1
|
Martin M, Gillett K, Whittick P, Wells SM. New Insights on the Formation of the Mitral Valve Chordae Tendineae in Fetal Life. J Cardiovasc Dev Dis 2024; 11:367. [PMID: 39590210 PMCID: PMC11594762 DOI: 10.3390/jcdd11110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
There is an increasing understanding that some mitral valve pathologies have developmental origins. The time course of valvulogenesis varies by animal model; in cattle, the branched chordae tendineae architecture becomes fully developed at full term. The mechanism by which chordae tendineae bifurcate during fetal development remains unknown. The current study presents a detailed description of bovine chordae tendineae formation and bifurcation during fetal development. Analysis of Movat Pentachrome-stained histological sections of the developing mitral valve apparatus was accompanied by micro-CT imaging. TEM imaging of chordae branches and common trunks allowed the measurement of collagen fibril diameter distributions. We observed a proteoglycan-rich "transition zone" at the junction between the fetal mitral valve anterior leaflet and chordae tendineae with "perforations" lined by MMP1/2 and Ki-67 expressing endothelial cells. This region also contained clusters of proliferating endothelial cells within the bulk of the tissue. We hypothesize this zone marks a region where chordae tendineae bifurcate during fetal development. In particular, perforations created by localized MMP activity serve as a site for the initiation of a "split" of a single chordae attachment into two. This is supported by TEM results that suggest a similar population of collagen fibrils runs from the branches into a common trunk. A clear understanding of normal mitral valvulogenesis and its signaling mechanisms will be crucial in developing therapeutics and/or tissue-engineered valve replacements.
Collapse
Affiliation(s)
- Meghan Martin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Kate Gillett
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Parker Whittick
- Medical Sciences Program, Faculties of Science and Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Sarah Melissa Wells
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Medical Sciences Program, Faculties of Science and Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
2
|
Tan C, Ge ZD, Kurup S, Dyakiv Y, Liu T, Muller WA, Kume T. FOXC1 and FOXC2 Ablation Causes Abnormal Valvular Endothelial Cell Junctions and Lymphatic Vessel Formation in Myxomatous Mitral Valve Degeneration. Arterioscler Thromb Vasc Biol 2024; 44:1944-1959. [PMID: 38989578 PMCID: PMC11335087 DOI: 10.1161/atvbaha.124.320316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates that mutations of the human transcription factor FOXC1 are associated with MV defects, including MV regurgitation. In this study, we sought to determine whether murine Foxc1 and its closely related factor, Foxc2, are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar ECM (extracellular matrix). METHODS Adult mice carrying tamoxifen-inducible, vascular endothelial cell (EC), and lymphatic EC-specific, compound Foxc1;Foxc2 mutations (ie, EC-Foxc-DKO and lymphatic EC-Foxc-DKO mice, respectively) were used to study the function of Foxc1 and Foxc2 in the maintenance of MVs. The EC and lymphatic EC mutations of Foxc1/c2 were induced at 7 to 8 weeks of age by tamoxifen treatment, and abnormalities in the MVs of these mutant mice were assessed via whole-mount immunostaining, immunohistochemistry/RNAscope, Movat pentachrome/Masson Trichrome staining, and Evans blue injection. RESULTS EC deletions of Foxc1 and Foxc2 in mice resulted in abnormally extended and thicker MVs by causing defects in the regulation of ECM organization with increased proteoglycan and decreased collagen. Notably, reticular adherens junctions were found in VECs of control MV leaflets, and these reticular structures were severely disrupted in EC-Foxc-DKO mice. PROX1 (prospero homeobox protein 1), a key regulator in a subset of VECs on the fibrosa side of MVs, was downregulated in EC-Foxc1/c2 mutant VECs. Furthermore, we determined the precise location of lymphatic vessels in murine MVs, and these lymphatic vessels were aberrantly expanded and dysfunctional in EC-Foxc1/c2 mutant MVs. Lymphatic EC deletion of Foxc1/c2 also resulted in similar structural/ECM abnormalities as seen in EC-Foxc1/c2 mutant MVs. CONCLUSIONS Our results indicate that Foxc1 and Foxc2 are required for maintaining the integrity of the MV, including VEC junctions, ECM organization, and lymphatic vessel formation/function to prevent myxomatous MV degeneration.
Collapse
Affiliation(s)
- Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Zhi-Dong Ge
- Departments of Pediatrics, Surgery, and Pathology, Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago (Z.-D.G.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shreya Kurup
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
- Honors College, University of Illinois at Chicago (S.K.)
| | - Yaryna Dyakiv
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ting Liu
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - William A. Muller
- Department of Pathology (W.A.M.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute (C.T., S.K., Y.D., T.L., T.K.), Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
3
|
Xie M, Cao H, Qiao W, Yan G, Qian X, Zhang Y, Xu L, Wen S, Shi J, Cheng M, Dong N. Shear stress activates the Piezo1 channel to facilitate valvular endothelium-oriented differentiation and maturation of human induced pluripotent stem cells. Acta Biomater 2024; 178:181-195. [PMID: 38447808 DOI: 10.1016/j.actbio.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.
Collapse
Affiliation(s)
- Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yan
- Department of Cardiovascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
5
|
Tan C, Kurup S, Dyakiv Y, Kume T. FOXC1 and FOXC2 maintain mitral valve endothelial cell junctions, extracellular matrix, and lymphatic vessels to prevent myxomatous degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555455. [PMID: 37693499 PMCID: PMC10491158 DOI: 10.1101/2023.08.30.555455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates mutations of the transcription factor FOXC1 are associated with MV defects, including mitral valve regurgitation. In this study, we sought to determine whether murine Foxc1 and its closely related factor, Foxc2, are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar extracellular matrix (ECM). Methods Adult mice carrying tamoxifen-inducible, endothelial cell (EC)-specific, compound Foxc1;Foxc2 mutations (i.e., EC-Foxc-DKO mice) were used to study the function of Foxc1 and Foxc2 in the maintenance of mitral valves. The EC-mutations of Foxc1/c2 were induced at 7 - 8 weeks of age by tamoxifen treatment, and abnormalities in the MVs of EC-Foxc-DKO mice were assessed via whole-mount immunostaining, immunohistochemistry, and Movat pentachrome/Masson's Trichrome staining. Results EC-deletions of Foxc1 and Foxc2 in mice resulted in abnormally extended and thicker mitral valves by causing defects in regulation of ECM organization with increased proteoglycan and decreased collagen. Notably, reticular adherens junctions were found in VECs of control MV leaflets, and these reticular structures were severely disrupted in EC-Foxc1/c2 mutant mice. PROX1, a key regulator in a subset of VECs on the fibrosa side of MVs, was downregulated in EC-Foxc1/c2 mutant VECs. Furthermore, we determined the precise location of lymphatic vessels in murine MVs, and these lymphatic vessels were aberrantly expanded in EC-Foxc1/c2 mutant mitral valves. Conclusions Our results indicate that Foxc1 and Foxc2 are required for maintaining the integrity of the MV, including VEC junctions, ECM organization, and lymphatic vessels to prevent myxomatous mitral valve degeneration.
Collapse
Affiliation(s)
- Can Tan
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shreya Kurup
- Honors College, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yaryna Dyakiv
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Moore KS, Moore R, Fulmer DB, Guo L, Gensemer C, Stairley R, Glover J, Beck TC, Morningstar JE, Biggs R, Muhkerjee R, Awgulewitsch A, Norris RA. DCHS1, Lix1L, and the Septin Cytoskeleton: Molecular and Developmental Etiology of Mitral Valve Prolapse. J Cardiovasc Dev Dis 2022; 9:62. [PMID: 35200715 PMCID: PMC8874669 DOI: 10.3390/jcdd9020062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mitral valve prolapse (MVP) is a common cardiac valve disease that often progresses to serious secondary complications requiring surgery. MVP manifests as extracellular matrix disorganization and biomechanically incompetent tissues in the adult setting. However, MVP has recently been shown to have a developmental basis, as multiple causal genes expressed during embryonic development have been identified. Disease phenotypes have been observed in mouse models with human MVP mutations as early as birth. This study focuses on the developmental function of DCHS1, one of the first genes to be shown as causal in multiple families with non-syndromic MVP. By using various biochemical techniques as well as mouse and cell culture models, we demonstrate a unique link between DCHS1-based cell adhesions and the septin-actin cytoskeleton through interactions with cytoplasmic protein Lix1-Like (LIX1L). This DCHS1-LIX1L-SEPT9 axis interacts with and promotes filamentous actin organization to direct cell-ECM alignment and valve tissue shape.
Collapse
Affiliation(s)
- Kelsey S. Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Reece Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Diana B. Fulmer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lilong Guo
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rebecca Stairley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Janiece Glover
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Tyler C. Beck
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rachel Biggs
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rupak Muhkerjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Alexander Awgulewitsch
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| |
Collapse
|
7
|
Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, Gensemer C, Beck T, Morningstar J, Stairley R, Norris RA. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis 2021; 8:28. [PMID: 33805717 PMCID: PMC7999759 DOI: 10.3390/jcdd8030028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Mitral valve prolapse (MVP) is a common form of valve disease and can lead to serious secondary complications. The recent identification of MVP causal mutations in primary cilia-related genes has prompted the investigation of cilia-mediated mechanisms of disease inception. Here, we investigate the role of platelet-derived growth factor receptor-alpha (PDGFRα), a receptor known to be present on the primary cilium, during valve development using genetically modified mice, biochemical assays, and high-resolution microscopy. While PDGFRα is expressed throughout the ciliated valve interstitium early in development, its expression becomes restricted on the valve endocardium by birth and through adulthood. Conditional ablation of Pdgfra with Nfatc1-enhancer Cre led to significantly enlarged and hypercellular anterior leaflets with disrupted endothelial adhesions, activated ERK1/2, and a dysregulated extracellular matrix. In vitro culture experiments confirmed a role in suppressing ERK1/2 activation while promoting AKT phosphorylation. These data suggest that PDGFRα functions to suppress mesenchymal transformation and disease phenotypes by stabilizing the valve endocardium through an AKT/ERK pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Suite 601 Basic Science Building, 173 Ashley Avenue, Charleston, SC 29425, USA; (K.M.); (D.F.); (L.G.); (N.K.); (J.G.); (R.M.); (C.G.); (T.B.); (J.M.); (R.S.)
| |
Collapse
|
8
|
Xian S, Chen A, Wu X, Lu C, Wu Y, Huang F, Zeng Z. Activation of activin/Smad2 and 3 signaling pathway and the potential involvement of endothelial‑mesenchymal transition in the valvular damage due to rheumatic heart disease. Mol Med Rep 2020; 23:10. [PMID: 33179113 PMCID: PMC7673319 DOI: 10.3892/mmr.2020.11648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Rheumatic heart disease (RHD) is an autoimmune disease caused by rheumatic fever following group A hemolytic streptococcal infection and primarily affects the mitral valve. RHD is currently a major global health problem. However, the exact pathological mechanisms associated with RHD-induced cardiac valve damage remain to be elucidated. The endothelial-mesenchymal transition (EndMT) serves a key role in a number of diseases with an important role in cardiac fibrosis and the activin/Smad2 and 3 signaling pathway is involved in regulating the EndMT. Nevertheless, there are no studies to date, to the best of the authors' knowledge, investigating the association between RHD and EndMT. Thus, the aim of the current study was to investigate the potential role of EndMT in cardiac valve damage and assess whether activin/Smad2 and 3 signaling was activated during RHD-induced valvular injury in a rat model of RHD induced by inactivated Group A streptococci and complete Freund's adjuvant. Inflammation and fibrosis were assessed by hematoxylin and eosin and Sirius red staining. Serum cytokine and rheumatoid factor levels were measured using ELISA kits. Expression levels of activin/Smad2 and 3 signaling pathway-related factors [activin A, Smad2, Smad3, phosphorylated (p-)Smad2 and p-Smad3], EndMT-related factors [lymphoid enhancer factor-1 (LEF-1), Snail1, TWIST, zinc finger E-box-binding homeobox (ZEB)1, ZEB2, α smooth muscle actin (α-SMA) and type I collagen α 1 (COL1A1)], apoptosis-related markers (BAX and cleaved caspase-3) and valvular inflammation markers (NF-κB and p-NF-κB) were detected using reverse transcription-quantitative PCR and western blot analyses. Compared with the control group, the degree of valvular inflammation and fibrosis, serum levels of IL-6, IL-17, TNF-α and expression of apoptosis-related markers (BAX and cleaved caspase-3) and valvular inflammation marker (p-NF-κB), activin/Smad2 and 3 signaling pathway-related factors (activin A, p-Smad2 and p-Smad3), EndMT-related factors (LEF-1, Snail1, TWIST, ZEB 1, ZEB2, α-SMA and COL1A1) were significantly increased in the RHD group. These results suggested that the activin/Smad2 and 3 signaling pathway was activated during the development of valvular damage caused by RHD and that the EndMT is involved in RHD-induced cardiac valve damage.
Collapse
Affiliation(s)
- Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ang Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaodan Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yunjiao Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
9
|
Al-Shammari H, Latif N, Sarathchandra P, McCormack A, Rog-Zielinska EA, Raja S, Kohl P, Yacoub MH, Peyronnet R, Chester AH. Expression and function of mechanosensitive ion channels in human valve interstitial cells. PLoS One 2020; 15:e0240532. [PMID: 33057457 PMCID: PMC7561104 DOI: 10.1371/journal.pone.0240532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
Background The ability of heart valve cells to respond to their mechanical environment represents a key mechanism by which the integrity and function of valve cusps is maintained. A number of different mechanotransduction pathways have been implicated in the response of valve cells to mechanical stimulation. In this study, we explore the expression pattern of several mechanosensitive ion channels (MSC) and their potential to mediate mechanosensitive responses of human valve interstitial cells (VIC). Methods MSC presence and function were probed using the patch clamp technique. Protein abundance of key MSC was evaluated by Western blotting in isolated fibroblastic VIC (VICFB) and in VIC differentiated towards myofibroblastic (VICMB) or osteoblastic (VICOB) phenotypes. Expression was compared in non-calcified and calcified human aortic valves. MSC contributions to stretch-induced collagen gene expression and to VIC migration were assessed by pharmacological inhibition of specific channels. Results Two MSC types were recorded in VICFB: potassium selective and cation non-selective channels. In keeping with functional data, the presence of both TREK-1 and Kir6.1 (potassium selective), as well as TRPM4, TRPV4 and TRPC6 (cationic non-selective) channels was confirmed in VIC at the protein level. Differentiation of VICFB into VICMB or VICOB phenotypes was associated with a lower expression of TREK-1 and Kir6.1, and a higher expression of TRPV4 and TRPC6. Differences in MSC expression were also seen in non-calcified vs calcified aortic valves where TREK-1, TRPM4 and TRPV4 expression were higher in calcified compared to control tissues. Cyclic stretch-induced expression of COL I mRNA in cultured VICFB was blocked by RN-9893, a selective inhibitor of TRPV4 channels while having no effect on the stretch-induced expression of COL III. VICFB migration was blocked with the non-specific MSC blocker streptomycin and by GSK417651A an inhibitor of TRPC6/3. Conclusion Aortic VIC express a range of MSC that play a role in functional responses of these cells to mechanical stimulation. MSC expression levels differ in calcified and non-calcified valves in ways that are in part compatible with the change in expression seen between VIC phenotypes. These changes in MSC expression, and associated alterations in the ability of VIC to respond to their mechanical environment, may form novel targets for intervention during aortic valvulopathies.
Collapse
Affiliation(s)
- Hessah Al-Shammari
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Najma Latif
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
| | | | - Ann McCormack
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
| | - Eva A. Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shahzad Raja
- Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Harefield, United Kingdom
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Magdi H. Yacoub
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
| | - Rémi Peyronnet
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adrian H. Chester
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Bousalis D, Lacko CS, Hlavac N, Alkassis F, Wachs RA, Mobini S, Schmidt CE, Kasahara H. Extracellular Matrix Disparities in an Nkx2-5 Mutant Mouse Model of Congenital Heart Disease. Front Cardiovasc Med 2020; 7:93. [PMID: 32548129 PMCID: PMC7272573 DOI: 10.3389/fcvm.2020.00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Congenital heart disease (CHD) affects almost one percent of all live births. Despite diagnostic and surgical reparative advances, the causes and mechanisms of CHD are still primarily unknown. The extracellular matrix plays a large role in cell communication, function, and differentiation, and therefore likely plays a role in disease development and pathophysiology. Cell adhesion and gap junction proteins, such as integrins and connexins, are also essential to cellular communication and behavior, and could interact directly (integrins) or indirectly (connexins) with the extracellular matrix. In this work, we explore disparities in the expression and spatial patterning of extracellular matrix, adhesion, and gap junction proteins between wild type and Nkx2-5 +/R52G mutant mice. Decellularization and proteomic analysis, Western blotting, histology, immunostaining, and mechanical assessment of embryonic and neonatal wild type and Nkx2-5 mutant mouse hearts were performed. An increased abundance of collagen IV, fibronectin, and integrin β-1 was found in Nkx2-5 mutant neonatal mouse hearts, as well as increased expression of connexin 43 in embryonic mutant hearts. Furthermore, a ventricular noncompaction phenotype was observed in both embryonic and neonatal mutant hearts, as well as spatial disorganization of ECM proteins collagen IV and laminin in mutant hearts. Characterizing such properties in a mutant mouse model provides valuable information that can be applied to better understanding the mechanisms of congenital heart disease.
Collapse
Affiliation(s)
- Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Christopher S Lacko
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Fariz Alkassis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Rebecca A Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Biomechanical Cues Direct Valvulogenesis. J Cardiovasc Dev Dis 2020; 7:jcdd7020018. [PMID: 32438610 PMCID: PMC7345189 DOI: 10.3390/jcdd7020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
The vertebrate embryonic heart initially forms with two chambers, a ventricle and an atrium, separated by the atrioventricular junction. Localized genetic and biomechanical information guides the development of valves, which function to ensure unidirectional blood flow. If the valve development process goes awry, pathology associated with congenital valve defects can ensue. Congenital valve defects (CVD) are estimated to affect 1–2% of the population and can often require a lifetime of treatment. Despite significant clinical interest, molecular genetic mechanisms that direct valve development remain incompletely elucidated. Cells in the developing valve must contend with a dynamic hemodynamic environment. A growing body of research supports the idea that cells in the valve are highly sensitive to biomechanical forces, which cue changes in gene expression required for normal development or for maintenance of the adult valve. This review will focus on mechanotransductive pathways involved in valve development across model species. We highlight current knowledge regarding how cells sense physical forces associated with blood flow and pressure in the forming heart, and summarize how these changes are transduced into genetic and developmental responses. Lastly, we provide perspectives on how altered biomechanical cues may lead to CVD pathogenesis.
Collapse
|
12
|
Cavalcanti LRP, Sá MPBO, Perazzo ÁM, Escorel Neto AC, Gomes RAF, Weymann A, Zhigalov K, Ruhparwar A, Lima RC. Mitral Annular Calcification: Association with Atherosclerosis and Clinical Implications. Curr Atheroscler Rep 2020; 22:9. [PMID: 32034516 DOI: 10.1007/s11883-020-0825-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the pathophysiology of mitral annular calcification (MAC) with recent findings and current strategies for diagnosis and treatment. RECENT FINDINGS Major factors in MAC development seem to be shear stress of the flow past the mitral valve, local inflammation, and dysregulation in regulators of mineral metabolism. MAC itself poses daunting technical challenges. Implanting a valve on top of the calcium bar might lead to paravalvular leak (PVL) that is less likely to heal. Annular decalcification allows for better valve seating and potentially better healing and less PVL. This, however, comes with the risk for catastrophic atrioventricular groove disruption. MAC can be sharply dissected with the scalpel; the annulus can be reconstructed with the autologous pericardium. Transcatheter mitral valve replacement is a promising approach in the treatment of patients who are deemed high-risk surgical candidates with severe MAC. MAC is a multifactorial disease that has some commonalities with atherosclerosis, mainly regarding lipid accumulation and calcium deposition. It is of great clinical importance, being a risk marker of cardiovascular events (including sudden death) and, with its progression, can have a negative impact on patients' lives.
Collapse
Affiliation(s)
- Luiz Rafael P Cavalcanti
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil. .,University of Pernambuco - UPE, Recife, Brazil. .,, Recife, Brazil.
| | - Michel Pompeu B O Sá
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil.,Nucleus of Postgraduate and Research in Health Sciences of Faculty of Medical Sciences and Biological Sciences Institute - FCM/ICB, Recife, Brazil
| | - Álvaro M Perazzo
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil
| | - Antonio C Escorel Neto
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil
| | - Rafael A F Gomes
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil.,Nucleus of Postgraduate and Research in Health Sciences of Faculty of Medical Sciences and Biological Sciences Institute - FCM/ICB, Recife, Brazil
| | - Alexander Weymann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Konstantin Zhigalov
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Ricardo C Lima
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil
| |
Collapse
|
13
|
Oyama MA, Elliott C, Loughran KA, Kossar AP, Castillero E, Levy RJ, Ferrari G. Comparative pathology of human and canine myxomatous mitral valve degeneration: 5HT and TGF-β mechanisms. Cardiovasc Pathol 2020; 46:107196. [PMID: 32006823 DOI: 10.1016/j.carpath.2019.107196] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 12/25/2022] Open
Abstract
Myxomatous mitral valve degeneration (MMVD) is a leading cause of valve repair or replacement secondary to the production of mitral regurgitation, cardiac enlargement, systolic dysfunction, and heart failure. The pathophysiology of myxomatous mitral valve degeneration is complex and incompletely understood, but key features include activation and transformation of mitral valve (MV) valvular interstitial cells (VICs) into an active phenotype leading to remodeling of the extracellular matrix and compromise of the structural components of the mitral valve leaflets. Uncovering the mechanisms behind these events offers the potential for therapies to prevent, delay, or reverse myxomatous mitral valve degeneration. One such mechanism involves the neurotransmitter serotonin (5HT), which has been linked to development of valvulopathy in a variety of settings, including valvulopathy induced by serotonergic drugs, Serotonin-producing carcinoid tumors, and development of valvulopathy in laboratory animals exposed to high levels of serotonin. Similar to humans, the domestic dog also experiences naturally occurring myxomatous mitral valve degeneration, and in some breeds of dogs, the lifetime prevalence of myxomatous mitral valve degeneration reaches 100%. In dogs, myxomatous mitral valve degeneration has been associated with high serum serotonin, increased expression of serotonin-receptors, autocrine production of serotonin within the mitral valve leaflets, and downregulation of serotonin clearance mechanisms. One pathway closely associated with serotonin involves transforming growth factor beta (TGF-β) and the two pathways share a common ability to activate mitral valve valvular interstitial cells in both humans and dogs. Understanding the role of serotonin and transforming growth factor beta in myxomatous mitral valve degeneration gives rise to potential therapies, such as 5HT receptor (5HT-R) antagonists. The main purposes of this review are to highlight the commonalities between myxomatous mitral valve degeneration in humans and dogs, with specific regards to serotonin and transforming growth factor beta, and to champion the dog as a relevant and particularly valuable model of human disease that can accelerate development of novel therapies.
Collapse
Affiliation(s)
- Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chad Elliott
- Department of Surgery, Columbia Cardiovascular Institute and College of Physicians and Surgeons at Columbia University, New York, NY, USA
| | - Kerry A Loughran
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander P Kossar
- Department of Surgery, Columbia Cardiovascular Institute and College of Physicians and Surgeons at Columbia University, New York, NY, USA
| | - Estibaliz Castillero
- Department of Surgery, Columbia Cardiovascular Institute and College of Physicians and Surgeons at Columbia University, New York, NY, USA
| | - Robert J Levy
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Giovanni Ferrari
- Department of Surgery, Columbia Cardiovascular Institute and College of Physicians and Surgeons at Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Zhang J, Su Q, Loudon WG, Lee KL, Luo J, Dethlefs BA, Li SC. Breathing Signature as Vitality Score Index Created by Exercises of Qigong: Implications of Artificial Intelligence Tools Used in Traditional Chinese Medicine. J Funct Morphol Kinesiol 2019; 4:71. [PMID: 31853512 PMCID: PMC6919646 DOI: 10.3390/jfmk4040071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Rising concerns about the short- and long-term detrimental consequences of administration of conventional pharmacopeia are fueling the search for alternative, complementary, personalized, and comprehensive approaches to human healthcare. Qigong, a form of Traditional Chinese Medicine, represents a viable alternative approach. Here, we started with the practical, philosophical, and psychological background of Ki (in Japanese) or Qi (in Chinese) and their relationship to Qigong theory and clinical application. Noting the drawbacks of the current state of Qigong clinic, herein we propose that to manage the unique aspects of the Eastern 'non-linearity' and 'holistic' approach, it needs to be integrated with the Western "linearity" "one-direction" approach. This is done through developing the concepts of "Qigong breathing signatures," which can define our life breathing patterns associated with diseases using machine learning technology. We predict that this can be achieved by establishing an artificial intelligence (AI)-Medicine training camp of databases, which will integrate Qigong-like breathing patterns with different pathologies unique to individuals. Such an integrated connection will allow the AI-Medicine algorithm to identify breathing patterns and guide medical intervention. This unique view of potentially connecting Eastern Medicine and Western Technology can further add a novel insight to our current understanding of both Western and Eastern medicine, thereby establishing a vitality score index (VSI) that can predict the outcomes of lifestyle behaviors and medical conditions.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Physical Training and Physical Therapy, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Qingning Su
- Center of Bioengineering, School of Medicine, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - William G. Loudon
- Neuroscience Institute, Children’s Hospital of Orange County, Gamma Knife Center of Southern California, Department of Neurosurgery, University of California-Irvine School of Medicine, Orange, CA 92612, USA
| | - Katherine L. Lee
- School of Social Ecology, University of California-Irvine, 5300 Social and Behavioral Sciences Gateway, Irvine, CA 92697-7050, USA
| | - Jane Luo
- AB Sciex, Inc., Danaher Corporation, 250 South Kraemer Boulevard, Brea, CA 92821-6232, USA
| | - Brent A. Dethlefs
- CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory (NSCL), CHOC Children’s Research Institute (CCRI), Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine (UCI) School of Medicine, 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
| |
Collapse
|
15
|
Blomme B, Deroanne C, Hulin A, Lambert C, Defraigne JO, Nusgens B, Radermecker M, Colige A. Mechanical strain induces a pro-fibrotic phenotype in human mitral valvular interstitial cells through RhoC/ROCK/MRTF-A and Erk1/2 signaling pathways. J Mol Cell Cardiol 2019; 135:149-159. [PMID: 31442470 DOI: 10.1016/j.yjmcc.2019.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023]
Abstract
The mitral valve is a complex multilayered structure populated by fibroblast-like cells, valvular interstitial cells (VIC) which are embedded in an extracellular matrix (ECM) scaffold and are submitted to the mechanical deformations affecting valve at each heartbeat, for an average of 40 million times per year. Myxomatous mitral valve (MMV) is the most frequent heart valve disease characterized by disruption of several valvular structures due to alterations of their ECM preventing the complete closure of the valve resulting in symptoms of prolapse and regurgitation. VIC and their ECM exhibit reciprocal dynamic processes between the mechanical signals issued from the ECM and the modulation of VIC phenotype responsible for ECM homeostasis of the valve. Abnormal perception and responsiveness of VIC to mechanical stress may induce an inappropriate adaptative remodeling of the valve progressively leading to MMV. To investigate the response of human VIC to mechanical strain and identify the molecular mechanisms of mechano-transduction in these cells, a cyclic equibiaxial elongation of 14% at the cardiac frequency of 1.16 Hz was applied to VIC by using a Flexercell-4000 T™ apparatus for increasing time (from 1 h to 8 h). We showed that cyclic stretch induces an early (1 h) and transient over-expression of TGFβ2 and αSMA. CTGF, a profibrotic growth factor promoting the synthesis of ECM components, was strongly induced after 1 and 2 h of stretching and still upregulated at 8 h. The mechanical stress-induced CTGF up-regulation was dependent on RhoC, but not RhoA, as demonstrated by siRNA-mediated silencing approaches, and further supported by evidencing RhoC activation upon cell stretching and suppression of cell response by pharmacological inhibition of the effector ROCK1/2. It was also dependent on the MEK/Erk1/2 pathway which was activated by mechanical stress independently of RhoC and ROCK. Finally, mechanical stretching induced the nuclear translocation of myocardin related transcription factor-A (MRTF-A) which forms a transcriptional complex with SRF to promote the expression of target genes, notably CTGF. Treatment of stretched cultures with inhibitors of the identified pathways (ROCK1/2, MEK/Erk1/2, MRTF-A translocation) blocked CTGF overexpression and abrogated the increased MRTF-A nuclear translocation. CTGF is up-regulated in many pathological processes involving mechanically challenged organs, promotes ECM accumulation and is considered as a hallmark of fibrotic diseases. Pharmacological targeting of MRTF-A by newly developed inhibitors may represent a relevant therapy for MMV.
Collapse
Affiliation(s)
- Benoit Blomme
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium; Department of Cardiovascular and Thoracic Surgery, B35, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium
| | - Alexia Hulin
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, B34, University of Liège, 4000 Sart- Tilman, Belgium
| | - Charles Lambert
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium
| | - Jean-Olivier Defraigne
- Department of Cardiovascular and Thoracic Surgery, B35, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium
| | - Betty Nusgens
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium
| | - Marc Radermecker
- Department of Cardiovascular and Thoracic Surgery, B35, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium; Department of Human Anatomy, B23, University of Liège, CHU Sart-Tilman, 4000 Sart Tilman, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Research, University of Liège, Tour de Pathologie, B23, 4000 Sart-Tilman, Belgium.
| |
Collapse
|