1
|
Mashaal A, El-Yamany HY, Mansour HAEH. Systemic/Immune-Modulation of Olea europaea Leaf Extract in Fetuses of Alloxan-Induced T1 Diabetic Rats. J Med Food 2024; 27:981-992. [PMID: 38979597 DOI: 10.1089/jmf.2024.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Maternal glucose is the principal macronutrient that sustains fetal growth. Prolonged exposure of the fetus to hyperglycemia from the early stages of pregnancy accelerates the maturation of the stimulus-secretion coupling mechanism in β cell autoimmunity, which leads to early hyperinsulinemia in type 1 diabetes mellitus (T1DM). Nowadays, diabetes mellitus (DM) is the most common medical complication of pregnancy, and among young women, the prevalence of overt diabetes and undiagnosed hyperglycemia is rising. Even though conventional medication is effective in treating DM, it is expensive and has harmful side effects. Herbal medicine will thus incorporate alternative therapy and be more effective and less toxic. Due to their bioactive components, olive leaves (Olea europaea) are frequently used medicinally; however, little is known about how this plant affects the immune system when it comes to diabetes. The current study used a pregnant mother rat model of alloxan-induced T1DM to examine the antidiabetic properties and embryonic safety of olive leaves. Forty adult female Sprague Dawley rats were split up into four groups as follows: nondiabetic, diabetic, olive, and diabetic-olive groups. All the mother rats were sacrificed on the 20th day of pregnancy, and fetuses were collected for further investigations. In diabetic pregnant mothers, fetuses had systemic modulation-negative effects. These effects were significantly reversed when the diabetic groups were supplemented with extracts from olive leaves. The findings showed that the olive leaf extract inhibits the diabetogenic effect mediated by alloxan with effective and protective systemic immunomodulation during embryonic development.
Collapse
Affiliation(s)
- Alya Mashaal
- Immunology Zoology and Entomology Department , Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Heba Y El-Yamany
- Histology and Cell Biology, Histology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Hend Abd El-Halim Mansour
- Embryology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Kostina A, Lewis-Israeli YR, Abdelhamid M, Gabalski MA, Kiselev A, Volmert BD, Lankerd H, Huang AR, Wasserman AH, Lydic T, Chan C, Park S, Olomu I, Aguirre A. ER stress and lipid imbalance drive diabetic embryonic cardiomyopathy in an organoid model of human heart development. Stem Cell Reports 2024; 19:317-330. [PMID: 38335962 PMCID: PMC10937107 DOI: 10.1016/j.stemcr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Congenital heart defects are the most prevalent human birth defects, and their incidence is exacerbated by maternal health conditions, such as diabetes during the first trimester (pregestational diabetes). Our understanding of the pathology of these disorders is hindered by a lack of human models and the inaccessibility of embryonic tissue. Using an advanced human heart organoid system, we simulated embryonic heart development under pregestational diabetes-like conditions. These organoids developed pathophysiological features observed in mouse and human studies before, including ROS-mediated stress and cardiomyocyte hypertrophy. scRNA-seq revealed cardiac cell-type-specific dysfunction affecting epicardial and cardiomyocyte populations and alterations in the endoplasmic reticulum and very-long-chain fatty acid lipid metabolism. Imaging and lipidomics confirmed these findings and showed that dyslipidemia was linked to fatty acid desaturase 2 mRNA decay dependent on IRE1-RIDD signaling. Targeting IRE1 or restoring lipid levels partially reversed the effects of pregestational diabetes, offering potential preventive and therapeutic strategies in humans.
Collapse
Affiliation(s)
- Aleksandra Kostina
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yonatan R Lewis-Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Mishref Abdelhamid
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Mitchell A Gabalski
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Artem Kiselev
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, MI, USA; Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Brett D Volmert
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Haley Lankerd
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Amanda R Huang
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron H Wasserman
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, MI, USA
| | - Christina Chan
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA; Division of Biomedical Devices, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, MI, USA; Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Isoken Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Caetano Z, Peixoto AB, Bravo-Valenzuela NJ, Mattar R, Araujo E. Evaluation of cardiac contractility of fetuses from pregestational diabetes mellitus pregnancies by three-dimensional ultrasound. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20230700. [PMID: 38451573 PMCID: PMC10913783 DOI: 10.1590/1806-9282.20230700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 03/08/2024]
Abstract
OBJECTIVE This study aimed to evaluate cardiac contractility in fetuses from pregestational diabetes mellitus pregnancies by three-dimensional ultrasound using spatiotemporal image correlation in rendering mode. METHODS A retrospective cross-sectional study was performed on 40 fetuses from nondiabetic pregnancies and 28 pregestational diabetic pregnancies between 20 and 33 weeks and 6 days. Cardiac contractility was assessed by measuring the ventricular myocardial area in diastole subtracted from the ventricular myocardial area in systole. RESULTS Pregestational diabetic pregnancies had a lower maternal age than nondiabetic pregnancies (26.7 vs. 39.9 years, p=0.019). Cardiac contractility in fetuses from diabetic and nondiabetic pregnancies was similar (p=0.293). A moderately positive and significant correlation was observed between gestational age and cardiac contractility (r=0.46, p=0.0004). A 1-week increase in gestational age was responsible for a 0.1386 cm2 increase in cardiac contractility. CONCLUSION Cardiac contractility as evaluated by three-dimensional ultrasound using spatiotemporal image correlation in rendering mode showed no significant differences across fetuses with and without pregestational diabetes.
Collapse
Affiliation(s)
- Zaqueu Caetano
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics – São Paulo (SP), Brazil
| | - Alberto Borges Peixoto
- Universidade de Uberaba, Mário Palmério University Hospital, Gynecology and Obstetrics Service – Uberaba (MG), Brazil
- Universidade Federal do Triângulo Mineiro, Department of Obstetrics and Gynecology – Uberaba (MG), Brazil
| | - Nathalie Jeanne Bravo-Valenzuela
- Universidade Federal do Rio de Janeiro, School of Medicine, Department of Pediatrics, Pediatric Cardiology – Rio de Janeiro (RJ), Brazil
| | - Rosiane Mattar
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics – São Paulo (SP), Brazil
| | - Edward Araujo
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Obstetrics – São Paulo (SP), Brazil
| |
Collapse
|
4
|
Kong Z, Zhu L, Liu Y, Liu Y, Chen G, Jiang T, Wang H. Effects of azithromycin exposure during pregnancy at different stages, doses and courses on testicular development in fetal mice. Biomed Pharmacother 2024; 170:116063. [PMID: 38154271 DOI: 10.1016/j.biopha.2023.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Azithromycin is a commonly used antibiotic during pregnancy, but some studies have suggested its potential developmental toxicity. Currently, the effects and mechanisms of prenatal azithromycin exposure (PAzE) on fetal testicular development are still unclear. The effects of prenatal exposure to the same drug on fetal testicular development could vary depending on different stages, doses, and courses. Hence, in this study, based on clinical medication characteristics, Kunming mice was administered intragastrically with azithromycin at different stages (mid-/late-pregnancy), doses (50, 100, 200 mg/kg·d), and courses (single-/multi-course). Fetal blood and testicular samples were collected on GD18 for relevant assessments. The results indicated that PAzE led to changes in fetal testicular morphology, reduced cell proliferation, increased apoptosis, and decreased expression of markers related to Leydig cells (Star), Sertoli cells (Wt1), and spermatogonia (Plzf). Further investigation revealed that the effects of PAzE on fetal testicular development were characterized by mid-pregnancy, high dose (clinical dose), and single course having more pronounced effects. Additionally, the TGFβ/Smad and Nrf2 signaling pathways may be involved in the changes in fetal testicular development induced by PAzE. In summary, this study confirmed that PAzE influences fetal testicular morphological development and multicellular function. It provided theoretical and experimental evidence for guiding the rational use of azithromycin during pregnancy and further exploring the mechanisms underlying its developmental toxicity on fetal testicles.
Collapse
Affiliation(s)
- Ziyu Kong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Wuhan University People's Hospital, Wuhan 430071, China
| | - Tao Jiang
- Suizhou Emergency Medical Center, Suizhou 441300, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
5
|
Ibrahim S, Gaborit B, Lenoir M, Collod-Beroud G, Stefanovic S. Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies. Int J Mol Sci 2023; 24:16258. [PMID: 38003449 PMCID: PMC10671602 DOI: 10.3390/ijms242216258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.
Collapse
Affiliation(s)
- Stéphanie Ibrahim
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, 13005 Marseille, France
| | - Marien Lenoir
- Department of Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille University, 13005 Marseille, France
| | | | - Sonia Stefanovic
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| |
Collapse
|
6
|
Ozturk M, Agaoglu Z, Ozturk FH, Yakut K, Öcal FD, Oguz Y, Caglar T. Evaluation of fetal myocardial performance index in gestational diabetes mellitus. Congenit Anom (Kyoto) 2023; 63:164-169. [PMID: 37494134 DOI: 10.1111/cga.12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/22/2023] [Accepted: 06/04/2023] [Indexed: 07/28/2023]
Abstract
This study aimed to compare fetal myocardial performance index (MPI) between fetuses of pregnant women with gestational diabetes mellitus (GDM) and healthy controls and to evaluate the relationship between MPI and maternal glucose levels. This was a prospective study of 90 pregnant women, including 50 pregnancies with GDM (27 pregnancies with insulin-regulated GDM and 23 pregnancies with diet-regulated GDM) and 40 healthy controls. Isovolumetric contraction time (ICT) + isovolumetric relaxation time (IRT)/ejection time (ET) were used to calculate the MPI (MPI = [ICT + IRT]/ET). Fetal MPI, PR interval, E/A ratio, maternal plasma glucose levels on the day of MPI measurement, and neonatal outcomes were compared. The fetal left-MPI was significantly higher in the GDM group than healthy controls (0.43 ± 0.04 vs. 0.40 ± 0.06, p = 0.007). The best cut-off level for MPI was >0.41 to predict adverse perinatal outcomes (sensitivity: 70%, specificity: 68%, area under the curve: 0.715, 95% confidence interval: 0.5143-0.8205, p < 0.001). The fetal MPI values showed no correlation with maternal plasma fasting, postprandial glucose, and hemoglobin A1c (HbA1c) levels. Reduced E/A ratio, higher neonatal intensive care unit admissions, and the need for cesarean delivery were detected in the GDM group. Fetal MPI is impaired in women with GDM, and the need for insulin therapy is associated with higher MPI values and adverse neonatal outcomes. Fetal MPI can help detect fetuses with potential adverse outcome risks, owing to impaired fetal cardiac function.
Collapse
Affiliation(s)
- Merve Ozturk
- Department of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Zahid Agaoglu
- Department of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Filiz Halici Ozturk
- Department of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Kadriye Yakut
- Department of Perinatology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Turkey
| | - Fatma Doğa Öcal
- Department of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Yuksel Oguz
- Department of Perinatology, Turkish Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Turhan Caglar
- Department of Perinatology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
7
|
Kostina A, Lewis-Israeli YR, Abdelhamid M, Gabalski MA, Volmert BD, Lankerd H, Huang AR, Wasserman AH, Lydic T, Chan C, Olomu I, Aguirre A. ER stress and lipid imbalance drive embryonic cardiomyopathy in a human heart organoid model of pregestational diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544081. [PMID: 37333095 PMCID: PMC10274758 DOI: 10.1101/2023.06.07.544081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Congenital heart defects constitute the most common birth defect in humans, affecting approximately 1% of all live births. The incidence of congenital heart defects is exacerbated by maternal conditions, such as diabetes during the first trimester. Our ability to mechanistically understand these disorders is severely limited by the lack of human models and the inaccessibility to human tissue at relevant stages. Here, we used an advanced human heart organoid model that recapitulates complex aspects of heart development during the first trimester to model the effects of pregestational diabetes in the human embryonic heart. We observed that heart organoids in diabetic conditions develop pathophysiological hallmarks like those previously reported in mouse and human studies, including ROS-mediated stress and cardiomyocyte hypertrophy, among others. Single cell RNA-seq revealed cardiac cell type specific-dysfunction affecting epicardial and cardiomyocyte populations, and suggested alterations in endoplasmic reticulum function and very long chain fatty acid lipid metabolism. Confocal imaging and LC-MS lipidomics confirmed our observations and showed that dyslipidemia was mediated by fatty acid desaturase 2 (FADS2) mRNA decay dependent on IRE1-RIDD signaling. We also found that the effects of pregestational diabetes could be reversed to a significant extent using drug interventions targeting either IRE1 or restoring healthy lipid levels within organoids, opening the door to new preventative and therapeutic strategies in humans.
Collapse
Affiliation(s)
- Aleksandra Kostina
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yonatan R. Lewis-Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Mishref Abdelhamid
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Mitchell A. Gabalski
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Brett D. Volmert
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Haley Lankerd
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Amanda R. Huang
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron H. Wasserman
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, MI, USA
| | - Christina Chan
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Isoken Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|