TNF-α-MSCs decreased the size of the atherosclerotic lesion in the aorta of ApoE KO mice by 38%, although there was no significant difference when compared with untreated MSCs. Thus, our data demonstrate that TNF-α-MSCs are more effective at treating AS than untreated MSCs.
Collapse
Affiliation(s)
- Aliya Sekenova
- Laboratory of Stem Cells, National Center for Biotechnology, Astana 010000, Kazakhstan
| | - Yelena Li
- Laboratory of Stem Cells, National Center for Biotechnology, Astana 010000, Kazakhstan
| | - Assel Issabekova
- Laboratory of Stem Cells, National Center for Biotechnology, Astana 010000, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Astana 010000, Kazakhstan
| |
Collapse
|
13
|
Arango-Rodríguez ML, Mateus LC, Sossa CL, Becerra-Bayona SM, Solarte-David VA, Ochoa Vera ME, Viviescas LTG, Berrio AMV, Serrano SE, Vargas O, Isla AC, Benitez A, Rangel G. A novel therapeutic management for diabetes patients with chronic limb-threatening ischemia: comparison of autologous bone marrow mononuclear cells versus allogenic Wharton jelly-derived mesenchymal stem cells. Stem Cell Res Ther 2023; 14:221. [PMID: 37626416 PMCID: PMC10464344 DOI: 10.1186/s13287-023-03427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Chronic limb-threatening ischemia (CLTI) represents the final stage of peripheral arterial disease. Approximately one-third of patients with CLTI are not eligible for conventional surgical treatments. Furthermore, patients with advanced stage of CLTI are prone to amputation and death. Thus, an effective therapeutic strategy is urgently needed. In this context, autologous bone marrow mononuclear cell (auto-BM-MNC) and allogeneic mesenchymal stem cells represent a promising therapeutic approach for treating CLTI. In this study, we compared the safety and beneficial therapeutic effect of auto-BM-MNC versus allogeneic Wharton jelly-derived mesenchymal stem cells (allo-WJ-MSCs) in diabetic patients with CLTI. METHODS We performed a randomized, prospective, double-blind and controlled pilot study. Twenty-four diabetic patients in the advanced stage of CLTI (4 or 5 in Rutherford's classification) and a transcutaneous oxygen pressure (TcPO2) below 30 mmHg were randomized to receive 15 injections of (i) auto-BM-MNC (7.197 × 106 ± 2.984 × 106 cells/mL) (n = 7), (ii) allo-WJ-MSCs (1.333 × 106 cells/mL) (n = 7) or (iii) placebo solution (1 mL) (n = 10), which were administered into the periadventitial layer of the arterial walls under eco-Doppler guidance. The follow-up visits were at months 1, 3, 6, and 12 to evaluate the following parameters: (i) Rutherford's classification, (ii) TcPO2, (iii) percentage of wound closure, (iv) pain, (v) pain-free walking distance, (vi) revascularization and limb-survival proportion, and (vii) life quality (EQ-5D questionnaire). RESULTS No adverse events were reported. Patients with CLTI who received auto-BM-MNC and allo-WJ-MSCs presented an improvement in Rutherford's classification, a significant increase in TcPO2 values, a reduction in the lesion size in a shorter time, a decrease in the pain score and an increase in the pain-free walking distance, in comparison with the placebo group. In addition, the participants treated with auto-BM-MNC and allo-WJ-MSCs kept their limbs during the follow-up period, unlike the placebo group, which had a marked increase in amputation. CONCLUSIONS Our results showed that patients with CLTI treated with auto-BM-MNC and allo-WJ-MSCs conserved 100% of their limb during 12 months of the follow-up compared to the placebo group, where 60% of participants underwent limb amputation in different times. Furthermore, we observed a faster improvement in the allo-WJ-MSC group, unlike the auto-BM-MNC group. Trial registration This study was retrospectively registered at ClinicalTrials.gov (NCT05631444).
Collapse
Affiliation(s)
- Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, 681004, Floridablanca, Colombia.
| | - Ligia C Mateus
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| | - Claudia L Sossa
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
- Programa para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
| | - Silvia M Becerra-Bayona
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
| | - Víctor Alfonso Solarte-David
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
- Facultad de Ingeniería, Universidad Autónoma de Bucaramanga - UNAB, 680003, Bucaramanga, Colombia
| | - Miguel Enrique Ochoa Vera
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
| | - Lady T Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, 681004, Floridablanca, Colombia
| | - Ana M Vera Berrio
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, 681004, Floridablanca, Colombia
| | - Sergio Eduardo Serrano
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, 681003, Bucaramanga, Colombia
| | - Oliverio Vargas
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| | - Andrés Catalá Isla
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| | - Alape Benitez
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| | - Germán Rangel
- Fundación Oftalmológica de Santander Carlos Ardila Lulle, 681004, Floridablanca, Colombia
| |
Collapse
|
14
|
Ji W, Zhang Y, Deng Y, Li C, Kankala RK, Chen A. Nature-inspired nanocarriers for improving drug therapy of atherosclerosis. Regen Biomater 2023; 10:rbad069. [PMID: 37641591 PMCID: PMC10460486 DOI: 10.1093/rb/rbad069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Atherosclerosis (AS) has emerged as one of the prevalent arterial vascular diseases characterized by plaque and inflammation, primarily causing disability and mortality globally. Drug therapy remains the main treatment for AS. However, a series of obstacles hinder effective drug delivery. Nature, from natural micro-/nano-structural biological particles like natural cells and extracellular vesicles to the distinctions between the normal and pathological microenvironment, offers compelling solutions for efficient drug delivery. Nature-inspired nanocarriers of synthetic stimulus-responsive materials and natural components, such as lipids, proteins and membrane structures, have emerged as promising candidates for fulfilling drug delivery needs. These nanocarriers offer several advantages, including prolonged blood circulation, targeted plaque delivery, targeted specific cells delivery and controlled drug release at the action site. In this review, we discuss the nature-inspired nanocarriers which leverage the natural properties of cells or the microenvironment to improve atherosclerotic drug therapy. Finally, we provide an overview of the challenges and opportunities of applying these innovative nature-inspired nanocarriers.
Collapse
Affiliation(s)
- Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Yuanxing Zhang
- The Institute of Forensic Science, Xiamen Public Security Bureau, Xiamen, Fujian 361104, PR China
| | - Yuanru Deng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Changyong Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
15
|
Li Y, Shi G, Liang W, Shang H, Li H, Han Y, Zhao W, Bai L, Qin C. Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Alleviates Atherosclerotic Plaque by Inhibiting Ox-LDL Uptake, Inflammatory Reaction and Endothelial Damage in Rabbits. Cells 2023; 12:1936. [PMID: 37566014 PMCID: PMC10417209 DOI: 10.3390/cells12151936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of arteries fueled by lipids. It is a major cause of cardiovascular morbidity and mortality. Mesenchymal stem cells have been used for the treatment of atherosclerotic lesions. Adipose-derived stem cells (ADSCs) have been shown to regulate the activation state of macrophages and exhibit anti-inflammatory capabilities. However, the effect of allogeneic ADSCs in the treatment of AS have not been investigated. In this study, the early treatment effect and preliminary mechanism analysis of allogeneic rabbit ADSCs intravenous transplantation were investigated in a high-fat diet rabbit model. The polarization mechanism of rabbit ADSCs on the macrophage was further analyzed in vitro. Compared with the model group, blood lipid levels declined, the plaque area, oxidized low-density lipoprotein (ox-LDL) uptake, scavenger receptor A1 and cluster of differentiation (CD) 36 levels were all significantly reduced, and the accumulation of inflammatory M1 macrophages, apoptosis, interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression were decreased. The endothelial cells (CD31), M2 macrophages, IL-10 and the transforming growth factor (TGF)-β levels increased. In vitro, ADSCs can promote the M1 macrophage phenotypic switch toward the M2 macrophage through their secreted exosomes, and the main mechanism includes increasing arginase 1 expression and IL-10 secretion, declining inducible nitric oxide synthase (iNOS) expression and TNF-α secretion, and activating the STAT6 pathway. Therefore, allogeneic rabbit ADSC transplantation can transmigrate to the aortic atherosclerotic plaques and show a good effect in lowering blood lipids and alleviating atherosclerotic plaque in the early stage of AS by inhibiting ox-LDL uptake, inflammatory response, and endothelial damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chuan Qin
- NHC Key Laboratory of Human Diseases Comparative Medicine, National Human Diseases Animal Model Resource Center, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| |
Collapse
|
16
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
17
|
Gao Q, Jia F, Li X, Kong Y, Tian Z, Bi L, Li L. Biophysical cues to improve the immunomodulatory capacity of mesenchymal stem cells: The progress and mechanisms. Biomed Pharmacother 2023; 162:114655. [PMID: 37031489 DOI: 10.1016/j.biopha.2023.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can maintain immune homeostasis and many preclinical trials with MSCs have been carried out around the world. In vitro culture of MSCs has been found to result in the decline of immunomodulatory capacity, migration and proliferation. To address these problems, simulating the extracellular environment for preconditioning of MSCs is a promising and inexpensive method. Biophysical cues in the external environment that MSCs are exposed to have been shown to affect MSC migration, residency, differentiation, secretion, etc. We review the main ways in which MSCs exert their immunomodulatory ability, and summarize recent advances in mechanical preconditioning of MSCs to enhance immunomodulatory capacity and related mechanical signal sensing and transduction mechanisms.
Collapse
Affiliation(s)
- Qingyuan Gao
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Fangru Jia
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xiangpan Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yanan Kong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhenya Tian
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
18
|
Szydlak R. Mesenchymal stem cells in ischemic tissue regeneration. World J Stem Cells 2023; 15:16-30. [PMID: 36909782 PMCID: PMC9993139 DOI: 10.4252/wjsc.v15.i2.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/21/2023] Open
Abstract
Diseases caused by ischemia are one of the leading causes of death in the world. Current therapies for treating acute myocardial infarction, ischemic stroke, and critical limb ischemia do not complete recovery. Regenerative therapies opens new therapeutic strategy in the treatment of ischemic disorders. Mesenchymal stem cells (MSCs) are the most promising option in the field of cell-based therapies, due to their secretory and immunomodulatory abilities, that contribute to ease inflammation and promote the regeneration of damaged tissues. This review presents the current knowledge of the mechanisms of action of MSCs and their therapeutic effects in the treatment of ischemic diseases, described on the basis of data from in vitro experiments and preclinical animal studies, and also summarize the effects of using these cells in clinical trial settings. Since the obtained therapeutic benefits are not always satisfactory, approaches aimed at enhancing the effect of MSCs in regenerative therapies are presented at the end.
Collapse
Affiliation(s)
- Renata Szydlak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
19
|
Yang S, Xiao X, Huang Z, Chen Q, Li C, Niu C, Yang Y, Yang L, Feng L. Human adipose-derived mesenchymal stem cells-based microspheres ameliorate atherosclerosis progression in vitro. Stem Cells Dev 2023. [PMID: 36762935 DOI: 10.1089/scd.2022.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease associated with lipids deposition which could be converted into acute clinical events by thrombosis or plaque rupture. Adipose-derived mesenchymal stem cells (ADSCs) encapsulated repair units could be an effective cure for the treatment of AS patients. Here, we encapsulate human ADSCs in collagen microspheres to fabricate stem cell repair units. Besides, we show that encapsulation in collagen microspheres and cultured in vitro for 14 days maintain the viability and stemness of human ADSCs. Moreover, we generate AS progression model and niche in vitro by combining hyperlipemia serum of AS patients with AS cell models. We further systematically demonstrate that human ADSCs-based microspheres could ameliorate AS progression by inhibiting oxidative stress injure, cell apoptosis, endothelial dysfunction, inflammation, and lipid accumulation. In addition, we perform transcriptomic analysis and functional studies to demonstrate how human ADSCs (3D cultured in microspheres) respond to AS niche compared with healthy microenvironment. These findings reveal a role for ADSCs-based microspheres in the treatment of AS and provide new ideas for stem cell therapy in cardiovascular disease. The results may have implications for improving the efficiency of human ADSC therapies by illuminating the mechanisms of human ADSCs exposed in special pathological niche.
Collapse
Affiliation(s)
- Shaojie Yang
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Xiong Xiao
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Ziwei Huang
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Qingyun Chen
- the Sixth People's Hospital of Chengdu, Department of Clinical Laboratory, China;
| | - Chenxi Li
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Chuan Niu
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Yuchu Yang
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Liping Yang
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| | - Li Feng
- Sichuan University West China Hospital, 34753, Regenerative Medicine Research Center, Chengdu, China;
| |
Collapse
|
20
|
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, Rigi A, Kiasari BA. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res 2023; 28:47. [PMID: 36707899 PMCID: PMC9881387 DOI: 10.1186/s40001-023-01008-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-β (TGFβ), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Maria V Mikhailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Soheil Rasoolzadegan
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Falaki
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Azad University, Zahedan, Iran.
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
microRNAs Associated with Carotid Plaque Development and Vulnerability: The Clinician's Perspective. Int J Mol Sci 2022; 23:ijms232415645. [PMID: 36555285 PMCID: PMC9779323 DOI: 10.3390/ijms232415645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke (IS) related to atherosclerosis of large arteries is one of the leading causes of mortality and disability in developed countries. Atherosclerotic internal carotid artery stenosis (ICAS) contributes to 20% of all cerebral ischemia cases. Nowadays, atherosclerosis prevention and treatment measures aim at controlling the atherosclerosis risk factors, or at the interventional (surgical or endovascular) management of mature occlusive lesions. There is a definite lack of the established circulating biomarkers which, once modulated, could prevent development of atherosclerosis, and consequently prevent the carotid-artery-related IS. Recent studies emphasize that microRNA (miRNA) are the emerging particles that could potentially play a pivotal role in this approach. There are some research studies on the association between the expression of small non-coding microRNAs with a carotid plaque development and vulnerability. However, the data remain inconsistent. In addition, all major studies on carotid atherosclerotic plaque were conducted on cell culture or animal models; very few were conducted on humans, whereas the accumulating evidence demonstrates that it cannot be automatically extrapolated to processes in humans. Therefore, this paper aims to review the current knowledge on how miRNA participate in the process of carotid plaque formation and rupture, as well as stroke occurrence. We discuss potential target miRNA that could be used as a prognostic or therapeutic tool.
Collapse
|
22
|
Zhang X, Ren Z, Jiang Z. EndMT-derived mesenchymal stem cells: a new therapeutic target to atherosclerosis treatment. Mol Cell Biochem 2022; 478:755-765. [PMID: 36083511 DOI: 10.1007/s11010-022-04544-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
Cardiovascular diseases, such as coronary artery disease and stroke, are the main threats to human health worldwide. Atherosclerosis, a chronic inflammatory disorder, plays a role as an initiator of all of the above-mentioned diseases. Cell therapy for diseases has attracted widespread attention. Mesenchymal stem cells (MSCs) are a type of stem cell that still exist in adults and have the characteristics of self-renewal ability, pluripotent differentiation potential, immunomodulation, tissue regeneration, anti-inflammation and low immunogenicity. In light of the properties of MSCs, some researchers have begun to target MSCs to create a possible way to alleviate atherosclerosis. Most of these studies are focused on MSC transplantation, injecting MSCs to modulate macrophages, the key inflammatory cell in atherosclerosis plaque. According to recent studies, researchers found that endothelial-to-mesenchymal transition (EndMT) has something to do with atherosclerosis development. A new cell type MSC might also appear during the EndMT process. In this article, we summarize the characteristics of MSCs, the latest progress of MSC research and its application prospects, and in view of the process of EndMT occurring in atherosclerosis, we propose some new ideas for the treatment of atherosclerosis by targeting MSCs.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
23
|
Shirbaghaee Z, Hassani M, Heidari Keshel S, Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res Ther 2022; 13:462. [PMID: 36068595 PMCID: PMC9449296 DOI: 10.1186/s13287-022-03148-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Critical limb ischemia (CLI), the terminal stage of peripheral arterial disease (PAD), is characterized by an extremely high risk of amputation and vascular issues, resulting in severe morbidity and mortality. In patients with severe limb ischemia with no alternative therapy options, such as endovascular angioplasty or bypass surgery, therapeutic angiogenesis utilizing cell-based therapies is vital for increasing blood flow to ischemic regions. Mesenchymal stem cells (MSCs) are currently considered one of the most encouraging cells as a regenerative alternative for the surgical treatment of CLI, including restoring tissue function and repairing ischemic tissue via immunomodulation and angiogenesis. The regenerative treatments for limb ischemia based on MSC therapy are still considered experimental. Despite recent advances in preclinical and clinical research studies, it is not recommended for regular clinical use. In this study, we review the immunomodulatory features of MSC besides the current understanding of different sources of MSC in the angiogenic treatment of CLI subjects and their potential applications as therapeutic agents. Specifically, this paper concentrates on the most current clinical application issues, and several recommendations are provided to improve the efficacy of cell therapy for CLI patients.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
24
|
Lozano Navarro LV, Chen X, Giratá Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, Arango-Rodríguez ML. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther 2022; 13:345. [PMID: 35883198 PMCID: PMC9327195 DOI: 10.1186/s13287-022-03043-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral arterial disease is atherosclerotic occlusive disease of the lower extremity arteries and afflicts hundreds of millions of individuals worldwide. Its most severe manifestation is chronic limb-threatening ischemia (Petersen et al. (Science 300(5622):1140–2, 2003)), which is associated with severe pain at rest in the limbs, which progresses to necrosis, limb amputation, and/or death of the patient. Consequently, the care of these patients is considered a financial burden for both patients and health systems. Multidisciplinary endeavors are required to address this refractory disease and to find definitive solutions that lead to improved living conditions. Revascularization is the cornerstone of therapy for preventing limb amputation, and both open vascular surgery and endovascular therapy play a key role in the treatment of patients with CLI. Around one-third of these patients are not candidates for conventional surgical treatment, however, leading to higher amputation rates (approaching 20–25% at one year) with high morbidity and lower quality of life. Advances in regenerative medicine have enabled the development of cell-based therapies that promote the formation of new blood vessels. Particularly, mesenchymal stem cells (MSCs) have emerged as an attractive therapeutic agent in various diseases, including CLI, due to their role in tissue regeneration and immunomodulation. This review discusses the characteristics of MSCs, as well as their regenerative properties and their action mechanisms on CLI.
Collapse
Affiliation(s)
- Laura V Lozano Navarro
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Xueyi Chen
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Lady Tatiana Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Andrea K Ardila-Roa
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Maria L Luna-Gonzalez
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia
| | - Claudia L Sossa
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia.,Universidad de Valencia, Valencia, Spain
| | - Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.
| |
Collapse
|
25
|
Bortoletto P, Lucas ES, Melo P, Gallos ID, Devall AJ, Bourne T, Quenby S, Bennett PR, Coomarasamy A, Brosens JJ. Miscarriage syndrome: Linking early pregnancy loss to obstetric and age-related disorders. EBioMedicine 2022; 81:104134. [PMID: 35779492 PMCID: PMC9244729 DOI: 10.1016/j.ebiom.2022.104134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
Upon embryo implantation, the uterine mucosa - the endometrium - transforms into a robust decidual matrix that accommodates the fetal placenta throughout pregnancy. This transition is driven by the differentiation of endometrial fibroblasts into specialised decidual cells. A synchronised influx of circulating natural killer (NK) cells and bone marrow-derived mesenchymal stem/progenitor cells (BM-MSC) is pivotal for decidual homeostasis and expansion in early pregnancy. We hypothesise that pathological signals interfering with the recruitment or activity of extrauterine cells at the maternal-fetal interface link miscarriage to subsequent adverse pregnancy outcomes, including further pregnancy losses and preterm labour. NK cells and BM-MSC are key homeostatic regulators in multiple tissues, pointing towards a shared aetiology between recurrent miscarriage and age-related disorders, including cardiometabolic disease. We propose the term ‘miscarriage syndrome’ to capture the health risks associated with miscarriage and discuss how this paradigm can inform clinical practice and accelerate the development of preventative strategies.
Collapse
|
26
|
He M, Wang D, Xu Y, Jiang F, Zheng J, Feng Y, Cao J, Zhou X. Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14071345. [PMID: 35890241 PMCID: PMC9317153 DOI: 10.3390/pharmaceutics14071345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the first leading cause of death globally. Nitric oxide (NO) is an important signaling molecule that mediates diverse processes in the cardiovascular system, thereby providing a fundamental basis for NO-based therapy of CVD. At present, numerous prodrugs have been developed to release NO in vivo. However, the clinical application of these prodrugs still faces many problems, including the low payloads, burst release, and non-controlled delivery. To address these, various biomaterial-based platforms have been developed as the carriers to deliver NO to the targeted tissues in a controlled and sustained manner. This review aims to summarize recent developments of various therapeutic platforms, engineered to release NO for the treatment of CVD. In addition, two potential strategies to improve the effectiveness of existing NO therapy are also discussed, including the combination of NO-releasing platforms and either hydrogen sulfide-based therapy or stem cell therapy. Hopefully, some NO-releasing platforms may provide important therapeutic benefits for CVD.
Collapse
Affiliation(s)
- Mingyue He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Fangying Jiang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Jian Zheng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| |
Collapse
|
27
|
S S, Dahal S, Bastola S, Dayal S, Yau J, Ramamurthi A. Stem Cell Based Approaches to Modulate the Matrix Milieu in Vascular Disorders. Front Cardiovasc Med 2022; 9:879977. [PMID: 35783852 PMCID: PMC9242410 DOI: 10.3389/fcvm.2022.879977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM–cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo, and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.
Collapse
|
28
|
Zhu B, Liu W, Xu Q, Liu HL. MicroRNA-486-5p functions as a diagnostic marker for carotid artery stenosis and prevents endothelial dysfunction through inhibiting inflammation and oxidative stress. Bioengineered 2022; 13:8667-8675. [PMID: 35322734 PMCID: PMC9161936 DOI: 10.1080/21655979.2022.2054500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Carotid artery stenosis (CAS) can cause ischemic stroke, and clinical intervention for CAS is critical clinically. The purpose of this study was to explore the expression changes of microRNA-486-5p in the serum of patients with CAS and its possible mechanism. Ninety-one cases with asymptomatic CAS were recruited, and serum levels of miR-486-5p were measured using RT-qPCR. The diagnostic ability was evaluated by drawing the receiver operating characteristic (ROC) curve. Human aortic endothelial cells (HAECs) were treated with oxidized low-density lipoprotein (oxLDL) to establish cell model, and cell proliferation and apoptosis were tested. The markers of cell inflammation and oxidative stress were detected via ELISA. The target gene was analyzed using bioinformatics analysis combined with luciferase reporting assay. CAS cases exhibited significantly low serum miR-486-5p levels in comparison with the control group and can identify asymptomatic CAS. Serum miR-486-5p manifested a negative correlation with the degree of carotid stenosis. Underexpression of miR-486-5p was also detected in ox-LDL treated HAECs. OxLDL treatment contributes to inflammatory response and oxidative stress of HAECs; however, these adverse impacts caused by ox-LDL were reversed by miR-486-5p upregulation. NFAT5 was confirmed to be the target gene of miR-486-5p in HAECs. MiR-486-5p serves as a promising biomarker for the early identification of CAS. Overexpression of miR-486-5p can prevent endothelial dysfunction, and the mechanism might be related to anti-inflammation and anti-oxidation via targeting NFAT5.
Collapse
Affiliation(s)
| | | | - Qiang Xu
- Department of Neurosurgery, Renhe Hospital, Baoshan District, Shanghai, China
| | - Hong-Liang Liu
- Department of Neurosurgery, Renhe Hospital, Baoshan District, Shanghai, China
| |
Collapse
|
29
|
Li X, Wen H, Lv J, Luan B, Meng J, Gong S, Wen J, Xin S. Therapeutic efficacy of mesenchymal stem cells for abdominal aortic aneurysm: a meta-analysis of preclinical studies. Stem Cell Res Ther 2022; 13:81. [PMID: 35209940 PMCID: PMC8867868 DOI: 10.1186/s13287-022-02755-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is life-threatening, surgical treatment is currently the only clinically available intervention for the disease. Mesenchymal stem cells (MSCs) have presented eligible immunomodulatory and regenerative abilities which showed favorable therapeutic efficacy in various cardiovascular diseases. However, current evidence summarizing the effectiveness of MSCs for AAA is lacking. Thus, a meta-analysis and systematic review was necessary to be performed to assess the therapeutic efficacy of MSCs for AAA in preclinical studies. Methods Comprehensive literature search restricted in English was conducted in PubMed, Cochrane Library, EBSCO, EMBASE and Web of Science from inception to Oct 2021. The primary outcomes were parameters about aortic diameter change during MSCs intervention. The secondary outcomes included elastin content and expression level of inflammatory cytokines, matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). Data were extracted and analyzed independently by two authors. The meta package with random effects model was used to calculate the pooled effect size and 95% confidence intervals in R (version 4.0.2). Results Meta-analysis of 18 included studies demonstrated that MSCs intervention has significant therapeutic effects on suppressing aortic diameter enlargement compared with the control group (diameter, SMD = − 1.19, 95% CI [− 1.47, − 0.91]; diameter change ratio, SMD = − 1.36, 95% CI [− 1.72, − 1.00]). Subgroup analysis revealed differences between MSCs and control group regarding to cell type, intervention route and cell compatibility. Moreover, the meta-analysis also showed that MSCs intervention had a significant effect on preserving aortic elastin content, reducing MCP-1, TNF-α, IL-6, MMP-2/9 and increasing TIMP-1/2 expression level compared with control group. Conclusion Our results suggested that MSC intervention is effective in AAA by suppressing aortic diameter enlargement, reducing elastin degradation, and modulating local immunoinflammatory reactions. These results are important for the systemic application of MSCs as a potential treatment candidate for AAA in further animal experiments and clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02755-w.
Collapse
Affiliation(s)
- Xintong Li
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, No. 155, Nanjing Street, Heping District, Shenyang, 110001, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Hao Wen
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Junyuan Lv
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Boyang Luan
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinze Meng
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Jie Wen
- Department of Ultrasonography, Inner Mongolia Baotou City Central Hospital, Baotou, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, No. 155, Nanjing Street, Heping District, Shenyang, 110001, China. .,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China.
| |
Collapse
|
30
|
Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, Hu L, Lv H, Zhang J, Li M. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol 2022; 9:742088. [PMID: 35096808 PMCID: PMC8790228 DOI: 10.3389/fcell.2021.742088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the member of multipotency stem cells, which possess the capacity for self-renewal and multi-directional differentiation, and have several characteristics, including multi-lineage differentiation potential and immune regulation, which make them a promising source for cell therapy in inflammation, immune diseases, and organ transplantation. In recent years, MSCs have been described as a novel therapeutic strategy for the treatment of cardiovascular diseases because they are potent modulators of immune system with the ability to modulating immune cell subsets, coordinating local and systemic innate and adaptive immune responses, thereby enabling the formation of a stable inflammatory microenvironment in damaged cardiac tissues. In this review, the immunoregulatory characteristics and potential mechanisms of MSCs are sorted out, the effect of these MSCs on immune cells is emphasized, and finally the application of this mechanism in the treatment of cardiovascular diseases is described to provide help for clinical application.
Collapse
Affiliation(s)
- Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
31
|
Li G, Zong W, Liu L, Wu J, Pang J. Knockdown of long non-coding RNA plasmacytoma variant translocation 1 relieves ox-LDL-induced endothelial cell injury through regulating microRNA-30c-5p in atherosclerosis. Bioengineered 2022; 13:2791-2802. [PMID: 35038974 PMCID: PMC8974020 DOI: 10.1080/21655979.2021.2019878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease involving endothelial dysfunction, and is one of the main causes of death from cardiovascular disease (CVD). Long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) is overexpressed in the serum of CVD patients. However, the mechanism by which lncRNA PVT1 functions in AS remains unknown. Our research was designed to probe interactions involving lncRNA PVT1 and oxidized low-density lipoprotein (ox-LDL)-stimulated endothelial cell injury in AS. lncRNA PVT1 expression in the serum of AS patients and ox-LDL-stimulated human umbilical vein endothelial cells (HUVECs) was detected using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Cell counting kit (CCK)-8 assays, flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA) were used to determine cell proliferation, apoptosis, and levels of inflammatory cytokines, respectively. Moreover, the correlation between lncRNA PVT1 and miR-30 c-5p was predicted and verified using StarBase3.0, TargetScan, and luciferase reporter-gene assays. lncRNA PVT1 was overexpressed in the serum of AS patients and in ox-LDL-stimulated HUVECs relative to controls. Knockdown of lncRNA PVT1 facilitated proliferation, reduced apoptosis, and secretion of inflammatory factors in ox-LDL-treated HUVECs. Moreover, miR-30 c-5p was verified as a direct target of lncRNA PVT1. Furthermore, we observed that miR-30 c-5p expression was lower in AS patients than in controls. In addition, the influence of lncRNA PVT1 knockdown on ox-LDL-treated HUVECs was significantly reversed by downregulation of miR-30 c-5p. In conclusion, lncRNA PVT1 silencing inhibited HUVEC damage stimulated by ox-LDL via miR-30 c-5p regulation.
Collapse
Affiliation(s)
- Geng Li
- Department of Cardiology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Wenxia Zong
- Department of Cardiology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Lei Liu
- Department of Cardiology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Juan Wu
- Department of Medical Laboratory, Eleven Wuhan Hospital, Wuhan, Hubei Province, China
| | - Jing Pang
- Department of Cardiology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
32
|
Regenerative Medicine Application of Mesenchymal Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:25-42. [DOI: 10.1007/5584_2022_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
33
|
Marofi F, Alexandrovna KI, Margiana R, Bahramali M, Suksatan W, Abdelbasset WK, Chupradit S, Nasimi M, Maashi MS. MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy. Stem Cell Res Ther 2021; 12:597. [PMID: 34863308 PMCID: PMC8642895 DOI: 10.1186/s13287-021-02662-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Currently, mesenchymal stem/stromal stem cell (MSC) therapy has become a promising option for accelerating cutaneous wound healing. In vivo reports have outlined the robust competences of MSCs to offer a solid milieu by inhibition of inflammatory reactions, which in turn, enables skin regeneration. Further, due to their great potential to stimulate angiogenesis and also facilitate matrix remodeling, MSCs hold substantial potential as future therapeutic strategies in this context. The MSCs-induced wound healing is thought to mainly rely on the secretion of a myriad of paracrine factors in addition to their direct differentiation to skin-resident cells. Besides, MSCs-derived exosomes as nanoscale and closed membrane vesicles have recently been suggested as an effective and cell-free approach to support skin regeneration, circumventing the concerns respecting direct application of MSCs. The MSCs-derived exosomes comprise molecular components including lipid, proteins, DNA, microRNA, and also mRNA, which target molecular pathways and also biological activities in recipient cells (e.g., endothelial cell, keratinocyte, and fibroblast). The secreted exosome modifies macrophage activation, stimulates angiogenesis, and instigates keratinocytes and dermal fibroblast proliferations as well as migrations concurrently regulate inherent potential of myofibroblast for adjustment of turnover of the ECM. In the present review, we will focus on the recent findings concerning the application of MSCs and their derivative exosome to support wound healing and skin regeneration, with special focus on last decade in vivo reports.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mahta Bahramali
- Biotechnology Department, University of Tehran, Tehran, Iran
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | | | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
Hawkins RB, Salmon M, Su G, Lu G, Leroy V, Bontha SV, Mas VR, Jr GRU, Ailawadi G, Sharma AK. Mesenchymal Stem Cells Alter MicroRNA Expression and Attenuate Thoracic Aortic Aneurysm Formation. J Surg Res 2021; 268:221-231. [PMID: 34371281 PMCID: PMC11044812 DOI: 10.1016/j.jss.2021.06.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Thoracic aortic aneurysms (TAA) are a progressive disease characterized by inflammation, smooth muscle cell activation and matrix degradation. We hypothesized that mesenchymal stem cells (MSCs) can immunomodulate vascular inflammation and remodeling via altered microRNA (miRNAs) expression profile to attenuate TAA formation. MATERIALS AND METHODS C57BL/6 mice underwent topical elastase application to form descending TAAs. Mice were also treated with MSCs on days 1 and 5 and aortas were analyzed on day 14 for aortic diameter. Cytokine array was performed in aortic tissue and total RNA was tagged and hybridized for miRNAs microarray analysis. Immunohistochemistry was performed for elastin degradation and leukocyte infiltration. RESULTS Treatment with MSCs significantly attenuated aortic diameter and TAA formation compared to untreated mice. MSC administration also attenuated T-cell, neutrophil and macrophage infiltration and prevented elastic degradation to mitigate vascular remodeling. MSC treatment also attenuated aortic inflammation by decreasing proinflammatory cytokines (CXCL13, IL-27, CXCL12 and RANTES) and upregulating anti-inflammatory interleukin-10 expression in aortic tissue of elastase-treated mice. TAA formation demonstrated activation of specific miRNAs that are associated with aortic inflammation and vascular remodeling. Our results also demonstrated that MSCs modulate a different set of miRNAs that are associated with decrease leukocyte infiltration and vascular inflammation to attenuate the aortic diameter and TAA formation. CONCLUSIONS These results indicate that MSCs immunomodulate specific miRNAs that are associated with modulating hallmarks of aortic inflammation and vascular remodeling of aortic aneurysms. Targeted therapies designed using MSCs and miRNAs have the potential to regulate the growth and development of TAAs.
Collapse
Affiliation(s)
- Robert B Hawkins
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Morgan Salmon
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Sai Vineela Bontha
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Valeria R Mas
- Department of Surgery, University of Maryland, Baltimore, Maryland
| | | | - Gorav Ailawadi
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Ashish K Sharma
- Department of Surgery, University of Florida, Gainesville, Florida.
| |
Collapse
|
35
|
Ma T, Zhang Z, Chen Y, Su H, Deng X, Liu X, Fan Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms222212166. [PMID: 34830052 PMCID: PMC8625126 DOI: 10.3390/ijms222212166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in the cardiovascular system, clinical applications centered on NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process, based on computational modeling and flow-mediated dilation, to assess endothelial function and vulnerability of atherosclerotic plaque. Then, emerging bioimaging technologies that have the potential to experimentally measure arterial NO concentration were discussed, including Raman spectroscopy and electrochemical sensors. In addition to diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the NO release platform to treat endothelial dysfunction and atherosclerosis and inhaled NO therapy to treat pulmonary hypertension and COVID-19. Two potential methods to improve the effectiveness of existing NO therapy were also discussed, including the combination of NO release platform and computational modeling, and stem cell therapy, which currently remains at the laboratory stage but has clinical potential for the treatment of CVD.
Collapse
|
36
|
Xu H, Ni YQ, Liu YS. Mechanisms of Action of MiRNAs and LncRNAs in Extracellular Vesicle in Atherosclerosis. Front Cardiovasc Med 2021; 8:733985. [PMID: 34692785 PMCID: PMC8531438 DOI: 10.3389/fcvm.2021.733985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| |
Collapse
|
37
|
Poznyak AV, Bezsonov EE, Popkova TV, Starodubova AV, Orekhov AN. Immunity in Atherosclerosis: Focusing on T and B Cells. Int J Mol Sci 2021; 22:ijms22168379. [PMID: 34445084 PMCID: PMC8395064 DOI: 10.3390/ijms22168379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the major cause of the development of cardiovascular disease, which, in turn, is one of the leading causes of mortality worldwide. From the point of view of pathogenesis, atherosclerosis is an extremely complex disease. A huge variety of processes, such as violation of mitophagy, oxidative stress, damage to the endothelium, and others, are involved in atherogenesis; however, the main components of atherogenesis are considered to be inflammation and alterations of lipid metabolism. In this review, we want to focus on inflammation, and more specifically on the cellular elements of adaptive immunity, T and B cells. It is known that various T cells are widely represented directly in atherosclerotic plaques, while B cells can be found, for example, in the adventitia layer. Of course, such widespread and well-studied cells have attracted attention as potential therapeutic targets for the treatment of atherosclerosis. Various approaches have been developed and tested for their efficacy.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Medical Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
38
|
Li Y, Shi G, Han Y, Shang H, Li H, Liang W, Zhao W, Bai L, Qin C. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model. Stem Cell Res Ther 2021; 12:407. [PMID: 34266502 PMCID: PMC8281645 DOI: 10.1186/s13287-021-02490-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a complex disease caused in part by dyslipidemia and chronic inflammation. AS is associated with serious cardiovascular disease and remains the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) have evolved as an attractive therapeutic agent in various diseases including AS. Human umbilical cord MSCs (UCSCs) have been used in cell therapy trials due to their ability to differentiate and proliferate. The present study aimed to investigate the effect of UCSCs treatment on atherosclerotic plaque formation and the progression of lesions in a high-fat diet rabbit model. METHODS Rabbits were fed a high-fat diet and then randomly divided into three groups: control, model, and treatment groups. Rabbits in the treatment group were injected with UCSCs (6 × 106 in 500 μL phosphate buffered saline) after 1 month of high-fat diet, once every 2 weeks, for 3 months. The model group was given PBS only. We analyzed serum biomarkers, used ultrasound and histopathology to detect arterial plaques and laser Doppler imaging to measure peripheral blood vessel blood filling, and analyzed the intestinal flora and metabolism. RESULTS Histological analysis showed that the aortic plaque area was significantly reduced in the treatment group. We also found a significant decrease in macrophage accumulation and apoptosis, an increase in expression of scavenger receptors CD36 and SRA1, a decrease in uptake of modified low-density protein (ox-LDL), and a decrease in levels of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α following UCSCs treatment. We also found that anti-inflammatory cytokines IL-10 and transforming growth factor (TGF)-β expression increased in the aorta atherosclerotic plaque of the treatment group. UCSCs treatment improved the early peripheral blood filling, reduced the serum lipid level, and inhibited inflammation progression by regulating the intestinal flora dysbiosis caused by the high-fat diet. More specifically, levels of the microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) were down-regulated in the treatment group. CONCLUSIONS UCSCs treatment alleviated atherosclerotic plaque burden by reducing inflammation, regulating the intestinal flora and TMAO levels, and repairing the damaged endothelium.
Collapse
Affiliation(s)
- Yanhong Li
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Guiying Shi
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Yunlin Han
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Haiquan Shang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Huiwu Li
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Wei Liang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Wenjie Zhao
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Lin Bai
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China
| | - Chuan Qin
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Medical Laboratory Animal Science, CAMS&PUMC; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China.
| |
Collapse
|
39
|
Kirwin T, Gomes A, Amin R, Sufi A, Goswami S, Wang B. Mechanisms underlying the therapeutic potential of mesenchymal stem cells in atherosclerosis. Regen Med 2021; 16:669-682. [PMID: 34189963 DOI: 10.2217/rme-2021-0024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory condition resulting in the formation of fibrofatty plaques within the intimal layer of arterial walls. The identification of resident stem cells in the vascular wall has led to significant investigation into their contributions to health and disease, as well as their therapeutic potential. Of these, mesenchymal stem cells (MSCs) are the most widely studied in human clinical trials, which have demonstrated a modulatory role in vascular physiology and disease. This review highlights the most recent knowledge surrounding the cell biology of MSCs, including their origin, identification markers and differentiation potential. The limitations concerning the implementation of MSC therapy are considered and novel solutions to overcome these are proposed.
Collapse
Affiliation(s)
- Thomas Kirwin
- Department of Medicine, Imperial College London, SW7 2BU, UK.,College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ana Gomes
- Department of Medicine, Imperial College London, SW7 2BU, UK
| | - Ravi Amin
- Department of Medicine, Imperial College London, SW7 2BU, UK
| | - Annam Sufi
- Department of Medicine, Imperial College London, SW7 2BU, UK.,GKT School of Medical Education, King's College London, London, SE1 1UL, UK
| | - Sahil Goswami
- Department of Medicine, Imperial College London, SW7 2BU, UK.,Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, E1 2AD, UK
| | - Brian Wang
- Department of Medicine, Imperial College London, SW7 2BU, UK
| |
Collapse
|
40
|
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, Pathak Y, Marofi F, Shamlou S, Hassanzadeh A. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12:192. [PMID: 33736695 PMCID: PMC7971361 DOI: 10.1186/s13287-021-02265-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Over recent years, mesenchymal stem/stromal cells (MSCs) and their potential biomedical applications have received much attention from the global scientific community in an increasing manner. Firstly, MSCs were successfully isolated from human bone marrow (BM), but in the next steps, they were also extracted from other sources, mostly from the umbilical cord (UC) and adipose tissue (AT). The International Society for Cellular Therapy (ISCT) has suggested minimum criteria to identify and characterize MSCs as follows: plastic adherence, surface expression of CD73, D90, CD105 in the lack of expression of CD14, CD34, CD45, and human leucocyte antigen-DR (HLA-DR), and also the capability to differentiate to multiple cell types including adipocyte, chondrocyte, or osteoblast in vitro depends on culture conditions. However, these distinct properties, including self-renewability, multipotency, and easy accessibility are just one side of the coin; another side is their huge secretome which is comprised of hundreds of mediators, cytokines, and signaling molecules and can effectively modulate the inflammatory responses and control the infiltration process that finally leads to a regulated tissue repair/healing or regeneration process. MSC-mediated immunomodulation is a direct result of a harmonic synergy of MSC-released signaling molecules (i.e., mediators, cytokines, and chemokines), the reaction of immune cells and other target cells to those molecules, and also feedback in the MSC-molecule-target cell axis. These features make MSCs a respectable and eligible therapeutic candidate to be evaluated in immune-mediated disorders, such as graft versus host diseases (GVHD), multiple sclerosis (MS), Crohn's disease (CD), and osteoarthritis (OA), and even in immune-dysregulating infectious diseases such as the novel coronavirus disease 2019 (COVID-19). This paper discussed the therapeutic applications of MSC secretome and its biomedical aspects related to immune-mediated conditions. Sources for MSC extraction, their migration and homing properties, therapeutic molecules released by MSCs, and the pathways and molecular mechanisms possibly involved in the exceptional immunoregulatory competence of MSCs were discussed. Besides, the novel discoveries and recent findings on immunomodulatory plasticity of MSCs, clinical applications, and the methods required for their use as an effective therapeutic option in patients with immune-mediated/immune-dysregulating diseases were highlighted.
Collapse
Affiliation(s)
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| | | | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Li W, Jiao X, Song J, Sui B, Guo Z, Zhao Y, Li J, Shi S, Huang Q. Therapeutic potential of stem cells from human exfoliated deciduous teeth infusion into patients with type 2 diabetes depends on basal lipid levels and islet function. Stem Cells Transl Med 2021; 10:956-967. [PMID: 33660433 PMCID: PMC8235136 DOI: 10.1002/sctm.20-0303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/02/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great potential in treating patients with diabetes, but the therapeutic effects are not always achieved. Particularly, the clinical factors regulating MSC therapy in this setting are largely unknown. In this study, 24 patients with type 2 diabetes mellitus (T2DM) treated with insulin were selected to receive three intravenous infusions of stem cells from human exfoliated deciduous teeth (SHED) over the course of 6 weeks and were followed up for 12 months. We observed a significant reduction of glycosylated serum albumin level (P < .05) and glycosylated hemoglobin level (P < .05) after SHED transplantation. The total effective rate was 86.36% and 68.18%, respectively, at the end of treatment and follow‐up periods. Three patients ceased insulin injections after SHED transplantation. A steamed bread meal test showed that the serum levels of postprandial C‐peptide at 2 hours were significantly higher than those at the baseline (P < .05). Further analysis showed that patients with a high level of blood cholesterol and a low baseline level of C‐peptide had poor response to SHED transplantation. Some patients experienced a transient fever (11.11%), fatigue (4.17%), or rash (1.39%) after SHED transplantation, which were easily resolved. In summary, SHED infusion is a safe and effective therapy to improve glucose metabolism and islet function in patients with T2DM. Blood lipid levels and baseline islet function may serve as key factors contributing to the therapeutic outcome of MSC transplantation in patients with T2DM.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xuan Jiao
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jingyun Song
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Bingdong Sui
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Research and Development Center for Tissue Engineering, School of Stomatology, Air Force Medical University, People's Republic of China
| | - Zhili Guo
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yingji Zhao
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jun Li
- Easter Greenland Hospital, People's Republic of China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Stem cell-derived exosomes: Role in the pathogenesis and treatment of atherosclerosis. Int J Biochem Cell Biol 2020; 130:105884. [PMID: 33227391 DOI: 10.1016/j.biocel.2020.105884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease characterized by the accumulation of lipids and inflammatory debris in large arteries, high morbidity, and AS-related disease mortality. AS is a complex process, involving endothelial cell dysfunction and inflammation, smooth muscle cell proliferation, and macrophage activation. However, the currently available therapies for AS are not ideal, thus requiring development of novel treatment strategies. Exosomes are bi-lipid membranous extracellular containing multifarious cargo, such as proteins, lipids, micro ribonucleic acid (miRNAs), messenger RNAs, and long non-coding RNAs. Moreover, exosomes reportedly participate in various AS processes. Specifically, stem cell-derived exosomes can regulate the occurrence and development of AS, exhibiting the ability to overcome the limitations associated with AS treatment and stem cell therapy. In this paper, we review the pathological mechanism of AS and discuss the role of exosomes and stem cell-derived exosomes in AS progression. We conclude by suggesting new therapeutic strategies for treating AS with stem cell-derived exosomes in the hope of improving the clinical treatment of AS.
Collapse
|
43
|
Fan XL, Zhang Y, Li X, Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 2020; 77:2771-2794. [PMID: 31965214 PMCID: PMC7223321 DOI: 10.1007/s00018-020-03454-6] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have been extensively investigated for the treatment of various diseases. The therapeutic potential of MSCs is attributed to complex cellular and molecular mechanisms of action including differentiation into multiple cell lineages and regulation of immune responses via immunomodulation. The plasticity of MSCs in immunomodulation allow these cells to exert different immune effects depending on different diseases. Understanding the biology of MSCs and their role in treatment is critical to determine their potential for various therapeutic applications and for the development of MSC-based regenerative medicine. This review summarizes the recent progress of particular mechanisms underlying the tissue regenerative properties and immunomodulatory effects of MSCs. We focused on discussing the functional roles of paracrine activities, direct cell-cell contact, mitochondrial transfer, and extracellular vesicles related to MSC-mediated effects on immune cell responses, cell survival, and regeneration. This will provide an overview of the current research on the rapid development of MSC-based therapies.
Collapse
Affiliation(s)
- Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Yuelin Zhang
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Xin Li
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
44
|
Apolipoprotein A-I Supports MSCs Survival under Stress Conditions. Int J Mol Sci 2020; 21:ijms21114062. [PMID: 32517119 PMCID: PMC7312015 DOI: 10.3390/ijms21114062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Clinical trials have shown the safety of mesenchymal stem/stromal cells (MSCs) transplantation, but the effectiveness of these treatments is limited. Since, transplanted MSCs will undergo metabolic disturbances in the bloodstream, we investigated the influence of blood plasmas of type 2 diabetes (T2D) patients on MSCs viability and examined whether apolipoprotein A-I (apoA-I) could protect cells from stressful conditions of serum deprivation (SD), hypoxia, and elevated concentrations of reactive oxygen species (ROS). ApoA-I exhibits anti-inflammatory, immune activities, improves glycemic control, and is suitable for T2D patients but its influence on MSCs remains unknown. For the first time we have shown that apoA-I decreases intracellular ROS and supports proliferative rate of MSCs, thereby increasing cell count in oxidation conditions. ApoA-I did not influence cell cycle when MSCs were predominantly in the G0/G1 phases under conditions of SD/hypoxia, activated proliferation rapidly, and reduced apoptosis during MSCs transition to the oxygenation or oxidation conditions. Finally, it was found that the blood plasma of T2D individuals had a cytotoxic effect on MSCs in 39% of cases and had a wide variability of antioxidant properties. ApoA-I protects cells under all adverse conditions and can increase the efficiency of MSCs transplantation in T2D patients.
Collapse
|
45
|
Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis 2020; 11:349. [PMID: 32393744 PMCID: PMC7214402 DOI: 10.1038/s41419-020-2542-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are derived from a wide range of sources and easily isolated and cultured. MSCs have the capacity for in vitro amplification and self-renewal, low immunogenicity and immunomodulatory properties, and under certain conditions, MSCs can be differentiated into a variety of cells. In the cardiovascular system, MSCs can protect the myocardium by reducing the level of inflammation, promoting the differentiation of myocardial cells around infarct areas and angiogenesis, increasing apoptosis resistance, and inhibiting fibrosis, which are ideal qualities for cardiovascular repair. Preclinical studies have shown that MSCs can be transplanted and improve cardiac repair, but challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after transplantation, remain. This article reviews the potential and methods of MSC transplantation in the treatment of cardiovascular diseases (CVDs) and the challenges of the clinical use of MSCs.
Collapse
Affiliation(s)
- Yajun Guo
- Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China.,Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Yunsheng Yu
- Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China.,Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Shijun Hu
- Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China. .,Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China. .,State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou 215123, China. .,Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Yueqiu Chen
- Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China. .,Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Zhenya Shen
- Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China. .,Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| |
Collapse
|
46
|
Yoon JK, Kim DH, Kang ML, Jang HK, Park HJ, Lee JB, Yi SW, Kim HS, Baek S, Park DB, You J, Lee SD, Sei Y, Ahn SI, Shin YM, Kim CS, Bae S, Kim Y, Sung HJ. Anti-Atherogenic Effect of Stem Cell Nanovesicles Targeting Disturbed Flow Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000012. [PMID: 32239653 DOI: 10.1002/smll.202000012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Atherosclerosis development leads to irreversible cascades, highlighting the unmet need for improved methods of early diagnosis and prevention. Disturbed flow formation is one of the earliest atherogenic events, resulting in increased endothelial permeability and subsequent monocyte recruitment. Here, a mesenchymal stem cell (MSC)-derived nanovesicle (NV) that can target disturbed flow sites with the peptide GSPREYTSYMPH (PREY) (PMSC-NVs) is presented which is selected through phage display screening of a hundred million peptides. The PMSC-NVs are effectively produced from human MSCs (hMSCs) using plasmid DNA designed to functionalize the cell membrane with PREY. The potent anti-inflammatory and pro-endothelial recovery effects are confirmed, similar to those of hMSCs, employing mouse and porcine partial carotid artery ligation models as well as a microfluidic disturbed flow model with human carotid artery-derived endothelial cells. This nanoscale platform is expected to contribute to the development of new theragnostic strategies for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Jeong-Kee Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dae-Hyun Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Mi-Lan Kang
- TMD LAB Co., Ltd, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyeon-Ki Jang
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Ji Park
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Jung Bok Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Se Won Yi
- TMD LAB Co., Ltd, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Seon Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sewoom Baek
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dan Bi Park
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jin You
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Yoshitaka Sei
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Song Ih Ahn
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Young Min Shin
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Sangsu Bae
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Institute for Electronics and Nanotechnology (IEN), Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
47
|
Basmaeil Y, Rashid MA, Khatlani T, AlShabibi M, Bahattab E, Abdullah ML, Abomaray F, Kalionis B, Massoudi S, Abumaree M. Preconditioning of Human Decidua Basalis Mesenchymal Stem/Stromal Cells with Glucose Increased Their Engraftment and Anti-diabetic Properties. Tissue Eng Regen Med 2020; 17:209-222. [PMID: 32077075 PMCID: PMC7105536 DOI: 10.1007/s13770-020-00239-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/10/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Mesenchymal stem/stromal cells (MSCs) from the decidua basalis (DBMSCs) of the human placenta have important functions that make them potential candidates for cellular therapy. Previously, we showed that DBMSC functions do not change significantly in a high oxidative stress environment, which was induced by hydrogen peroxide (H2O2) and immune cells. Here, we studied the consequences of glucose, another oxidative stress inducer, on the phenotypic and functional changes in DBMSCs. Methods: DBMSCs were exposed to a high level of glucose, and its effect on DBMSC phenotypic and functional properties was determined. DBMSC expression of oxidative stress and immune molecules after exposure to glucose were also identified. Results: Conditioning of DBMSCs with glucose improved their adhesion and invasion. Glucose also increased DBMSC expression of genes with survival, proliferation, migration, invasion, anti-inflammatory, anti-chemoattractant and antimicrobial properties. In addition, DBMSC expression of B7H4, an inhibitor of T cell proliferation was also enhanced by glucose. Interestingly, glucose modulated DBMSC expression of genes involved in insulin secretion and prevention of diabetes. Conclusion: These data show the potentially beneficial effects of glucose on DBMSC functions. Preconditioning of DBMSCs with glucose may therefore be a rational strategy for increasing their therapeutic potential by enhancing their engraftment efficiency. In addition, glucose may program DBMSCs into insulin producing cells with ability to counteract inflammation and infection associated with diabetes. However, future in vitro and in vivo studies are essential to investigate the findings of this study further. Electronic supplementary material The online version of this article (10.1007/s13770-020-00239-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| | - Manar Al Rashid
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Manal AlShabibi
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Eman Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Meshan L Abdullah
- Experimental Medicine, King Abdullah International Medical Research Center MNG-HA, Ali Al Arini, Ar Rimayah, Riyadh, 11481, Kingdom of Saudi Arabia
| | - Fawaz Abomaray
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre and University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, 20 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Safia Massoudi
- Department of Forensic Biology, College of Forensic Sciences, Naif Arab University for Security Sciences, Khurais Rd, Ar Rimayah, Riyadh, 14812, Kingdom of Saudi Arabia
| | - Mohammad Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 3124, P.O. Box 3660, Riyadh, 11481, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Qi D, Shi W, Black AR, Kuss MA, Pang X, He Y, Liu B, Duan B. Repair and regeneration of small intestine: A review of current engineering approaches. Biomaterials 2020; 240:119832. [PMID: 32113114 DOI: 10.1016/j.biomaterials.2020.119832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
Abstract
The small intestine (SI) is difficult to regenerate or reconstruct due to its complex structure and functions. Recent developments in stem cell research, advanced engineering technologies, and regenerative medicine strategies bring new hope of solving clinical problems of the SI. This review will first summarize the structure, function, development, cell types, and matrix components of the SI. Then, the major cell sources for SI regeneration are introduced, and state-of-the-art biofabrication technologies for generating engineered SI tissues or models are overviewed. Furthermore, in vitro models and in vivo transplantation, based on intestinal organoids and tissue engineering, are highlighted. Finally, current challenges and future perspectives are discussed to help direct future applications for SI repair and regeneration.
Collapse
Affiliation(s)
- Dianjun Qi
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xining Pang
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Academician Expert Workstation and Liaoning Province Human Amniotic Membrane Dressings Stem Cells and Regenerative Medicine Engineering Research Center, Shenyang Amnion Biological Engineering Technology Research and Development Center Co., Ltd, Shenyang, Liaoning, China
| | - Yini He
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bing Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
49
|
Mahdavi Gorabi A, Banach M, Reiner Ž, Pirro M, Hajighasemi S, Johnston TP, Sahebkar A. The Role of Mesenchymal Stem Cells in Atherosclerosis: Prospects for Therapy via the Modulation of Inflammatory Milieu. J Clin Med 2019; 8:E1413. [PMID: 31500373 PMCID: PMC6780166 DOI: 10.3390/jcm8091413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic, inflammatory disease that mainly affects the arterial intima. The disease is more prevalent in middle-age and older individuals with one or more cardiovascular risk factors, including dyslipidemia, hypertension, diabetes, smoking, obesity, and others. The beginning and development of atherosclerosis has been associated with several immune components, including infiltration of inflammatory cells, monocyte/macrophage-derived foam cells, and inflammatory cytokines and chemokines. Mesenchymal stem cells (MSCs) originate from several tissue sources of the body and have self-renewal and multipotent differentiation characteristics. They also have immunomodulatory and anti-inflammatory properties. Recently, it was shown that MSCs have a regulatory role in plasma lipid levels. In addition, MSCs have shown to have promising potential in terms of treatment strategies for several diseases, including those with an inflammatory component. In this regard, transplantation of MSCs to patients with atherosclerosis has been proposed as a novel strategy in the treatment of this disease. In this review, we summarize the current advancements regarding MSCs for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
| | - Željko Reiner
- Department of Internal medicine, University Hospital Center Zagreb, Kišpatićeva 12, Zagreb 1000, Croatia
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin 1531534199, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| |
Collapse
|
50
|
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8563845. [PMID: 31354915 PMCID: PMC6636482 DOI: 10.1155/2019/8563845] [Citation(s) in RCA: 377] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M. Vila
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Victor M. Victor
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| |
Collapse
|