1
|
Chávez MN, Arora P, Meer M, Marques IJ, Ernst A, Morales Castro RA, Mercader N. Spns1-dependent endocardial lysosomal function drives valve morphogenesis through Notch1-signaling. iScience 2024; 27:111406. [PMID: 39720516 PMCID: PMC11667069 DOI: 10.1016/j.isci.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/15/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Autophagy-lysosomal degradation is a conserved homeostatic process considered to be crucial for cardiac morphogenesis. However, both its cell specificity and functional role during heart development remain unclear. Here, we introduced zebrafish models to visualize autophagic vesicles in vivo and track their temporal and cellular localization in the larval heart. We observed a significant accumulation of autolysosomal and lysosomal vesicles in the atrioventricular and bulboventricular regions and their respective valves. We addressed the role of lysosomal degradation based on the Spinster homolog 1 (spns1) mutant (not really started, nrs). n rs larvae displayed morphological and functional cardiac defects, including abnormal endocardial organization, impaired valve formation and retrograde blood flow. Single-nuclear transcriptome analyses revealed endocardial-specific differences in lysosome-related genes and alterations of notch1-signalling. Endocardial-specific overexpression of spns1 and notch1 rescued features of valve formation and function. Altogether, our results reveal a cell-autonomous role of lysosomal processing during cardiac valve formation affecting notch1-signalling.
Collapse
Affiliation(s)
- Myra N. Chávez
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marco Meer
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Rodrigo A. Morales Castro
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Fukui H, Chow RWY, Yap CH, Vermot J. Rhythmic forces shaping the zebrafish cardiac system. Trends Cell Biol 2024:S0962-8924(24)00229-0. [PMID: 39665884 DOI: 10.1016/j.tcb.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024]
Abstract
The structural development of the heart depends heavily on mechanical forces, and rhythmic contractions generate essential physical stimuli during morphogenesis. Cardiac cells play a critical role in coordinating this process by sensing and responding to these mechanical forces. In vivo, cells experience rhythmic spatial and temporal variations in deformation-related stresses throughout heart development. What impact do these mechanical forces have on heart morphogenesis? Recent work in zebrafish (Danio rerio) offers important insights into this question. This review focuses on endocardial (EdCs) and myocardial cells (cardiomyocytes, CMs), key cell types in the heart, and provides a comprehensive overview of forces and tissue mechanics in zebrafish and their direct influence on cardiac cell identity.
Collapse
Affiliation(s)
- Hajime Fukui
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Renee Wei-Yan Chow
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, UK
| | - Julien Vermot
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
3
|
Goumenaki P, Günther S, Kikhi K, Looso M, Marín-Juez R, Stainier DYR. The innate immune regulator MyD88 dampens fibrosis during zebrafish heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1158-1176. [PMID: 39271818 PMCID: PMC11399109 DOI: 10.1038/s44161-024-00538-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.
Collapse
Affiliation(s)
- Pinelopi Goumenaki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
4
|
Jang J, Bentsen M, Kim YJ, Kim E, Garg V, Cai CL, Looso M, Li D. Endocardial HDAC3 is required for myocardial trabeculation. Nat Commun 2024; 15:4166. [PMID: 38755146 PMCID: PMC11099086 DOI: 10.1038/s41467-024-48362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Failure of proper ventricular trabeculation is often associated with congenital heart disease. Support from endocardial cells, including the secretion of extracellular matrix and growth factors is critical for trabeculation. However, it is poorly understood how the secretion of extracellular matrix and growth factors is initiated and regulated by endocardial cells. We find that genetic knockout of histone deacetylase 3 in the endocardium in mice results in early embryo lethality and ventricular hypotrabeculation. Single cell RNA sequencing identifies significant downregulation of extracellular matrix components in histone deacetylase 3 knockout endocardial cells. Secretome from cultured histone deacetylase 3 knockout mouse cardiac endothelial cells lacks transforming growth factor ß3 and shows significantly reduced capacity in stimulating cultured cardiomyocyte proliferation, which is remarkably rescued by transforming growth factor ß3 supplementation. Mechanistically, we identify that histone deacetylase 3 knockout induces transforming growth factor ß3 expression through repressing microRNA-129-5p. Our findings provide insights into the pathogenesis of congenital heart disease and conceptual strategies to promote myocardial regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Ye Jun Kim
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Erick Kim
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Chen-Leng Cai
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46201, USA
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA.
| |
Collapse
|
5
|
Cardeira-da-Silva J, Wang Q, Sagvekar P, Mintcheva J, Latting S, Günther S, Ramadass R, Yekelchyk M, Preussner J, Looso M, Junker JP, Stainier DYR. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat Commun 2024; 15:3637. [PMID: 38684665 PMCID: PMC11058276 DOI: 10.1038/s41467-024-47430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.
Collapse
Affiliation(s)
- João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Qianchen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Pooja Sagvekar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Stephan Latting
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michail Yekelchyk
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jens Preussner
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
6
|
Liu L, Liang Y, Lan QG, Chen JZ, Wang R, Zhao JH, Liang B. Bone morphogenetic protein 10 and atrial fibrillation. IJC HEART & VASCULATURE 2024; 51:101376. [PMID: 38496259 PMCID: PMC10943040 DOI: 10.1016/j.ijcha.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Background The association between bone morphogenetic protein 10 (BMP10) and atrial fibrillation (AF) has been widely investigated by observational studies, but their causal relationships remain inconclusive. Here, we aimed to evaluate the causal effect of BMP10 on the risk of AF through single-nucleotide polymorphisms. Methods A Mendelian randomization (MR) analytic framework was applied to data from two BMP10-specific genome-wide association studies comprising a total of 11,036,163 single-nucleotide polymorphisms of European ancestry. Instrument genetic variants associated with BMP10 were selected. A total of 12 AF-specific genome-wide association studies comprising a total of 5,095,117 European participants were included. Summary statistic-based methods of inverse variance weighted, MR Egger, weighted median, simple mode, and weighted mode methods were used. Pleiotropy and sensitivity were assessed. Results Specific to AF-specific genome-wide association studies, we found that BMP10 was not associated with AF among different methods (all P > 0.05). We further identified no significant horizontal pleiotropy (all P > 0.05) and no fundamental impact among various data. Conclusions This large-scale population study upon data from BMP10- and AF-specific genome-wide association studies and a longitudinal biobank cohort indicates plausible non-causal associations between BMP10 and AF in the European populations. Further studies regarding ancestral diversity are warranted to validate such causal associations.
Collapse
Affiliation(s)
- Liang Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Liang
- Department of Geriatrics, Sichuan Second Hospital of T.C.M., Chengdu, China
| | - Qi-Gang Lan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun-Zhang Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Rui Wang
- Department of Massage, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Hong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Jang J, Bentsen M, Kim YJ, Kim E, Garg V, Cai CL, Looso M, Li D. Endocardial HDAC3 is required for myocardial trabeculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536668. [PMID: 37886504 PMCID: PMC10602027 DOI: 10.1101/2023.04.12.536668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
BACKGROUND Trabeculation, a key process in early heart development, is the formation of myocardial trabecular meshwork. The failure of trabeculation often leads to embryonic lethality. Support from endocardial cells, including the secretion of extracellular matrix (ECM) and growth factors is critical for trabeculation; however, it is unknown how the secretion of ECM and growth factors is initiated and regulated by endocardial cells. METHODS Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of histone deacetylase 3 (HDAC3) in the developing endocardium. RESULTS We found that genetic deletion of Hdac3 in endocardial cells in mice resulted in early embryo lethality presenting as a hypotrabeculation cardiac phenotype. Single cell RNA sequencing identified several ECM components including collagens that were significantly downregulated in Hdac3 knockout (KO) endocardial cells. When cultured with supernatant from Hdac3 KO mouse cardiac endothelial cells (MCECs), wild-type mouse embryonic cardiomyocytes showed decreased proliferation, suggesting that growth signaling from Hdac3 KO MCECs is disrupted. Subsequent transcriptomic analysis revealed that transforming growth factor β3 (TGFβ3) was significantly downregulated in Hdac3 KO MCECs and Hdac3 cardiac endothelial KO hearts. Mechanistically, we identified that microRNA (miR)-129-5p was significantly upregulated in Hdac3 KO MCECs and Hdac3 cardiac endothelial KO hearts. Overexpression of miR-129-5p repressed Tgfβ3 expression in wild-type MCECs, whereas knockdown of miR-129-5p restored Tgfβ3 expression in Hdac3 KO MCECs. CONCLUSION Our findings reveal a critical signaling pathway in which endocardial HDAC3 promotes trabecular myocardium growth by stimulating TGFβ signaling through repressing miR-129-5p, providing novel insights into the etiology of congenital heart disease and conceptual strategies to promote myocardial regeneration.
Collapse
|
8
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
9
|
Yang TY, Chang PJ, Ko YS, Shen SR, Chang SF. Assessment of the (Pro)renin Receptor Protein Expression in Organs. Curr Issues Mol Biol 2024; 46:1741-1753. [PMID: 38534729 DOI: 10.3390/cimb46030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The (pro)renin receptor ((P)RR) is an essential component of the renin-angiotensin system (RAS) as a specific single-pass transmembrane receptor for prorenin and renin and has now emerged as a multifunctional protein implicated in a wide variety of developmental and physio-pathological processes and pathways. The (P)RR may be of pathological significance in metabolic syndrome. The (P)RR has received much consideration; substantial efforts have been made to understand the localization, regulation, and function of the (P)RR at both a molecular and system level. (P)RR regulation of cell function depends on whether it is intact or cleaved into its constituent forms. Therefore, the present chapter describes immunohistochemical approaches to examine the expression of (P)RR in various organs. It was shown that different molecular forms of (P)RR could be present in different tissue compartments in almost all organs. Among them, the liver has high PRR activity. Our findings could elucidate more detailed distribution of different (P)RR molecular forms in different organs, which could provide useful information to further investigate the pathophysiological mechanisms of the development of various diseases in the future.
Collapse
Affiliation(s)
- Teng-Yao Yang
- Cardiovascular Department, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Shien Ko
- Cardiovascular Division, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Siou-Ru Shen
- Cardiovascular Department, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Center for General Education, Chiayi Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| |
Collapse
|
10
|
Dobreva G, Heineke J. Inter- and Intracellular Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:271-294. [PMID: 38884717 DOI: 10.1007/978-3-031-44087-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiovascular diseases, both congenital and acquired, are the leading cause of death worldwide, associated with significant health consequences and economic burden. Due to major advances in surgical procedures, most patients with congenital heart disease (CHD) survive into adulthood but suffer from previously unrecognized long-term consequences, such as early-onset heart failure. Therefore, understanding the molecular mechanisms resulting in heart defects and the lifelong complications due to hemodynamic overload are of utmost importance. Congenital heart disease arises in the first trimester of pregnancy, due to defects in the complex morphogenetic patterning of the heart. This process is coordinated through a complicated web of intercellular communication between the epicardium, the endocardium, and the myocardium. In the postnatal heart, similar crosstalk between cardiomyocytes, endothelial cells, and fibroblasts exists during pathological hemodynamic overload that emerges as a consequence of a congenital heart defect. Ultimately, communication between cells triggers the activation of intracellular signaling circuits, which allow fine coordination of cardiac development and function. Here, we review the inter- and intracellular signaling mechanisms in the heart as they were discovered mainly in genetically modified mice.
Collapse
Affiliation(s)
- Gergana Dobreva
- ECAS (European Center for Angioscience), Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
| | - Joerg Heineke
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
11
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
12
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
13
|
Hennings E, Aeschbacher S, Coslovsky M, Paladini RE, Meyre PB, Voellmin G, Blum L, Kastner P, Ziegler A, Conen D, Zuern CS, Krisai P, Badertscher P, Sticherling C, Osswald S, Knecht S, Kühne M. Association of bone morphogenetic protein 10 and recurrent atrial fibrillation after catheter ablation. Europace 2023; 25:euad149. [PMID: 37314197 PMCID: PMC10265951 DOI: 10.1093/europace/euad149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023] Open
Abstract
AIMS Atrial remodelling, defined as a change in atrial structure, promotes atrial fibrillation (AF). Bone morphogenetic protein 10 (BMP10) is an atrial-specific biomarker released to blood during atrial development and structural changes. We aimed to validate whether BMP10 is associated with AF recurrence after catheter ablation (CA) in a large cohort of patients. METHODS AND RESULTS We measured baseline BMP10 plasma concentrations in AF patients who underwent a first elective CA in the prospective Swiss-AF-PVI cohort study. The primary outcome was AF recurrence lasting longer than 30 s during a follow-up of 12 months. We constructed multivariable Cox proportional hazard models to determine the association of BMP10 and AF recurrence. A total of 1112 patients with AF (age 61 ± 10 years, 74% male, 60% paroxysmal AF) was included in our analysis. During 12 months of follow-up, 374 patients (34%) experienced AF recurrence. The probability for AF recurrence increased with increasing BMP10 concentration. In an unadjusted Cox proportional hazard model, a per-unit increase in log-transformed BMP10 was associated with a hazard ratio (HR) of 2.28 (95% CI 1.43; 3.62, P < 0.001) for AF recurrence. After multivariable adjustment, the HR of BMP10 for AF recurrence was 1.98 (95% CI 1.14; 3.42, P = 0.01), and there was a linear trend across BMP10 quartiles (P = 0.02 for linear trend). CONCLUSION The novel atrial-specific biomarker BMP10 was strongly associated with AF recurrence in patients undergoing CA for AF. CLINICALTRIALS.GOV IDENTIFIER NCT03718364; https://clinicaltrials.gov/ct2/show/NCT03718364.
Collapse
Affiliation(s)
- Elisa Hennings
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Michael Coslovsky
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rebecca E Paladini
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Pascal B Meyre
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Gian Voellmin
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Livia Blum
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | | | - André Ziegler
- Roche Diagnostics International AG, Rotkreuz, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Christine S Zuern
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Philipp Krisai
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Patrick Badertscher
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Christian Sticherling
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Stefan Osswald
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Sven Knecht
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Michael Kühne
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
14
|
Lin Z, Garbern JC, Liu R, Li Q, Mancheño Juncosa E, Elwell HL, Sokol M, Aoyama J, Deumer US, Hsiao E, Sheng H, Lee RT, Liu J. Tissue-embedded stretchable nanoelectronics reveal endothelial cell-mediated electrical maturation of human 3D cardiac microtissues. SCIENCE ADVANCES 2023; 9:eade8513. [PMID: 36888704 PMCID: PMC9995081 DOI: 10.1126/sciadv.ade8513] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clinical translation of stem cell therapies for heart disease requires electrical integration of transplanted cardiomyocytes. Generation of electrically matured human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is critical for electrical integration. Here, we found that hiPSC-derived endothelial cells (hiPSC-ECs) promoted the expression of selected maturation markers in hiPSC-CMs. Using tissue-embedded stretchable mesh nanoelectronics, we achieved a long-term stable map of human three-dimensional (3D) cardiac microtissue electrical activity. The results revealed that hiPSC-ECs accelerated the electrical maturation of hiPSC-CMs in 3D cardiac microtissues. Machine learning-based pseudotime trajectory inference of cardiomyocyte electrical signals further revealed the electrical phenotypic transition path during development. Guided by the electrical recording data, single-cell RNA sequencing identified that hiPSC-ECs promoted cardiomyocyte subpopulations with a more mature phenotype, and multiple ligand-receptor interactions were up-regulated between hiPSC-ECs and hiPSC-CMs, revealing a coordinated multifactorial mechanism of hiPSC-CM electrical maturation. Collectively, these findings show that hiPSC-ECs drive hiPSC-CM electrical maturation via multiple intercellular pathways.
Collapse
Affiliation(s)
- Zuwan Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Ren Liu
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Qiang Li
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | | | - Hannah L.T. Elwell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Morgan Sokol
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Junya Aoyama
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Undine-Sophie Deumer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Emma Hsiao
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Hao Sheng
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Corresponding author. (J.L.), (R.T.L.)
| | - Jia Liu
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Corresponding author. (J.L.), (R.T.L.)
| |
Collapse
|
15
|
Yu Z, Liu Z, Ravichandran V, Lami B, Gu M. Endocardium in Hypoplastic Left Heart Syndrome: Implications from In Vitro Study. J Cardiovasc Dev Dis 2022; 9:jcdd9120442. [PMID: 36547439 PMCID: PMC9786329 DOI: 10.3390/jcdd9120442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Endocardium lines the inner layer of the heart ventricle and serves as the source of valve endothelial cells and interstitial cells. Previously, endocardium-associated abnormalities in hypoplastic left heart syndrome (HLHS) have been reported, including endocardial fibroelastosis (EFE) and mitral and aortic valve malformation. However, few mechanistic studies have investigated the molecular pathological changes in endocardial cells. Recently, the emergence of a powerful in vitro system-induced pluripotent stem cells (iPSCs)-was applied to study various genetic diseases, including HLHS. This review summarized current in vitro studies in understanding the endocardial pathology in HLHS, emphasizing new findings of the cellular phenotypes and underlying molecular mechanisms. Lastly, a future perspective is provided regarding the better recapitulation of endocardial phenotypes in a dish.
Collapse
Affiliation(s)
- Zhiyun Yu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vidhya Ravichandran
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bonny Lami
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
16
|
Venkatakrishnan G, Parvathi VD. Decoding the mechanism of vascular morphogenesis to explore future prospects in targeted tumor therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:178. [PMID: 36036322 DOI: 10.1007/s12032-022-01810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
The growth and formation of blood vessels is an undeniably fundamental biological process crucial to controlling overall development of an organism. This phenomenon consists of two separate processes, commencing with vasculogenesis, which refers to the process of blood vessel formation strictly in embryonic stages, via de novo endothelial cell synthesis. Angiogenesis continues the formation of the vascular network via sprouting and splitting. Tumor growth is dependent on the growth and supply of blood vessels around the tumor mass. Extracellular matrix (ECM) molecules can promote angiogenesis by establishing a vascular network and sequestering pro-angiogenic growth factors. Although the methods by which tumor-associated fibroblasts (which differ in phenotype from normal fibroblasts) influence angiogenesis are unknown, they are thought to be a major source of growth factors and cytokines that attract endothelial cells. Chemokines and growth factors (sourced from macrophages and neutrophils) are also regulators of angiogenesis. When considered as a whole, the tumor microenvironment is a heterogenous and dynamic mass of tissue, composed of a plethora of cell types and an ECM that can fundamentally control the pathological angiogenic switch. Angiogenesis is involved in numerous diseases, and understanding the various mechanisms surrounding this phenomenon is key to finding cures.
Collapse
Affiliation(s)
- Gayathri Venkatakrishnan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|