1
|
Yang WY, Ben Issa M, Saaoud F, Xu K, Shao Y, Lu Y, Dornas W, Cueto R, Jiang X, Wang H, Yang X. Perspective: Pathological transdifferentiation-a novel therapeutic target for cardiovascular diseases and chronic inflammation. Front Cardiovasc Med 2024; 11:1500775. [PMID: 39660114 PMCID: PMC11628510 DOI: 10.3389/fcvm.2024.1500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Pathological transdifferentiation, where differentiated cells aberrantly transform into other cell types that exacerbate disease rather than promote healing, represents a novel and significant concept. This perspective discusses its role and potential targeting in cardiovascular diseases and chronic inflammation. Current therapies mainly focus on mitigating early inflammatory response through proinflammatory cytokines and pathways targeting, including corticosteroids, TNF-α inhibitors, IL-1β monoclonal antibodies and blockers, IL-6 blockers, and nonsteroidal anti-inflammatory drugs (NSAIDs), along with modulating innate immune memory (trained immunity). However, these approaches often fail to address long-term tissue damage and functional regeneration. For instance, fibroblasts can transdifferentiate into myofibroblasts in cardiac fibrosis, and endothelial cells may undergo endothelial to mesenchymal transition (EndMT) in vascular remodeling, resulting in fibrosis and impaired tissue function. Targeting pathological transdifferentiation represents a promising therapeutic avenue by focusing on key signaling pathways that drive these aberrant cellular phenotypic and transcriptomic transitions. This approach seeks to inhibit these pathways or modulate cellular plasticity to promote effective tissue regeneration and prevent fibrosis. Such strategies have the potential to address inflammation, cell death, and the resulting tissue damage, providing a more comprehensive and sustainable treatment solution. Future research should focus on understanding the mechanisms behind pathological transdifferentiation, identifying relevant biomarkers and master regulators, and developing novel therapies through preclinical and clinical trials. Integrating these new therapies with existing anti-inflammatory treatments could enhance efficacy and improve patient outcomes. Highlighting pathological transdifferentiation as a therapeutic target could transform treatment paradigms, leading to better management and functional recovery of cardiovascular tissues in diseases and chronic inflammation.
Collapse
Affiliation(s)
- William Y. Yang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Mohammed Ben Issa
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Waleska Dornas
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ramon Cueto
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Caddeo A, Spagnuolo R, Maurotti S. MBOAT7 in liver and extrahepatic diseases. Liver Int 2023; 43:2351-2364. [PMID: 37605540 DOI: 10.1111/liv.15706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
MBOAT7 is a protein anchored to endomembranes by several transmembrane domains. It has a catalytic dyad involved in remodelling of phosphatidylinositol with polyunsaturated fatty acids. Genetic variants in the MBOAT7 gene have been associated with the entire spectrum of non-alcoholic fatty liver (NAFLD), recently redefined as metabolic dysfunction-associated fatty liver disease (MAFLD) and, lately, steatotic liver disease (SLD), and to an increasing number of extrahepatic conditions. In this review, we will (a) elucidate the molecular mechanisms by which MBOAT7 loss-of-function predisposes to MAFLD and neurodevelopmental disorders and (b) discuss the growing number of genetic studies linking MBOAT7 to hepatic and extrahepatic diseases. MBOAT7 complete loss of function causes severe changes in brain development resulting in several neurological manifestations. Lower MBOAT7 hepatic expression at both the mRNA and protein levels, due to missense nucleotide polymorphisms (SNPs) in the locus containing the MBOAT7 gene, affects specifically metabolic and viral diseases in the liver from simple steatosis to hepatocellular carcinoma, and potentially COVID-19 disease. This body of evidence shows that phosphatidylinositol remodelling is a key factor for human health.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Rocco Spagnuolo
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
4
|
Lu Y, Sun Y, Saaoud F, Shao Y, Xu K, Jiang X, Wu S, Yu J, Snyder NW, Yang L, Shi XM, Zhao H, Wang H, Yang X. ER stress mediates Angiotensin II-augmented innate immunity memory and facilitates distinct susceptibilities of thoracic from abdominal aorta to aneurysm development. Front Immunol 2023; 14:1268916. [PMID: 37731512 PMCID: PMC10507336 DOI: 10.3389/fimmu.2023.1268916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
To determine the roles of endoplasmic reticulum (ER) stress and trained immunity, we performed transcriptome analyses on the thoracic aorta (TA) and abdominal aorta (AA) from the angiotensin II (Ang II)-HFD-ApoE-KO aneurysm model and made significant findings: 1) Ang II bypassed HFD-induced metabolic reprogramming and induced stronger inflammation in AA than in TA; 2) Ang II and HFD upregulated 890 genes in AA versus TA and induced cytokine signaling; 3) Ang II AA and TA upregulated 73 and 68 cytokines, scRNA-Seq identified markers of macrophages and immune cells, cell death regulators, respectively; transdifferentiation markers of neuron, glial, and squamous epithelial cells were upregulated by Ang II-AA and TA; and pyroptosis signaling with IL-1β and caspase-4 were more upregulated in Ang II-AA than in TA; 4) Six upregulated transcriptomes in patients with AAA, Ang II AA, Ang II TA, additional aneurysm models, PPE-AAA and BAPN-Ang II-AAA, were partially overlapped with 10 lists of new ER stress gene sets including 3 interaction protein lists of ER stress regulators ATF6, PERK, and IRE1, HPA ER localization genes, KEGG signal genes, XBP1 transcription targets, ATF4 (PERK) targets, ATF6 targets, thapsigargin ER stress genes, tunicamycin-ER stress genes, respectively; 5) Ang II-AA and TA upregulated ROS regulators, MitoCarta genes, trained immunity genes, and glycolysis genes; and 6) Gene KO transcriptomes indicated that ATF6 and PERK played more significant roles than IRE1 in promoting AAA and trained immunity whereas antioxidant NRF2 inhibited them. Our unprecedented ER-focused transcriptomic analyses have provided novel insights on the roles of ER as an immune organelle in sensing various DAMPs and initiating ER stress that triggers Ang II-accelerated trained immunity and differs susceptibilities of thoracic and abdominal aortas to diseases.
Collapse
Affiliation(s)
- Yifan Lu
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Biomedical Education and Data Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Saaoud F, Martinez L, Lu Y, Xu K, Shao Y, Zhuo JL, Gillespie A, Wang H, Tabbara M, Salama A, Yang X, Vazquez-Padron RI. Chronic Kidney Disease Transdifferentiates Veins into a Specialized Immune-Endocrine Organ with Increased MYCN-AP1 Signaling. Cells 2023; 12:1482. [PMID: 37296603 PMCID: PMC10252601 DOI: 10.3390/cells12111482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Most patients with end-stage renal disease (ESRD) and advanced chronic kidney disease (CKD) choose hemodialysis as their treatment of choice. Thus, upper-extremity veins provide a functioning arteriovenous access to reduce dependence on central venous catheters. However, it is unknown whether CKD reprograms the transcriptome of veins and primes them for arteriovenous fistula (AVF) failure. To examine this, we performed transcriptomic analyses of bulk RNA sequencing data of veins isolated from 48 CKD patients and 20 non-CKD controls and made the following findings: (1) CKD converts veins into immune organs by upregulating 13 cytokine and chemokine genes, and over 50 canonical and noncanonical secretome genes; (2) CKD increases innate immune responses by upregulating 12 innate immune response genes and 18 cell membrane protein genes for increased intercellular communication, such as CX3CR1 chemokine signaling; (3) CKD upregulates five endoplasmic reticulum protein-coding genes and three mitochondrial genes, impairing mitochondrial bioenergetics and inducing immunometabolic reprogramming; (4) CKD reprograms fibrogenic processes in veins by upregulating 20 fibroblast genes and 6 fibrogenic factors, priming the vein for AVF failure; (5) CKD reprograms numerous cell death and survival programs; (6) CKD reprograms protein kinase signal transduction pathways and upregulates SRPK3 and CHKB; and (7) CKD reprograms vein transcriptomes and upregulates MYCN, AP1, and 11 other transcription factors for embryonic organ development, positive regulation of developmental growth, and muscle structure development in veins. These results provide novel insights on the roles of veins as immune endocrine organs and the effect of CKD in upregulating secretomes and driving immune and vascular cell differentiation.
Collapse
Affiliation(s)
- Fatma Saaoud
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yifan Lu
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jia L Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Avrum Gillespie
- Section of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alghidak Salama
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xiaofeng Yang
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Section of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Xu K, Zhang Y, Saaoud F, Shao Y, Lu Y, Jiang X, Wang H, Yang X. Editorial: Insights in cardiovascular therapeutics 2022-cardiovascular innate immunity. Front Cardiovasc Med 2023; 10:1184030. [PMID: 37144060 PMCID: PMC10151803 DOI: 10.3389/fcvm.2023.1184030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Keman Xu
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Zhongshan University, Guangzhou, China
| | - Fatma Saaoud
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ying Shao
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang L, Zhou Y, Williams DL, Li C, Martinez L, Vazquez-Padron RI, Zhao H, Jiang X, Wang H, Yang X. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight 2023; 8:e158183. [PMID: 36394956 PMCID: PMC9870092 DOI: 10.1172/jci.insight.158183] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. β-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.
Collapse
Affiliation(s)
| | - Lu Liu
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Keman Xu
- Centers for Cardiovascular Research and
| | - Ramon Cueto
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Centers for Cardiovascular Research and
| | - Yifan Lu
- Centers for Cardiovascular Research and
| | - Yu Sun
- Centers for Cardiovascular Research and
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania, USA
| | - David L. Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Chuanfu Li
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Zamith Cunha R, Zannoni A, Salamanca G, De Silva M, Rinnovati R, Gramenzi A, Forni M, Chiocchetti R. Expression of cannabinoid (CB1 and CB2) and cannabinoid-related receptors (TRPV1, GPR55, and PPARα) in the synovial membrane of the horse metacarpophalangeal joint. Front Vet Sci 2023; 10:1045030. [PMID: 36937015 PMCID: PMC10020506 DOI: 10.3389/fvets.2023.1045030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Background The metacarpophalangeal joint undergoes enormous loading during locomotion and can therefore often become inflamed, potentially resulting in osteoarthritis (OA). There are studies indicating that the endocannabinoid system (ECS) modulates synovium homeostasis, and could be a promising target for OA therapy. Some cannabinoid receptors, which modulate proliferative and secretory responses in joint inflammation, have been functionally identified in human and animal synovial cells. Objective To characterize the cellular distribution of the cannabinoid receptors 1 (CB1R) and 2 (CB2R), and the cannabinoid-related receptors transient receptor potential vanilloid type 1 (TRPV1), G protein-related receptor 55 (GPR55) and peroxisome proliferator-activated receptor alpha (PPARα) in the synovial membrane of the metacarpophalangeal joint of the horse. Animals The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. Materials and methods The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. The expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in synovial tissues was studied using qualitative and quantitative immunofluorescence, and quantitative real-time reverse transcriptase PCR (qRT-PCR). Macrophage-like (MLS) and fibroblast-like (FLS) synoviocytes were identified by means of antibodies directed against IBA1 and vimentin, respectively. Results Both the mRNA and protein expression of the CB2R, TRPV1, GPR55, and PPARα were found in the synoviocytes and blood vessels of the metacarpophalangeal joints. The synoviocytes expressed the mRNA and protein of the CB1R in some of the horses investigated, but not in all. Conclusions and clinical importance Given the expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in the synovial elements of the metacarpophalangeal joint, these findings encouraged the development of new studies supporting the use of molecules acting on these receptors to reduce the inflammation during joint inflammation in the horse.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Alessandro Gramenzi
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- *Correspondence: Roberto Chiocchetti
| |
Collapse
|
11
|
Wen J, Liu C, Deng C. Research progress on the mechanism of aging of vascular endothelial cells and the intervention of traditional Chinese medicine: A review. Medicine (Baltimore) 2022; 101:e32248. [PMID: 36626478 PMCID: PMC9750530 DOI: 10.1097/md.0000000000032248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vascular senescence is the basic factor of many cardiovascular diseases. Vascular endothelium, as a protective barrier between blood and vascular wall, plays an important role in maintaining the integrity and homeostasis of vascular system. Endothelial cell senescence is an important pathological change of vascular senescence. In recent years, more and more studies have been conducted on vascular endothelial cell senescence, especially on its mechanism. Many research results showed that the mechanism is various, but the systematic elucidation still lacks. Western medicine has little choice in the prevention and treatment of endothelial cell senescence, and the control effect is also limited, while Chinese medicine makes up for the deficiency in this regard. The main mechanisms of vascular endothelial cell aging and the related research progress of traditional Chinese medicine in the prevention and treatment of vascular endothelial aging in recent years were summarized in this paper to provide reference for the research of traditional Chinese medicine in anti-vascular aging and the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jiang Wen
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Caixia Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Changqing Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- * Correspondence: Changqing Deng, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China (e-mail: )
| |
Collapse
|
12
|
Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, Xiao J. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Target Ther 2022; 7:306. [PMID: 36050310 PMCID: PMC9437103 DOI: 10.1038/s41392-022-01153-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Exercise training has been widely recognized as a healthy lifestyle as well as an effective non-drug therapeutic strategy for cardiovascular diseases (CVD). Functional and mechanistic studies that employ animal exercise models as well as observational and interventional cohort studies with human participants, have contributed considerably in delineating the essential signaling pathways by which exercise promotes cardiovascular fitness and health. First, this review summarizes the beneficial impact of exercise on multiple aspects of cardiovascular health. We then discuss in detail the signaling pathways mediating exercise's benefits for cardiovascular health. The exercise-regulated signaling cascades have been shown to confer myocardial protection and drive systemic adaptations. The signaling molecules that are necessary for exercise-induced physiological cardiac hypertrophy have the potential to attenuate myocardial injury and reverse cardiac remodeling. Exercise-regulated noncoding RNAs and their associated signaling pathways are also discussed in detail for their roles and mechanisms in exercise-induced cardioprotective effects. Moreover, we address the exercise-mediated signaling pathways and molecules that can serve as potential therapeutic targets ranging from pharmacological approaches to gene therapies in CVD. We also discuss multiple factors that influence exercise's effect and highlight the importance and need for further investigations regarding the exercise-regulated molecules as therapeutic targets and biomarkers for CVD as well as the cross talk between the heart and other tissues or organs during exercise. We conclude that a deep understanding of the signaling pathways involved in exercise's benefits for cardiovascular health will undoubtedly contribute to the identification and development of novel therapeutic targets and strategies for CVD.
Collapse
Affiliation(s)
- Huihua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yihua Bei
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
13
|
Xu K, Khan M, Yu J, Snyder NW, Wu S, Vazquez-Padron RI, Wang H, Yang X. Editorial: Insights in cardiovascular therapeutics: 2021 - cell death, cardiovascular injuries, and novel targets of cardiovascular therapeutics. Front Cardiovasc Med 2022; 9:981544. [PMID: 35958425 PMCID: PMC9361401 DOI: 10.3389/fcvm.2022.981544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Keman Xu
- Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Mohsin Khan
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jun Yu
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Departments of Cardiovascular Sciences and Biomedical Education and Data Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences and Biomendical Education and Data Sciences, Centers for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Varadharajan V, Massey WJ, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7)-driven phosphatidylinositol remodeling in advanced liver disease. J Lipid Res 2022; 63:100234. [PMID: 35636492 PMCID: PMC9240865 DOI: 10.1016/j.jlr.2022.100234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models. An important advance has been made within the past several years, as several genome-wide association studies have discovered that an SNP near the gene encoding membrane-bound O-acyltransferase 7 (MBOAT7) is associated with severe liver diseases. This common MBOAT7 variant (rs641738, C>T), which reduces MBOAT7 expression, confers increased susceptibility to nonalcoholic fatty liver disease, alcohol-associated liver disease, and liver fibrosis in patients chronically infected with viral hepatitis. Recent studies in mice also show that Mboat7 loss of function can promote hepatic steatosis, inflammation, and fibrosis, causally linking this phosphatidylinositol remodeling enzyme to liver health in both rodents and humans. Herein, we review recent insights into the mechanisms by which MBOAT7-driven phosphatidylinositol remodeling influences liver disease progression and discuss how rapid progress in this area could inform drug discovery moving forward.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|