1
|
Majewska L, Dorosz K, Kijowski J. Efficacy of Rose Stem Cell-Derived Exosomes (RSCEs) in Skin Treatment: From Healing to Hyperpigmentation Management: Case Series and Review. J Cosmet Dermatol 2025; 24:e16776. [PMID: 39815650 DOI: 10.1111/jocd.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/03/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE To present and analyze eight clinical cases illustrating the use of rose stem cell-derived exosomes (RSCEs) in treating various dermatological conditions and to review current literature on plant-derived exosomes in medicine and dermatology. BACKGROUND RSCEs possess low cytotoxicity, high biocompatibility, and effective cellular uptake, making them promising agents for dermatological therapies. A literature review included in the introduction and discussion covers the broader role of plant-derived exosomes, highlighting their therapeutic potential in skin treatment. METHODS A case-by-case analysis was conducted on eight patients with conditions including atopic dermatitis (AD), hyperpigmentation, scarring, wounds, melasma, and antiaging concerns. Each case provided insights into RSCEs' efficacy, with a focus on their antioxidant and anti-inflammatory properties, as well as specific learning points derived from clinical observations. RESULTS The cases demonstrated RSCEs' multifaceted therapeutic effects across different skin conditions, supporting their role in enhancing skin regeneration, wound healing, and reducing hyperpigmentation and scarring. The literature review underscored RSCEs' unique bioactivity, suggesting mechanisms for their observed effects, including anti-inflammatory and rejuvenating properties, which contributed to favorable clinical outcomes. CONCLUSION RSCEs show potential as a valuable treatment in dermatology, as evidenced by the positive results across multiple skin conditions and their alignment with existing literature on plant-derived exosomes. This case series emphasizes the need for further randomized and controlled clinical trials to confirm these preliminary findings and expand RSCEs' clinical application in dermatology.
Collapse
Affiliation(s)
| | | | - Jacek Kijowski
- Małopolska Centre of Biotechnology, Stem Cell Laboratory, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Vu VT, Vu CA, Huang CJ, Cheng CM, Pan SC, Chen WY. Intermittent lysis on a single paper-based device to extract exosomal nucleic acid biomarkers from biological samples for downstream analysis. Mikrochim Acta 2024; 191:501. [PMID: 39093424 DOI: 10.1007/s00604-024-06566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
As the role of exosomes in physiological and pathological processes has been properly perceived, harvesting them and their internal components is critical for subsequent applications. This study is a debut of intermittent lysis, which has been integrated into a simple and easy-to-operate procedure on a single paper-based device to extract exosomal nucleic acid biomarkers for downstream analysis. Exosomes from biological samples were captured by anti-CD63-modified papers before being intermittently lysed by high-temperature, short-time treatment with double-distilled water to release their internal components. Exosomal nucleic acids were finally adsorbed by sol-gel silica for downstream analysis. Empirical trials not only revealed that sporadically dropping 95 °C ddH2O onto the anti-CD63-modified papers every 5 min for 6 times optimized the exosomal nucleic acids extracted by the anti-CD63 paper but also verified that the whole deployed procedure is applicable for point-of-care testing (POCT) in low-resource areas and for both in vitro (culture media) and in vivo (plasma and chronic lesion) samples. Importantly, downstream analysis of exosomal miR-21 extracted by the paper-based procedure integrated with this novel technique discovered that the content of exosomal miR-21 in chronic lesions related to their stages and the levels of exosomal carcinoembryonic antigen originated from colorectal cancer cells correlated to their exosomal miR-21.
Collapse
Affiliation(s)
- Van-Truc Vu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan
| | - Cao-An Vu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 704, Taiwan.
- College of Medicine, International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Wen-Yih Chen
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan.
| |
Collapse
|
3
|
Kang C, Ren X, Lee D, Ramesh R, Nimmo S, Yang-Hartwich Y, Kim D. Harnessing small extracellular vesicles for pro-oxidant delivery: novel approach for drug-sensitive and resistant cancer therapy. J Control Release 2024; 365:286-300. [PMID: 37992875 PMCID: PMC10872719 DOI: 10.1016/j.jconrel.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multidrug resistance (MDR) is an inevitable clinical problem in chemotherapy due to the activation of abundant P-glycoprotein (P-gp) that can efflux drugs. Limitations of current cancer therapy highlight the need for the development of a comprehensive cancer treatment strategy, including drug-resistant cancers. Small extracellular vesicles (sEVs) possess significant potential in surmounting drug resistance as they can effectively evade the efflux mechanism and transport small molecules directly to MDR cancer cells. One mechanism mediating MDR in cancer cells is sustaining increased levels of reactive oxygen species (ROS) and maintenance of the redox balance with antioxidants, including glutathione (GSH). Herein, we developed GSH-depleting benzoyloxy dibenzyl carbonate (B2C)-encapsulated sEVs (BsEVs), which overcome the efflux system to exert highly potent anticancer activity against human MDR ovarian cancer cells (OVCAR-8/MDR) by depleting GSH to induce oxidative stress and, in turn, apoptotic cell death in both OVCAR-8/MDR and OVCAR-8 cancer cells. BsEVs restore drug responsiveness by inhibiting ATP production through the oxidation of nicotinamide adenine dinucleotide with hydrogen (NADH) and inducing mitochondrial dysfunction, leading to the dysfunction of efflux pumps responsible for drug resistance. In vivo studies showed that BsEV treatment significantly inhibited the growth of OVCAR-8/MDR and OVCAR-8 tumors. Additionally, OVCAR-8/MDR tumors showed a trend towards a greater sensitivity to BsEVs compared to OVCAR tumors. In summary, this study demonstrates that BsEVs hold tremendous potential for cancer treatment, especially against MDR cancer cells.
Collapse
Affiliation(s)
- Changsun Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Rajagopal Ramesh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susan Nimmo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
4
|
Caliani Carrera AL, Minto BW, Malard P, Brunel HDSS. The Role of Mesenchymal Stem Cell Secretome (Extracellular Microvesicles and Exosomes) in Animals' Musculoskeletal and Neurologic-Related Disorders. Vet Med Int 2023; 2023:8819506. [PMID: 38023428 PMCID: PMC10645499 DOI: 10.1155/2023/8819506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The advances in regenerative medicine are very important for the development of medicine and the discovery of stem cells has shown a greater capacity to raise the level of therapeutic quality while their use becomes more accessible, especially in their mesenchymal form. In veterinary medicine, it is not different. The use of those cells, as well as recent advances related to the use of their extracellular vesicles, demonstrates a great opportunity to enhance therapeutic methods and ensure more life quality for patients, which can be in clinical or surgical treatments. Knowing the advances in these modalities and the growing clinical and surgery research and demands for innovations in orthopedic and neurology medicines, this paper aimed to review the literature about the methodologies of use and applications such as the pathways of action and the advances that were postulated for microvesicles and exosomes derived from mesenchymal stem cells in veterinary medicine, especially for musculoskeletal disorders and related injuries.
Collapse
Affiliation(s)
- Alefe Luiz Caliani Carrera
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Bruno Watanabe Minto
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Patrícia Malard
- Catholic University of Brasilia, Brasília, Federal District, Brazil
| | | |
Collapse
|
5
|
Qin X, He J, Wang X, Wang J, Yang R, Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol 2023; 14:1256687. [PMID: 37691943 PMCID: PMC10486026 DOI: 10.3389/fimmu.2023.1256687] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Wound repair is a complex problem for both clinical practitioners and scientific investigators. Conventional approaches to wound repair have been associated with several limitations, including prolonged treatment duration, high treatment expenses, and significant economic and psychological strain on patients. Consequently, there is a pressing demand for more efficacious and secure treatment modalities to enhance the existing treatment landscapes. In the field of wound repair, cell-free therapy, particularly the use of mesenchymal stem cell-derived exosomes (MSC-Exos), has made notable advancements in recent years. Exosomes, which are small lipid bilayer vesicles discharged by MSCs, harbor bioactive constituents such as proteins, lipids, microRNA (miRNA), and messenger RNA (mRNA). These constituents facilitate material transfer and information exchange between the cells, thereby regulating their biological functions. This article presents a comprehensive survey of the function and mechanisms of MSC-Exos in the context of wound healing, emphasizing their beneficial impact on each phase of the process, including the regulation of the immune response, inhibition of inflammation, promotion of angiogenesis, advancement of cell proliferation and migration, and reduction of scar formation.
Collapse
Affiliation(s)
- Xinchi Qin
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaoxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xiaodong Chen
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
6
|
Isaioglou I, Aldehaiman MM, Li Y, Lahcen AA, Rauf S, Al-Amoodi AS, Habiba U, Alghamdi A, Nozue S, Habuchi S, Salama KN, Merzaban JS. CD34 + HSPCs-derived exosomes contain dynamic cargo and promote their migration through functional binding with the homing receptor E-selectin. Front Cell Dev Biol 2023; 11:1149912. [PMID: 37181754 PMCID: PMC10166801 DOI: 10.3389/fcell.2023.1149912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 05/16/2023] Open
Abstract
Exosomes are tiny vesicles released by cells that carry communications to local and distant locations. Emerging research has revealed the role played by integrins found on the surface of exosomes in delivering information once they reach their destination. But until now, little has been known on the initial upstream steps of the migration process. Using biochemical and imaging approaches, we show here that exosomes isolated from both leukemic and healthy hematopoietic stem/progenitor cells can navigate their way from the cell of origin due to the presence of sialyl Lewis X modifications surface glycoproteins. This, in turn, allows binding to E-selectin at distant sites so the exosomes can deliver their messages. We show that when leukemic exosomes were injected into NSG mice, they traveled to the spleen and spine, sites typical of leukemic cell engraftment. This process, however, was inhibited in mice pre-treated with blocking E-selectin antibodies. Significantly, our proteomic analysis found that among the proteins contained within exosomes are signaling proteins, suggesting that exosomes are trying to deliver active cues to recipient cells that potentially alter their physiology. Intriguingly, the work outlined here also suggests that protein cargo can dynamically change upon exosome binding to receptors such as E-selectin, which thereby could alter the impact it has to regulate the physiology of the recipient cells. Furthermore, as an example of how miRNAs contained in exosomes can influence RNA expression in recipient cells, our analysis showed that miRNAs found in KG1a-derived exosomes target tumor suppressing proteins such as PTEN.
Collapse
Affiliation(s)
- Ioannis Isaioglou
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mansour M. Aldehaiman
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yanyan Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdellatif Ait Lahcen
- Electrical and Computer Engineering Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sakandar Rauf
- Electrical and Computer Engineering Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Asma S. Al-Amoodi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Umme Habiba
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdullah Alghamdi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shuho Nozue
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Satoshi Habuchi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled N. Salama
- Electrical and Computer Engineering Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jasmeen S. Merzaban
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Smart-Health Initiative, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC. Single-cell transcriptomics reveal extracellular vesicles secretion with a cardiomyocyte proteostasis signature during pathological remodeling. Commun Biol 2023; 6:79. [PMID: 36681760 PMCID: PMC9867722 DOI: 10.1038/s42003-022-04402-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023] Open
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from β-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - Federico Bleckwedel
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Giulia Germena
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Cheila Rocha
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Petra Tucholla
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Izzatullo Sobitov
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Max-Planck-Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Mostafa Samak
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
| | - Rabea Hinkel
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany
- Laboratory Animal Science Unit, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, 37075, Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, 30173, Hannover, Germany
| | - Zoltán V Varga
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Zoltán Giricz
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085, Budapest, Hungary
- Pharmahungary Group, H-1085, Budapest, Hungary
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Julia C Gross
- Health and Medical University, D-14471, Potsdam, Germany
| | - Laura C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen (UMG), 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK) partner site Göttingen, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
8
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
9
|
Tang H, Luo H, Zhang Z, Yang D. Mesenchymal Stem Cell-Derived Apoptotic Bodies: Biological Functions and Therapeutic Potential. Cells 2022; 11:cells11233879. [PMID: 36497136 PMCID: PMC9737101 DOI: 10.3390/cells11233879] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells with self-renewal ability and multipotency of osteogenic, chondrogenic, and adipogenic differentiation. MSCs have appeared as a promising approach for tissue regeneration and immune therapies, which are attributable not only to their differentiation into the desired cells but also to their paracrine secretion. MSC-sourced secretome consists of soluble components including growth factors, chemokines, cytokines, and encapsulated extracellular vesicles (EVs). Apoptotic bodies (ABs) are large EVs (diameter 500𠀓2000 nm) harboring a variety of cellular components including microRNA, mRNA, DNA, protein, and lipids related to the characteristics of the originating cell, which are generated during apoptosis. The released ABs as well as the genetic information they carry are engulfed by target cells such as macrophages, dendritic cells, epithelial cells, and fibroblasts, and subsequently internalized and degraded in the lysosomes, suggesting their ability to facilitate intercellular communication. In this review, we discuss the current understanding of the biological functions and therapeutic potential of MSC-derived ABs, including immunomodulation, tissue regeneration, regulation of inflammatory response, and drug delivery system.
Collapse
Affiliation(s)
| | | | | | - Di Yang
- Correspondence: ; Tel.: +86-24-31927705
| |
Collapse
|
10
|
Bernea EG, Suica VI, Uyy E, Cerveanu-Hogas A, Boteanu RM, Ivan L, Ceausu I, Mihai DA, Ionescu-Tîrgoviște C, Antohe F. Exosome Proteomics Reveals the Deregulation of Coagulation, Complement and Lipid Metabolism Proteins in Gestational Diabetes Mellitus. Molecules 2022; 27:molecules27175502. [PMID: 36080270 PMCID: PMC9457917 DOI: 10.3390/molecules27175502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes are small extracellular vesicles with a variable protein cargo in consonance with cell origin and pathophysiological conditions. Gestational diabetes mellitus (GDM) is characterized by different levels of chronic low-grade inflammation and vascular dysfunction; however, there are few data characterizing the serum exosomal protein cargo of GDM patients and associated signaling pathways. Eighteen pregnant women were enrolled in the study: 8 controls (CG) and 10 patients with GDM. Blood samples were collected from patients, for exosomes’ concentration. Protein abundance alterations were demonstrated by relative mass spectrometric analysis and their association with clinical parameters in GDM patients was performed using Pearson’s correlation analysis. The proteomics analysis revealed 78 significantly altered proteins when comparing GDM to CG, related to complement and coagulation cascades, platelet activation, prothrombotic factors and cholesterol metabolism. Down-regulation of Complement C3 (C3), Complement C5 (C5), C4-B (C4B), C4b-binding protein beta chain (C4BPB) and C4b-binding protein alpha chain (C4BPA), and up-regulation of C7, C9 and F12 were found in GDM. Our data indicated significant correlations between factors involved in the pathogenesis of GDM and clinical parameters that may improve the understanding of GDM pathophysiology. Data are available via ProteomeXchange with identifier PXD035673.
Collapse
Affiliation(s)
- Elena G. Bernea
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020474 Bucharest, Romania
| | - Viorel I. Suica
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Elena Uyy
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Aurel Cerveanu-Hogas
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Raluca M. Boteanu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Luminita Ivan
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Iuliana Ceausu
- University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- “Dr. I. Cantacuzino” Hospital, 020475 Bucharest, Romania
| | - Doina A. Mihai
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020474 Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
| | - Constantin Ionescu-Tîrgoviște
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020474 Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
- Correspondence: ; Tel.: +40213194518
| |
Collapse
|
11
|
Chen K, Li Y, Xu L, Qian Y, Liu N, Zhou C, Liu J, Zhou L, Xu Z, Jia R, Ge YZ. Comprehensive insight into endothelial progenitor cell-derived extracellular vesicles as a promising candidate for disease treatment. Stem Cell Res Ther 2022; 13:238. [PMID: 35672766 PMCID: PMC9172199 DOI: 10.1186/s13287-022-02921-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/29/2022] [Indexed: 12/21/2022] Open
Abstract
Endothelial progenitor cells (EPCs), which are a type of stem cell, have been found to have strong angiogenic and tissue repair capabilities. Extracellular vesicles (EVs) contain many effective components, such as cellular proteins, microRNAs, messenger RNAs, and long noncoding RNAs, and can be secreted by different cell types. The functions of EVs depend mainly on their parent cells. Many researchers have conducted functional studies of EPC-derived EVs (EPC-EVs) and showed that they exhibit therapeutic effects on many diseases, such as cardiovascular disease, acute kidney injury, acute lung injury, and sepsis. In this review article, we comprehensively summarized the biogenesis and functions of EPCs and EVs and the potent role of EPC-EVs in the treatment of various diseases. Furthermore, the current problems and future prospects have been discussed, and further studies are needed to compare the therapeutic effects of EVs derived from various stem cells, which will contribute to the accelerated translation of these applications in a clinical setting.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ning Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Transcriptional and Epigenetic Factors Associated with Early Thrombosis of Femoral Artery Involved in Arteriovenous Fistula. Proteomes 2022; 10:proteomes10020014. [PMID: 35645372 PMCID: PMC9149803 DOI: 10.3390/proteomes10020014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Arteriovenous fistulas (AVFs), created for hemodialysis in end-stage renal disease patients, mature through the outward remodeling of the outflow vein. However, early thrombosis and chronic inflammation are detrimental to the process of AVF maturation and precipitate AVF maturation failure. For the successful remodeling of the outflow vein, blood flow through the fistula is essential, but early arterial thrombosis attenuates this blood flow, and the vessels become thrombosed and stenosed, leading to AVF failure. The altered expression of various proteins involved in maintaining vessel patency or thrombosis is regulated by genes of which the expression is regulated by transcription factors and microRNAs. In this study, using thrombosed and stenosed arteries following AVF creation, we delineated transcription factors and microRNAs associated with differentially expressed genes in bulk RNA sequencing data using upstream and causal network analysis. We observed changes in many transcription factors and microRNAs that are involved in angiogenesis; vascular smooth muscle cell proliferation, migration, and phenotypic changes; endothelial cell function; hypoxia; oxidative stress; vessel remodeling; immune responses; and inflammation. These factors and microRNAs play a critical role in the underlying molecular mechanisms in AVF maturation. We also observed epigenetic factors involved in gene regulation associated with these molecular mechanisms. The results of this study indicate the importance of investigating the transcriptional and epigenetic regulation of AVF maturation and maturation failure and targeting factors precipitating early thrombosis and stenosis.
Collapse
|
13
|
Turrioni AP, Oliveira Neto NFD, Xu Y, Morse L, Costa CADS, Battaglino R, Hebling J. Proliferation rate and expression of stem cells markers during expansion in primary culture of pulp cells. Braz Oral Res 2021; 35:e128. [PMID: 34878083 DOI: 10.1590/1807-3107bor-2021.vol35.0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to evaluate the proliferation rate and the expression of stem cells markers during expansion in primary culture of dental pulp stem cells (DPSCs), comparing different techniques (explant and enzymatic digestion), subject ages (up to 40 and over 40) and cell passages (#2, #5 and #8). DPSCs were isolated using either the enzymatic digestion (ED) or explant (EX) technique. The number of days needed for the cells to reach confluence was determined. Immunophenotyping was performed by immunofluorescence and flow cytometry analysis using antibodies specific for nestin, vimentin, CD44, CD146, Oct3/4 and CD34. Data were subjected to three-way analysis of variance (n = 6/group). The ANOVA tests were complemented by Tukey's or t-tests (p < 0.05). The variables "donor age" and "technique" were analyzed to define the optimal desirability value using a response optimization. DPSCs presented a high proliferation rate from passages 2 to 5 while cells from passage 8 proliferated at a slower rate. For all markers, no significant difference was observed among passages, irrespective of the technique used or the donor's age. The mean fraction of specific antibodies was 73.7% (± 11.5), 49.0% (± 18.7), 80.1% (± 8.0), 45.2% (± 13.7), 64.7% (± 5.3) and 2.0% (± 1.5) for CD44, OCT, vimentin, nestin, CD146 and CD34, respectively. The highest optimal desirability value was obtained using the ED technique and cells from younger patients (d = 0.92). However, it was concluded that neither the isolation technique nor the donor age or cell passage significantly interfered with the stem cell phenotype and proliferation rate during cell expansion.
Collapse
Affiliation(s)
- Ana Paula Turrioni
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Pediatric Dentistry, Uberlandia, MG, Brazil
| | | | - Yan Xu
- The Forsyth Institute, Department of Mineralized Tissue Biology, Cambridge MA, USA
| | - Leslie Morse
- University of Minnesota, School of Medicine, Department of Rehabilitation Medicine, Minneapolis, MI, USA
| | - Carlos Alberto de Souza Costa
- Universidade Estadual Paulista - Unesp, School of Dentistry, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Ricardo Battaglino
- University of Minnesota, School of Medicine, Department of Rehabilitation Medicine, Minneapolis, MI, USA
| | - Josimeri Hebling
- Universidade Estadual Paulista - Unesp, School of Dentistry, Department of Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| |
Collapse
|
14
|
Kodam SP, Ullah M. Diagnostic and Therapeutic Potential of Extracellular Vesicles. Technol Cancer Res Treat 2021; 20:15330338211041203. [PMID: 34632862 PMCID: PMC8504225 DOI: 10.1177/15330338211041203] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally phospholipid enclosed nanovesicles released by many cells in the body. They are stable in circulation, have low immunogenicity, and act as carriers for functionally active biological molecules. They interact with target organs and bind to the receptors. Their target specificity is important to use EVs as noninvasive diagnostic and prognostic tools. EVs play a vital role in normal physiology and cellular communication. They are known to protect their cargo from degradation, which makes them important drug carriers for targeted drug delivery. Using EVs with markers and tracking their path in systemic circulation can be revolutionary in using them as diagnostic tools. We will discuss the scope of this in this paper. Although there are limitations in EVs isolation and storage, their high biocompatibility will fuel more innovations to overcome these challenges.
Collapse
Affiliation(s)
- Sai Priyanka Kodam
- Institute for Immunity and Transplantation, 158423Stem Cell Biology and Regenerative Medicine, School of Medicine, 6429Stanford University, Palo Alto, California, USA.,School of Medicine, 6429Stanford University, Palo Alto, California, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, 158423Stem Cell Biology and Regenerative Medicine, School of Medicine, 6429Stanford University, Palo Alto, California, USA.,School of Medicine, 6429Stanford University, Palo Alto, California, USA
| |
Collapse
|
15
|
Gupta P, Chaudhuri GR, Janani G, Agarwala M, Ghosh D, Nandi SK, Mandal BB. Functionalized Silk Vascular Grafts with Decellularized Human Wharton's Jelly Improves Remodeling via Immunomodulation in Rabbit Jugular Vein. Adv Healthc Mater 2021; 10:e2100750. [PMID: 34378360 DOI: 10.1002/adhm.202100750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Cell-free polymeric tissue-engineered vascular grafts (TEVGs) have shown great promise towards clinical translation; however, their limited bioactivity and remodeling ability challenge this cause. Here, a novel cell-free bioresorbable small diameter silk TEVG system functionalized with decellularized human Wharton's jelly (dWJ) matrix is developed and successfully implanted as interposition grafts into rabbit jugular vein. Implanted TEVGs remain patent for two months and integrate with host tissue, demonstrating neo-tissue formation and constructive remodeling. Mechanistic analysis reveals that dWJ matrix is a reservoir of various immunomodulatory cytokines (Interleukin-8, 6, 10, 4 and tumor necrosis factor alpha (TNF-α)), which aids in upregulating M2 macrophage-associated genes facilitating pro-remodeling behavior. Besides, dWJ treatment to human endothelial cells upregulates the expression of functional genes (cluster of differentiation 31 (CD31), endothelial nitric oxide synthase (eNOS), and vascular endothelial (VE)-cadherin), enables faster cell migration, and elevates nitric oxide (NO) production leading to the in situ development of endothelium. The dWJ functionalized silk TEVGs support increased host cell recruitment than control, including macrophages and vascular cells. It endows superior graft remodeling in terms of a dense medial layer comprising smooth muscle cells and elevates the production of extracellular matrix proteins (collagen and elastin). Altogether, these findings suggest that dWJ functionalization imitates the usefulness of cell seeding and enables graft remodeling.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Gaurab Ranjan Chaudhuri
- Department of Plastic Surgery R. G. Kar Medical College and Hospital Kolkata West Bengal 700004 India
| | - G. Janani
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Manoj Agarwala
- Department of ENT and Faciomaxillary Surgery GNRC Institute of Medical Sciences Guwahati Assam 781030 India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology West Bengal University of Animal and Fishery Sciences Kolkata West Bengal 700037 India
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology West Bengal University of Animal and Fishery Sciences Kolkata West Bengal 700037 India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Sciences and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
16
|
Zeng QL, Liu DW. Mesenchymal stem cell-derived exosomes: An emerging therapeutic strategy for normal and chronic wound healing. World J Clin Cases 2021; 9:6218-6233. [PMID: 34434989 PMCID: PMC8362559 DOI: 10.12998/wjcc.v9.i22.6218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Skin wound healing is a complex biological process. Mesenchymal stem cells (MSCs) play an important role in skin wound repair due to their multidirectional differentiation potential, hematopoietic support, promotion of stem cell implantation, self-replication, and immune regulation. Exosomes are vesicles with diameters of 40-100 nm that contain nucleic acids, proteins, and lipids and often act as mediators of cell-to-cell communication. Currently, many clinical scientists have carried out cell-free therapy for skin wounds, especially chronic wounds, using exosomes derived from MSCs. This review focuses on the latest research progress on the mechanisms of action associated with the treatment of wound healing with exosomes derived from different MSCs, the latest research progress on the combination of exosomes and other biological or nonbiological factors for the treatment of chronic skin wounds, and the new prospects and development goals of cell-free therapy.
Collapse
Affiliation(s)
- Qin-Lu Zeng
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - De-Wu Liu
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
17
|
Jin J, Ou Q, Wang Z, Tian H, Xu JY, Gao F, Hu S, Chen J, Wang J, Zhang J, Lu L, Jin C, Xu GT, Zhao J. BMSC-derived extracellular vesicles intervened the pathogenic changes of scleroderma in mice through miRNAs. Stem Cell Res Ther 2021; 12:327. [PMID: 34090522 PMCID: PMC8179710 DOI: 10.1186/s13287-021-02400-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background Systemic sclerosis (SSc) is a disease that features severe fibrosis of the skin and lacks effective therapy. Bone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) are potential stem cell-based tools for the treatment of SSc. Methods BMSCs were isolated from the bone marrow of mice and identified with surface markers according to multilineage differentiation. EVs were isolated from the BMSC culture medium by ultracentrifugation and identified with a Nanosight NS300 particle size analyzer, transmission electron microscopy (TEM), and western blot. The microRNAs (miRNAs) of BMSC-derived EVs (BMSC-EVs) were studied via miRNA sequencing (miRNA-seq) and bioinformatic analysis. An SSc mouse model was established via subcutaneous bleomycin (BLM) injection, and the mice were treated with BMSCs or BMSC-derived EVs. Skin tissues were dissociated and analyzed with H&E staining, RNA sequencing (RNA-seq), western blot, and immunohistochemical staining. Results Evident pathological changes, like fibrosis and inflammation, were induced in the skin of BLM-treated mice. BMSCs and BMSC-EVs effectively intervened such pathological manifestations and disease processes in a very similar way. The effects of the BMSC-EVs were found to be caused by the miRNAs they carried, which were proven to be involved in regulating the proliferation and differentiation of multiple cell types and in multiple EV-related biological processes. Furthermore, TGF-β1-positive cells and α-SMA-positive myofibroblasts were significantly increased in the scleroderma skin of BLM-treated mice but evidently reduced in the scleroderma skin of the EV-treated SSc group. In addition, the numbers of mast cells and infiltrating macrophages and lymphocytes were evidently increased in the skin of BLM-treated mice but significantly reduced by EV treatment. In line with these observations, there were significantly higher mRNA levels of the inflammatory cytokines Il6, Il10, and Tnf-α in SSc mice than in control mice, but the levels decreased following EV treatment. Through bioinformatics analysis, the TGFβ and WNT signaling pathways were revealed to be closely involved in the pathogenic changes seen in mouse SSc, and these pathways could be therapeutic targets for treating the disease. Conclusions BMSC-derived EVs could be developed as a potential therapy for treating skin dysfunction in SSc, especially considering that they show similar efficacy to BMSCs but have fewer developmental regulatory requirements than cell therapy. The effects of EVs are generated by the miRNAs they carry, which alleviate SSc pathogenic changes by regulating the WNT and TGFβ signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02400-y.
Collapse
Affiliation(s)
- Jiahui Jin
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhe Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shuqin Hu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jie Chen
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
18
|
Extracellular Vesicles Derived from Primary Adipose Stromal Cells Induce Elastin and Collagen Deposition by Smooth Muscle Cells within 3D Fibrin Gel Culture. Bioengineering (Basel) 2021; 8:bioengineering8050051. [PMID: 33925413 PMCID: PMC8145221 DOI: 10.3390/bioengineering8050051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Macromolecular components of the vascular extracellular matrix (ECM), particularly elastic fibers and collagen fibers, are critical for the proper physiological function of arteries. When the unique biomechanical combination of these fibers is disrupted, or in the ultimate extreme where fibers are completely lost, arterial disease can emerge. Bioengineers in the realms of vascular tissue engineering and regenerative medicine must therefore ideally consider how to create tissue engineered vascular grafts containing the right balance of these fibers and how to develop regenerative treatments for situations such as an aneurysm where fibers have been lost. Previous work has demonstrated that the primary cells responsible for vascular ECM production during development, arterial smooth muscle cells (SMCs), can be induced to make new elastic fibers when exposed to secreted factors from adipose-derived stromal cells. To further dissect how this signal is transmitted, in this study, the factors were partitioned into extracellular vesicle (EV)-rich and EV-depleted fractions as well as unseparated controls. EVs were validated using electron microscopy, dynamic light scattering, and protein quantification before testing for biological effects on SMCs. In 2D culture, EVs promoted SMC proliferation and migration. After 30 days of 3D fibrin construct culture, EVs promoted SMC transcription of the elastic microfibril gene FBN1 as well as SMC deposition of insoluble elastin and collagen. Uniaxial biomechanical properties of strand fibrin constructs were no different after 30 days of EV treatment versus controls. In summary, it is apparent that some of the positive effects of adipose-derived stromal cells on SMC elastogenesis are mediated by EVs, indicating a potential use for these EVs in a regenerative therapy to restore the biomechanical function of vascular ECM in arterial disease.
Collapse
|
19
|
Seiffert N, Tang P, Keshi E, Reutzel-Selke A, Moosburner S, Everwien H, Wulsten D, Napierala H, Pratschke J, Sauer IM, Hillebrandt KH, Struecker B. In vitro recellularization of decellularized bovine carotid arteries using human endothelial colony forming cells. J Biol Eng 2021; 15:15. [PMID: 33882982 PMCID: PMC8059238 DOI: 10.1186/s13036-021-00266-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Many patients suffering from peripheral arterial disease (PAD) are dependent on bypass surgery. However, in some patients no suitable replacements (i.e. autologous or prosthetic bypass grafts) are available. Advances have been made to develop autologous tissue engineered vascular grafts (TEVG) using endothelial colony forming cells (ECFC) obtained by peripheral blood draw in large animal trials. Clinical translation of this technique, however, still requires additional data for usability of isolated ECFC from high cardiovascular risk patients. Bovine carotid arteries (BCA) were decellularized using a combined SDS (sodium dodecyl sulfate) -free mechanical-osmotic-enzymatic-detergent approach to show the feasibility of xenogenous vessel decellularization. Decellularized BCA chips were seeded with human ECFC, isolated from a high cardiovascular risk patient group, suffering from diabetes, hypertension and/or chronic renal failure. ECFC were cultured alone or in coculture with rat or human mesenchymal stromal cells (rMSC/hMSC). Decellularized BCA chips were evaluated for biochemical, histological and mechanical properties. Successful isolation of ECFC and recellularization capabilities were analyzed by histology. RESULTS Decellularized BCA showed retained extracellular matrix (ECM) composition and mechanical properties upon cell removal. Isolation of ECFC from the intended target group was successfully performed (80% isolation efficiency). Isolated cells showed a typical ECFC-phenotype. Upon recellularization, co-seeding of patient-isolated ECFC with rMSC/hMSC and further incubation was successful for 14 (n = 9) and 23 (n = 5) days. Reendothelialization (rMSC) and partial reendothelialization (hMSC) was achieved. Seeded cells were CD31 and vWF positive, however, human cells were detectable for up to 14 days in xenogenic cell-culture only. Seeding of ECFC without rMSC was not successful. CONCLUSION Using our refined decellularization process we generated easily obtainable TEVG with retained ECM- and mechanical quality, serving as a platform to develop small-diameter (< 6 mm) TEVG. ECFC isolation from the cardiovascular risk target group is possible and sufficient. Survival of diabetic ECFC appears to be highly dependent on perivascular support by rMSC/hMSC under static conditions. ECFC survival was limited to 14 days post seeding.
Collapse
Affiliation(s)
- Nicolai Seiffert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Department for Trauma and Orthopedic Surgery, Vivantes-Hospital Spandau, Berlin, Germany
| | - Peter Tang
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eriselda Keshi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anja Reutzel-Selke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simon Moosburner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hannah Everwien
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dag Wulsten
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hendrik Napierala
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Johann Pratschke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Igor M Sauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Karl H Hillebrandt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Benjamin Struecker
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
20
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Gao W, Liang T, He R, Ren J, Yao H, Wang K, Zhu L, Xu Y. Exosomes from 3D culture of marrow stem cells enhances endothelial cell proliferation, migration, and angiogenesis via activation of the HMGB1/AKT pathway. Stem Cell Res 2020; 50:102122. [PMID: 33316600 DOI: 10.1016/j.scr.2020.102122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Angiogenesis is an essential step in tissue engineering. MSC exosomes play an important role in angiogenesis. Functional biomolecules in exosomes vested by the culture microenvironment can be transferred to recipient cells and affects their effect. 3D culture can improve the proliferation and activity of MSCs. However, whether exosomes derived from 3D culture of MSCs have an enhanced effect on angiogenesis is unclear. METHODS Herein, we compared the bioactivity of exosomes produced by conventional 2D culture (2D-exos) and 3D culture (3D-exos) of bone marrow stem cells (BMSCs) in angiogenesis. RESULTS A series of in vitro and in vivo experiments indicated that 3D-exos exhibited stronger effects on HUVEC cell proliferation, migration, tube formation, and in vivo angiogenesis compared with 2D-exos. Moreover, the superiority of 3D-exos might be attributed to the activation of HMGB1/AKT signaling. CONCLUSIONS These results indicate that exosomes from 3D culture of MSCs may serve as a potential therapeutic approach for pro-angiogenesis.
Collapse
Affiliation(s)
- Wenling Gao
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, 510060 Guangzhou, China.
| | - Tangzhao Liang
- Department of Orthopaedic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, 510630 Guangzhou, China.
| | - Ronghang He
- Department of Orthopaedic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, 510630 Guangzhou, China
| | - Jianhua Ren
- Department of Orthopaedic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, 510630 Guangzhou, China
| | - Hui Yao
- Department of Orthopaedic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, 510630 Guangzhou, China
| | - Kun Wang
- Department of Orthopaedic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, 510630 Guangzhou, China
| | - Lei Zhu
- Department of Plastic and Reconstructive Surgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, 510630 Guangzhou, China.
| | - Yue Xu
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, 510060 Guangzhou, China.
| |
Collapse
|
22
|
Ni K, Wang C, Carnino JM, Jin Y. The Evolving Role of Caveolin-1: A Critical Regulator of Extracellular Vesicles. Med Sci (Basel) 2020; 8:medsci8040046. [PMID: 33158117 PMCID: PMC7712126 DOI: 10.3390/medsci8040046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that extracellular vesicles (EVs) play an essential role in mediating intercellular communication and inter-organ crosstalk both at normal physiological conditions and in the pathogenesis of human diseases. EV cargos are made up of a broad spectrum of molecules including lipids, proteins, and nucleic acids such as DNA, RNA, and microRNAs. The complex EV cargo composition is cell type-specific. A dynamic change in EV cargos occurs along with extracellular stimuli and a change in the pathophysiological status of the host. Currently, the underlying mechanisms by which EVs are formed and EV cargos are selected in the absence and presence of noxious stimuli and pathogens remain incompletely explored. The term EVs refers to a heterogeneous group of vesicles generated via different mechanisms. Some EVs are formed via direct membrane budding, while the others are produced through multivesicular bodies (MVBs) or during apoptosis. Despite the complexity of EV formation and EV cargo selection, recent studies suggest that caveolin-1, a well-known structural protein of caveolae, regulates the formation and cargo selection of some EVs, such as microvesicles (MVs). In this article, we will review the current understanding of this emerging and novel role of cav-1.
Collapse
Affiliation(s)
| | | | | | - Yang Jin
- Correspondence: ; Tel.: +1-617-358-1356; Fax: +1-617-536-8093
| |
Collapse
|
23
|
Liu HC, Xie Y, Deng CH, Liu GH. Stem cell-based therapies for fertility preservation in males: Current status and future prospects. World J Stem Cells 2020; 12:1097-1112. [PMID: 33178394 PMCID: PMC7596443 DOI: 10.4252/wjsc.v12.i10.1097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
With the decline in male fertility in recent years, strategies for male fertility preservation have received increasing attention. In this study, by reviewing current treatments and recent publications, we describe research progress in and the future directions of stem cell-based therapies for male fertility preservation, focusing on the use of spermatogonial stem cells (SSCs), SSC niches, SSC-based testicular organoids, other stem cell types such as mesenchymal stem cells, and stem cell-derived extracellular vesicles. In conclusion, a more comprehensive understanding of the germ cell microenvironment, stem cell-derived extracellular vesicles, and testicular organoids will play an important role in achieving male fertility preservation.
Collapse
Affiliation(s)
- Han-Chao Liu
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Yun Xie
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Chun-Hua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Gui-Hua Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
24
|
Cunnane EM, Lorentz KL, Soletti L, Ramaswamy AK, Chung TK, Haskett DG, Luketich SK, Tzeng E, D'Amore A, Wagner WR, Weinbaum JS, Vorp DA. Development of a Semi-Automated, Bulk Seeding Device for Large Animal Model Implantation of Tissue Engineered Vascular Grafts. Front Bioeng Biotechnol 2020; 8:597847. [PMID: 33195168 PMCID: PMC7644804 DOI: 10.3389/fbioe.2020.597847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/07/2020] [Indexed: 01/22/2023] Open
Abstract
Vascular tissue engineering is a field of regenerative medicine that restores tissue function to defective sections of the vascular network by bypass or replacement with a tubular, engineered graft. The tissue engineered vascular graft (TEVG) is comprised of a biodegradable scaffold, often combined with cells to prevent acute thrombosis and initiate scaffold remodeling. Cells are most effectively incorporated into scaffolds using bulk seeding techniques. While our group has been successful in uniform, rapid, bulk cell seeding of scaffolds for TEVG testing in small animals using our well-validated rotational vacuum technology, this approach was not directly translatable to large scaffolds, such as those required for large animal testing or human implants. The objective of this study was to develop and validate a semi-automated cell seeding device that allows for uniform, rapid, bulk seeding of large scaffolds for the fabrication of TEVGs appropriately sized for testing in large animals and eventual translation to humans. Validation of our device revealed successful seeding of cells throughout the length of our tubular scaffolds with homogenous longitudinal and circumferential cell distribution. To demonstrate the utility of this device, we implanted a cell seeded scaffold as a carotid interposition graft in a sheep model for 10 weeks. Graft remodeling was demonstrated upon explant analysis using histological staining and mechanical characterization. We conclude from this work that our semi-automated, rotational vacuum seeding device can successfully seed porous tubular scaffolds suitable for implantation in large animals and provides a platform that can be readily adapted for eventual human use.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lorenzo Soletti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy K Chung
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darren G Haskett
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel K Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edith Tzeng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,RiMED Foundation, Palermo, Italy
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Bagheri Hashkavayi A, Cha BS, Lee ES, Kim S, Park KS. Advances in Exosome Analysis Methods with an Emphasis on Electrochemistry. Anal Chem 2020; 92:12733-12740. [PMID: 32902258 DOI: 10.1021/acs.analchem.0c02745] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes, small extracellular vesicles, are released by various cell types. They are found in bodily fluids, including blood, urine, serum, and saliva, and play essential roles in intercellular communication. Exosomes contain various biomarkers, such as nucleic acids and proteins, that reflect the status of their parent cells. Since they influence tumorigenesis and metastasis in cancer patients, exosomes are excellent noninvasive potential indicators for early cancer detection. Aptamers with specific binding properties have distinct advantages over antibodies, making them effective versatile bioreceptors for the detection of exosome biomarkers. Here, we review various aptamer-based exosome detection approaches based on signaling methods, such as fluorescence, colorimetry, and chemiluminescence, focusing on electrochemical strategies that are easier, cost-effective, and more sensitive than others. Further, we discuss the clinical applications of electrochemical exosome analysis strategies as well as future research directions in this field.
Collapse
Affiliation(s)
- Ayemeh Bagheri Hashkavayi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
26
|
Cunnane EM, Lorentz KL, Ramaswamy AK, Gupta P, Mandal BB, O'Brien FJ, Weinbaum JS, Vorp DA. Extracellular Vesicles Enhance the Remodeling of Cell-Free Silk Vascular Scaffolds in Rat Aortae. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26955-26965. [PMID: 32441910 DOI: 10.1021/acsami.0c06609] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vascular tissue engineering is aimed at developing regenerative vascular grafts to restore tissue function by bypassing or replacing defective arterial segments with tubular biodegradable scaffolds. Scaffolds are often combined with stem or progenitor cells to prevent acute thrombosis and initiate scaffold remodeling. However, there are limitations to cell-based technologies regarding safety and clinical translation. Extracellular vesicles (EVs) are nanosized particles released by most cell types, including stem and progenitor cells, that serve to transmit protein and RNA cargo to target cells throughout the body. EVs have been shown to replicate the therapeutic effect of their parent cells; therefore, EVs derived from stem or progenitor cells may serve as a more translatable, cell-free, therapeutic base for vascular scaffolds. Our study aims to determine if EV incorporation provides a positive effect on graft patency and remodeling in vivo. We first assessed the effect of human adipose-derived mesenchymal stem cell (hADMSC) EVs on vascular cells using in vitro bioassays. We then developed an EV-functionalized vascular graft by vacuum-seeding EVs into porous silk-based tubular scaffolds. These constructs were implanted as aortic interposition grafts in Lewis rats, and their remodeling capacity was compared to that observed for hADMSC-seeded and blank (non-seeded) controls. The EV group demonstrated improved patency (100%) compared to the hADMSC (56%) and blank controls (82%) following eight weeks in vivo. The EV group also produced significantly more elastin (126.46%) and collagen (44.59%) compared to the blank group, while the hADMSC group failed to produce significantly more elastin (57.64%) or collagen (11.21%) compared to the blank group. Qualitative staining of the explanted neo-tissue revealed improved endothelium formation, increased smooth muscle cell infiltration, and reduced macrophage numbers in the EV group compared to the controls, which aids in explaining this group's favorable pre-clinical outcomes.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland D02 YN77
| | - Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Prerak Gupta
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland D02 YN77
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland D02 R590
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland D02 R590
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
27
|
Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, Jung JY, Choi H, Lee JH, Sung S, Yi YW, Cho BS. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells 2020; 9:E1157. [PMID: 32392899 PMCID: PMC7290908 DOI: 10.3390/cells9051157] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nano-sized vesicles that serve as mediators for cell-to-cell communication. With their unique nucleic acids, proteins, and lipids cargo compositions that reflect the characteristics of producer cells, exosomes can be utilized as cell-free therapeutics. Among exosomes derived from various cellular origins, mesenchymal stem cell-derived exosomes (MSC-exosomes) have gained great attention due to their immunomodulatory and regenerative functions. Indeed, many studies have shown anti-inflammatory, anti-aging and wound healing effects of MSC-exosomes in various in vitro and in vivo models. In addition, recent advances in the field of exosome biology have enabled development of specific guidelines and quality control methods, which will ultimately lead to clinical application of exosomes. This review highlights recent studies that investigate therapeutic potential of MSC-exosomes and relevant mode of actions for skin diseases, as well as quality control measures required for development of exosome-derived therapeutics.
Collapse
Affiliation(s)
- Dae Hyun Ha
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Hyun-keun Kim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Joon Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
| | | | - Gyeong-Hun Park
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwasweong-si, Gyeonggi-do 18450, Korea;
| | | | | | | | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Sumi Sung
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Yong Weon Yi
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| |
Collapse
|
28
|
Mallis P, Papapanagiotou A, Katsimpoulas M, Kostakis A, Siasos G, Kassi E, Stavropoulos-Giokas C, Michalopoulos E. Efficient differentiation of vascular smooth muscle cells from Wharton’s Jelly mesenchymal stromal cells using human platelet lysate: A potential cell source for small blood vessel engineering. World J Stem Cells 2020; 12:203-221. [PMID: 32266052 PMCID: PMC7118289 DOI: 10.4252/wjsc.v12.i3.203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations. Mesenchymal stromal cells (MSCs) derived from the Wharton’s Jelly (WJ) tissue can be used as a source for obtaining vascular smooth muscle cells (VSMCs), while the human umbilical arteries (hUAs) can serve as a scaffold for blood vessel engineering.
AIM To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate.
METHODS WJ-MSCs were isolated and expanded until passage (P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid, followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9, NANOG homeobox, OCT4 and GAPDH, was performed. In addition, immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated hUAs.
RESULTS WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into “osteocytes”, “adipocytes” and “chondrocytes”, and were characterized by positive expression (> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, hUAs were isolated and decellularized. Based on histological analysis, decellularized hUAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized hUAs with VSMCs was performed for 3 wk. Decellularized hUAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and sGAG contents in repopulated hUAs with VSMCs. Specifically, total hydroxyproline and sGAG content after the 1st, 2nd and 3rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1 μg sGAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups (P < 0.05).
CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, hUAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Aggeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Alkiviadis Kostakis
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Gerasimos Siasos
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
- First Department of Cardiology, “Hippokration” Hospital, University of Athens Medical School, Athens 15231, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
- First Department of Internal Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | | | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
29
|
Yi YW, Lee JH, Kim SY, Pack CG, Ha DH, Park SR, Youn J, Cho BS. Advances in Analysis of Biodistribution of Exosomes by Molecular Imaging. Int J Mol Sci 2020; 21:E665. [PMID: 31963931 PMCID: PMC7014306 DOI: 10.3390/ijms21020665] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Exosomes are nano-sized membranous vesicles produced by nearly all types of cells. Since exosome-like vesicles are produced in an evolutionarily conserved manner for information and function transfer from the originating cells to recipient cells, an increasing number of studies have focused on their application as therapeutic agents, drug delivery vehicles, and diagnostic targets. Analysis of the in vivo distribution of exosomes is a prerequisite for the development of exosome-based therapeutics and drug delivery vehicles with accurate prediction of therapeutic dose and potential side effects. Various attempts to evaluate the biodistribution of exosomes obtained from different sources have been reported. In this review, we examined the current trends and the advantages and disadvantages of the methods used to determine the biodistribution of exosomes by molecular imaging. We also reviewed 29 publications to compare the methods employed to isolate, analyze, and label exosomes as well as to determine the biodistribution of labeled exosomes.
Collapse
Affiliation(s)
- Yong Weon Yi
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (S.-Y.K.); (C.-G.P.)
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (S.-Y.K.); (C.-G.P.)
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Dae Hyun Ha
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Sang Rae Park
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Jinkwon Youn
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| |
Collapse
|
30
|
Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond) 2020; 15:205-214. [PMID: 31916480 DOI: 10.2217/nnm-2019-0367] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The blood-brain barrier (BBB) has a significant contribution to homeostasis and protection of the CNS. However, it also limits the crossing of therapeutics and thereby complicates the treatment of CNS disorders. To overcome this limitation, the use of nanocarriers for drug delivery across the BBB has recently been exploited. Nanocarriers can utilize different physiological mechanisms for drug delivery across the BBB and can be modified to achieve the desired kinetics and efficacy. Consequentially, several nanocarriers have been reported to act as functional nanomedicines in preclinical studies using animal models for human diseases. Given the rapid development of novel nanocarriers, this review provides a comprehensive insight into the most recent advancements made in nanocarrier-based drug delivery to the CNS, such as the development of multifunctional nanomedicines and theranostics.
Collapse
Affiliation(s)
- John Je Mulvihill
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,Health Research Institute (HRI) of University of Limerick, Limerick, V94T9PX, Ireland.,Synthesis & Solid State Pharmaceutical Centre, University of Limerick, Limerick, V94T9PX, Ireland.,School of Engineering, University of Limerick, Limerick, V94T9PX, Ireland
| | - Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aisling M Ross
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,School of Engineering, University of Limerick, Limerick, V94T9PX, Ireland
| | - Jason T Duskey
- Department of Life Sciences, NanoTech Lab, University of Modena & Reggio Emilia, Modena, 41124, Italy
| | - Giovanni Tosi
- Department of Life Sciences, NanoTech Lab, University of Modena & Reggio Emilia, Modena, 41124, Italy
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,Health Research Institute (HRI) of University of Limerick, Limerick, V94T9PX, Ireland.,Synthesis & Solid State Pharmaceutical Centre, University of Limerick, Limerick, V94T9PX, Ireland.,Department of Biological Sciences, University of Limerick, Limerick, V94T9PX, Ireland
| |
Collapse
|
31
|
Chen Y, Huang J, Chen R, Yang L, Wang J, Liu B, Du L, Yi Y, Jia J, Xu Y, Chen Q, Ngondi DG, Miao Y, Hu Z. Sustained release of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair growth. Am J Cancer Res 2020; 10:1454-1478. [PMID: 31938074 PMCID: PMC6956798 DOI: 10.7150/thno.39566] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Hair regeneration has long captured researchers' attention because alopecia is a common condition and current therapeutic approaches have significant limitations. Dermal papilla (DP) cells serve as a signaling center in hair follicles and regulate hair formation and cycling by paracrine secretion. Secreted EVs are important signaling mediators for intercellular communication, and DP-derived extracellular vesicles (DP-EVs) may play an important role in hair regeneration. However, the instability of EVs in vivo and their low long-term retention after transplantation hinder their use in clinical applications. Methods: Human DP-EVs were encapsulated in partially oxidized sodium alginate (OSA) hydrogels, yielding OSA-encapsulated EVs (OSA-EVs), which act as a sustained-release system to increase the potential therapeutic effect of DP-EVs. The ability of the OSA-EVs to protect protein was assessed. The hair regeneration capacity of OSA-EVs, as well as the underlying mechanism, was explored in hair organ culture and a mouse model of depilation. Results: The OSA-EVs were approximately 100 μm in diameter, and as the hydrogel degraded, DP-EVs were gradually released. In addition, the hydrogel markedly increased the stability of vesicular proteins and increased the retention of EVs in vitro and in vivo. The OSA-EVs significantly facilitated proliferation of hair matrix cells, prolonged anagen phase in cultured human hairs, and accelerated the regrowth of back hair in mice after depilation. These effects may be due to upregulation of hair growth-promoting signaling molecules such as Wnt3a and β-catenin, and downregulation of inhibitory molecule BMP2. Conclusion: This study demonstrated that OSA hydrogels promote the therapeutic effects of DP-EVs, and indicate that our novel OSA-EVs could be used to treat alopecia.
Collapse
|
32
|
Lin CH, Lu JH, Hsia K, Lee H, Yao CL, Ma H. The Antithrombotic Function of Sphingosine-1-Phosphate on Human Adipose-Stem-Cell-Recellularized Tissue Engineered Vascular Graft In Vitro. Int J Mol Sci 2019; 20:ijms20205218. [PMID: 31640220 PMCID: PMC6829437 DOI: 10.3390/ijms20205218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022] Open
Abstract
Adipose stem cells (ASCs) show potential in the recellularization of tissue engineerined vascular grafts (TEVGs). However, whether sphingosine-1-phosphate (S1P) could further enhance the adhesion, proliferation, and antithrombosis of ASCs on decellularized vascular scaffolds is unknown. This study investigated the effect of S1P on the recellularization of TEVGs with ASCs. Human ASCs were derived from lipoaspirate. Scaffolds were derived from human umbilical arteries (HUAs) with treatment of 0.1% sodium dodecyl sulfate (SDS) for 48 h (decellularized HUAs; DHUAs). The adhesion, proliferation, and antithrombotic functions (kinetic clotting time and platelet adhesion) of ASCs on DHUAs with S1P or without S1P were evaluated. The histology and DNA examination revealed a preserved structure and the elimination of the nuclear component more than 95% in HUAs after decellularizaiton. Human ASCs (hASCs) showed CD29(+), CD73(+), CD90(+), CD105(+), CD31(-), CD34(-), CD44(-), HLA-DR(-), and CD146(-) while S1P-treated ASCs showed marker shifting to CD31(+). In contrast to human umbilical vein endothelial cells (HUVECs), S1P didn't significantly increase proliferation of ASCs on DHUAs. However, the kinetic clotting test revealed prolonged blood clotting in S1P-treated ASC-recellularized DHUAs. S1P also decreased platelet adhesion on ASC-recellularized DHUAs. In addition, S1P treatment increased the syndecan-1 expression of ASCs. TEVG reconstituted with S1P and ASC-recellularized DHUAs showed an antithrombotic effect in vitro. The preliminary results showed that ASCs could adhere to DHUAs and S1P could increase the antithrombotic effect on ASC-recellularized DHUAs. The antithrombotic effect is related to ASCs exhibiting an endothelial-cell-like function and preventing of syndecan-1 shedding. A future animal study is warranted to prove this novel method.
Collapse
Affiliation(s)
- Chih-Hsun Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Jen-Her Lu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Surgery, medicine & Pediatrics, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan.
- Department of Pediatrics, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Kai Hsia
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taoyuan City 32003, Taiwan.
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Surgery, medicine & Pediatrics, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
33
|
Ramaswamy AK, Sides RE, Cunnane EM, Lorentz KL, Reines LM, Vorp DA, Weinbaum JS. Adipose-derived stromal cell secreted factors induce the elastogenesis cascade within 3D aortic smooth muscle cell constructs. Matrix Biol Plus 2019; 4:100014. [PMID: 33543011 PMCID: PMC7852215 DOI: 10.1016/j.mbplus.2019.100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Elastogenesis within the medial layer of the aortic wall involves a cascade of events orchestrated primarily by smooth muscle cells, including transcription of elastin and a cadre of elastin chaperone matricellular proteins, deposition and cross-linking of tropoelastin coacervates, and maturation of extracellular matrix fiber structures to form mechanically competent vascular tissue. Elastic fiber disruption is associated with aortic aneurysm; in aneurysmal disease a thin and weakened wall leads to a high risk of rupture if left untreated, and non-surgical treatments for small aortic aneurysms are currently limited. This study analyzed the effect of adipose-derived stromal cell secreted factors on each step of the smooth muscle cell elastogenesis cascade within a three-dimensional fibrin gel culture platform. Approach and results We demonstrate that adipose-derived stromal cell secreted factors induce an increase in smooth muscle cell transcription of tropoelastin, fibrillin-1, and chaperone proteins fibulin-5, lysyl oxidase, and lysyl oxidase-like 1, formation of extracellular elastic fibers, insoluble elastin and collagen protein fractions in dynamically-active 30-day constructs, and a mechanically competent matrix after 30 days in culture. Conclusion Our results reveal a potential avenue for an elastin-targeted small aortic aneurysm therapeutic, acting as a supplement to the currently employed passive monitoring strategy. Additionally, the elastogenesis analysis workflow explored here could guide future mechanistic studies of elastin formation, which in turn could lead to new non-surgical treatment strategies. Stromal cells stimulate smooth muscle cells (SMC) using paracrine signals. Stimulated SMC make RNA for both elastin and associated proteins. After protein synthesis, new elastic fibers form that contain insoluble elastin. Stromal cell products could promote elastin production in vivo.
Collapse
Key Words
- AA, aortic aneurysm
- ACA, epsilon-amino caproic acid
- ASC, adipose-derived stromal cell
- ASC-SF, ASC secreted factors
- Aneurysm
- Aorta
- ECM, extracellular matrix
- Elastin
- Extracellular matrix
- FBS, fetal bovine serum
- LOX, lysyl oxidase
- LOXL-1, LOX-like 1
- LTBP, latent TGF-β binding protein
- NCM, non-conditioned media
- NT, no treatment
- PBS, phosphate buffered saline
- RT, reverse transcriptase
- SMC, smooth muscle cell
- TGF-β, transforming growth factor-β
- Vascular regeneration
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Aneesh K. Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rachel E. Sides
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eoghan M. Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine L. Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Leila M. Reines
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Corresponding author at: Department of Bioengineering, University of Pittsburgh, Center for Bioengineering, Suite 300, 300 Technology Drive, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
34
|
Shojaati G, Khandaker I, Funderburgh ML, Mann MM, Basu R, Stolz DB, Geary ML, Dos Santos A, Deng SX, Funderburgh JL. Mesenchymal Stem Cells Reduce Corneal Fibrosis and Inflammation via Extracellular Vesicle-Mediated Delivery of miRNA. Stem Cells Transl Med 2019; 8:1192-1201. [PMID: 31290598 PMCID: PMC6811691 DOI: 10.1002/sctm.18-0297] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/25/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells from corneal stromal stem cells (CSSC) prevent fibrotic scarring and stimulate regeneration of transparent stromal tissue after corneal wounding in mice. These effects rely on the ability of CSSC to block neutrophil infiltration into the damaged cornea. The current study investigated the hypothesis that tissue regeneration by CSSC is mediated by secreted extracellular vesicles (EVs). CSSC produced EVs 130-150 nm in diameter with surface proteins that include CD63, CD81, and CD9. EVs from CSSC reduced visual scarring in murine corneal wounds as effectively as did live cells, but EVs from human embryonic kidney (HEK)293T cells had no regenerative properties. CSSC EV treatment of wounds decreased expression of fibrotic genes Col3a1 and Acta2, blocked neutrophil infiltration, and restored normal tissue morphology. CSSC EVs labeled with carboxyfluorescein succinimidyl ester dye, rapidly fused with corneal epithelial and stromal cells in culture, transferring microRNA (miRNA) to the target cells. Knockdown of mRNA for Alix, a component of the endosomal sorting complex required for transport, using siRNA, resulted in an 85% reduction of miRNA in the secreted EVs. The EVs with reduced miRNA were ineffective at blocking corneal scarring. Furthermore, CSSC with reduced Alix expression also lost their regenerative function, suggesting EVs as an obligate component in the delivery of miRNA. The results of these studies support an essential role for extracellular vesicles in the process by which CSSC cells block scarring and initiate regeneration of transparent corneal tissue after wounding. EVs appear to serve as a delivery vehicle for miRNA, which affects the regenerative action. Stem Cells Translational Medicine 2019;8:1192-1201.
Collapse
Affiliation(s)
- Golnar Shojaati
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Kantonsspital Winterthur, Zurich, Switzerland
| | - Irona Khandaker
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martha L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary M Mann
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohan Basu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna B Stolz
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Moira L Geary
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aurélie Dos Santos
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Jia Y, Zhu Y, Qiu S, Xu J, Chai Y. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther 2019; 10:12. [PMID: 30635031 PMCID: PMC6329174 DOI: 10.1186/s13287-018-1115-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023] Open
Abstract
Background Distraction osteogenesis (DO) is an effective but lengthy procedure to fully induce bone regeneration in large bone defects. Accumulating evidence supports the role of exosomes secreted by endothelial progenitor cells (EPC-Exos) in stimulating angiogenesis, which is closely coupled with osteogenesis. This study aimed to investigate whether EPC-Exos promote bone regeneration during DO in rats. Methods Exosomes were isolated from the supernatants of rat bone marrow EPCs via ultracentrifugation and characterized via transmission electron microscopy, tunable resistive pulse sensing analysis, and western blot analysis. Unilateral tibial DO models were generated using 68 Sprague-Dawley rats with a distraction rate of 0.5 mm per day for 10 days. After local injection of EPC-Exos into the distraction gaps after distraction, the therapeutic effects of EPC-Exos on bone regeneration and angiogenesis were assessed via X-ray, micro-computed tomography (micro-CT), and biomechanical and histological analyses. Pro-angiogenic effects and the potential mechanism underlying the effects of EPC-Exos on human umbilical vein endothelial cells were subsequently evaluated via in vitro assays including Cell Counting Kit-8, wound healing, tube formation, and western blot assays. Results EPC-Exos were spherical or cup-shaped vesicles ranging from 50 to 150 nm in diameter and expressed markers including CD9, Alix, and TSG101. X-ray, micro-CT, and histological analyses revealed that bone regeneration was markedly accelerated in rats treated with EPC-Exos. The distracted tibias from the Exos group also displayed enhanced mechanical properties. Moreover, vessel density was higher in the Exos group than in the control group. In addition, in vitro analyses revealed that EPC-Exos enhanced the proliferation, migration, and angiogenic capacity of endothelial cells in an miR-126-dependent manner. Further, EPC-Exos downregulated SPRED1 and activated Raf/ERK signaling. Conclusions The present results show that EPC-Exos accelerate bone regeneration during DO by stimulating angiogenesis, suggesting their use as a novel method to shorten the treatment duration of DO.
Collapse
Affiliation(s)
- Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Shuo Qiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China.
| |
Collapse
|