1
|
Dai X, Yang F, Chen D, Yang L, Dong Z, Chen C, Xiao J. The role of fibromodulin in myocardial fibrosis in a diabetic cardiomyopathy rat model. FEBS Open Bio 2024. [PMID: 39592912 DOI: 10.1002/2211-5463.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is pathologically characterized by excessive deposition of extracellular matrix proteins, leading to myocardial fibrosis. Fibromodulin (Fmod) plays a crucial role in the pathogenesis of fibrotic diseases. However, the role and mechanism of Fmod in DCM-related myocardial fibrosis remain unclear. In the present study, we established a DCM rat model and an in vitro model of rat primary cardiac fibroblasts (RPCFs) exposed to high glucose. We assessed mRNA and protein expression levels of Col1a1, Col3a1, α-SMA and Fmod in both models. Fmod-overexpressing (ov-Fmod) and Fmod-knockdown (si-Fmod) rat cardiac fibroblasts (RCFs) were generated. Subsequently, whole RNA sequencing was conducted on ov-Fmod RCFs. The gene Col15a1 was evaluated in the DCM rat and all cell models. The correlation between plasma levels of Fmod and Col15a1 in DCM rat models was assessed. Transcription and protein levels of Fmod, Col1a1, Col3a1 and α-SMA were significantly elevated in DCM rat hearts and RPCFs. In ov-Fmod RCFs, fibrosis markers were similarly increased, except for Col3a1, which decreased. The Col1a1/Col3a1 ratio was elevated. Conversely, knocking down Fmod yielded opposite results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that Fmod participates in multiple fibrosis-related pathways, affecting Col15a1. Expression of Col15a1 was significantly decreased in all models, compared to controls, except in si-Fmod RCFs. Importantly, Col15a1 and Fmod in plasma exhibited an inverse relationship in DCM. In summary, Fmod is implicated in DCM, with Fmod overexpression downregulating Col15a1 and increasing the Col1a1/Col3a1 ratio. This mechanism may influence diastolic heart failure in DCM by modulating myocardial stiffness and elasticity.
Collapse
Affiliation(s)
- Xiyan Dai
- Binhaiwan Central Hospital of Dongguan, China
- Maoming People's Hospital, China
- The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Fan Yang
- Binhaiwan Central Hospital of Dongguan, China
| | | | - Lu Yang
- Binhaiwan Central Hospital of Dongguan, China
| | - Zhihui Dong
- Binhaiwan Central Hospital of Dongguan, China
| | - Can Chen
- Binhaiwan Central Hospital of Dongguan, China
| | | |
Collapse
|
2
|
Yerra VG, Connelly KA. Extrarenal Benefits of SGLT2 Inhibitors in the Treatment of Cardiomyopathies. Physiology (Bethesda) 2024; 39:0. [PMID: 38888433 DOI: 10.1152/physiol.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as pivotal medications for heart failure, demonstrating remarkable cardiovascular benefits extending beyond their glucose-lowering effects. The unexpected cardiovascular advantages have intrigued and prompted the scientific community to delve into the mechanistic underpinnings of these novel actions. Preclinical studies have generated many mechanistic theories, ranging from their renal and extrarenal effects to potential direct actions on cardiac muscle cells, to elucidate the mechanisms linking these drugs to clinical cardiovascular outcomes. Despite the strengths and limitations of each theory, many await validation in human studies. Furthermore, whether SGLT2 inhibitors confer therapeutic benefits in specific subsets of cardiomyopathies akin to their efficacy in other heart failure populations remains unclear. By examining the shared pathological features between heart failure resulting from vascular diseases and other causes of cardiomyopathy, certain specific molecular actions of SGLT2 inhibitors (particularly those targeting cardiomyocytes) would support the concept that these medications will yield therapeutic benefits across a broad range of cardiomyopathies. This article aims to discuss the important mechanisms of SGLT2 inhibitors and their implications in hypertrophic and dilated cardiomyopathies. Furthermore, we offer insights into future research directions for SGLT2 inhibitor studies, which hold the potential to further elucidate the proposed biological mechanisms in greater detail.
Collapse
Affiliation(s)
- Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
3
|
Çöllüoğlu İT, Çelik A, Ata N, Ural D, Şahin A, Ulgu MM, Kanık EA, Birinci Ş, Yılmaz MB. Deciphering mortality risk of diabetes medications in heart failure patients with diabetes mellitus under triple guideline-directed medical therapy. Int J Cardiol 2024; 407:132109. [PMID: 38703896 DOI: 10.1016/j.ijcard.2024.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/30/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Scientific evidence regarding the impact of different combinations of diabetes medications in heart failure patients with diabetes mellitus (HFwDM) remains limited. AIM We aimed to investigate the effect of monotherapy and combination therapy for DM on all-cause mortality in HFwDM under triple guideline-directed medical therapy (GDMT). METHOD This nationwide retrospective cohort study included adult HFwDM under triple GDMT between January 1, 2016 and December 31, 2022.We collected the data from the National Electronic Database of the Turkish Ministry of Health.We created various combination including different diabetes medications based on the current guidelines for DM.The primary endpoint was all-cause mortality. RESULTS A total of 321,525 HFwDM under triple GDMT (female:49%, median age:68[61-75] years) were included. The highest rate of prescribed combination therapy was metformin and sulfonylureas (n = 55,266). In Cox regression analysis, insülin monotherapy had the highest risk for all-cause mortality (HR:2.25, 95CI%:2.06 - 2.45), whereas combination therapy including metformin, SGLT2i, and sulfonylureas provided the most beneficial effect on survival (HR:0.29, 95CI%:0.22-0.39) when compared to patients not receiving diabetes medication. Among patients taking diabetes medications, the inclusion of SGLT2i demonstrated a survival benefit (p < 0.05), despite concurrent use of volume-retaining medications such as insulin and thiazolidinediones. Conversely, combinations of diabetes medications without SGLT2i did not demonstrate any survival benefit compared to patients not taking diabetes medication (p > 0.05). CONCLUSION This study underscored the use of SGLT2i as monotherapy or as a part of combination diabetes medications to improve survival among HFwDM, while also highlighting that combinations lacking SGLT2i did not confer any survival benefit.
Collapse
Affiliation(s)
- İnci Tuğçe Çöllüoğlu
- Karabük University, Faculty of Medicine, Department of Cardiology, Karabük, Türkiye.
| | - Ahmet Çelik
- Mersin University, Faculty of Medicine, Department of Cardiology, Mersin, Türkiye
| | - Naim Ata
- General Directorate of Information Systems, Ministry of Health, Ankara, Türkiye
| | - Dilek Ural
- Koç University, Faculty of Medicine, Department of Cardiology, Istanbul, Türkiye
| | - Anıl Şahin
- Sivas Cumhuriyet University, Faculty of Medicine, Department of Cardiology, Sivas, Türkiye
| | - Mustafa Mahir Ulgu
- General Directorate of Information Systems, Ministry of Health, Ankara, Türkiye
| | - Emine Arzu Kanık
- Mersin University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin, Türkiye
| | - Şuayip Birinci
- Deputy Minister of Health, Ministry of Health, Ankara, Türkiye
| | - Mehmet Birhan Yılmaz
- Dokuz Eylül University, Faculty of Medicine, Department of Cardiology, Izmir, Türkiye
| |
Collapse
|
4
|
Miklankova D, Markova I, Hüttl M, Malinska H. Empagliflozin alters lipid metabolism in the myocardium and liver in a prediabetes model with severe dyslipidemia. Front Pharmacol 2024; 15:1393946. [PMID: 39027339 PMCID: PMC11254829 DOI: 10.3389/fphar.2024.1393946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background and aims Recent studies suggest that empagliflozin reduces total and cardiovascular mortality in both diabetic and nondiabetic subjects. Although the exact mechanism is unclear, it is understood to positively affect myocardial energetics, including the metabolism of ketone bodies, lipids, and fatty acids. In this study, we compared empagliflozin effects on lipid metabolism in the heart and liver in a prediabetic rat model with severe dyslipidemia. Materials and methods Wistar rats served as the control group, while hereditary hypertriglyceridemic (HHTg) rats were used as a nonobese, prediabetic model. Rats were treated with or without empagliflozin at a dose of 10 mg/kg body weight (BW) for 8 weeks. Results In HHTg rats, empagliflozin decreased body weight and adiposity, improved glucose tolerance, and decreased serum triacylglycerols (TAGs) (p < 0.001). Empagliflozin decreased the activity and gene expression of the lipogenic enzyme SCD-1 (p < 0.001) in the myocardium, which may have led to a decrease in the ectopic accumulation of TAGs and lipotoxic diacylglycerols and lysophosphatidylcholines (p < 0.001). Changes in the myocardial phosphatidylcholine/phosphatidylethanolamine ratio (p < 0.01) and in the fatty acid profile of myocardial phospholipids may have contributed to the antifibrotic effects of empagliflozin. The anti-inflammatory effects of empagliflozin were evidenced by an increased IL-10/TNFα ratio (p < 0.001), a marked decrease in arachidonic acid metabolites (20-HETE, p < 0.001), and an increase in PUFA metabolites (14,15-EETs, p < 0.001) in the myocardium. However, empagliflozin did not significantly affect either the concentration or utilization of ketone bodies. In the liver, empagliflozin decreased lipogenesis and the accumulation of TAGs and lipotoxic intermediates. Its effect on arachidonic acid metabolites and alterations in n-3 PUFA metabolism was less pronounced than in the myocardium. Conclusion Our findings suggest that empagliflozin treatment in the heart and liver reduced the accumulation of neutral lipids and lipotoxic intermediates and altered the metabolism of n-3 PUFA. In the heart, empagliflozin altered arachidonic acid metabolism, which is likely associated with the anti-inflammatory and antifibrotic effects of the drug. We assume that these alterations in lipid metabolism contribute to the cardioprotective effects of empagliflozin in prediabetic states with severe dyslipidemia.
Collapse
Affiliation(s)
- Denisa Miklankova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Irena Markova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Hana Malinska
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
5
|
Zhang Q, Wang H, Zhang S, Chen M, Gao Z, Sun J, Wang J, Fu L. Metabolomics identifies phenotypic biomarkers of amino acid metabolism in milk allergy and sensitized tolerance. J Allergy Clin Immunol 2024; 154:157-167. [PMID: 38522626 DOI: 10.1016/j.jaci.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND A substantial proportion of sensitized individuals tolerate suspected foods without developing allergic symptoms; this phenomenon is known as sensitized tolerance. The immunogenic and metabolic features underlying the sensitized-tolerant phenotype remain largely unknown. OBJECTIVE We aimed to uncover the metabolic signatures associated with clinical milk allergy (MA) and sensitized tolerance using metabolomics. METHODS We characterized the serum metabolic and immunologic profiles of children with clinical IgE-mediated MA (n = 30) or milk-sensitized tolerance (n = 20) and healthy controls (n = 21). A comparative analysis was performed to identify dysregulated pathways associated with the clinical manifestations of food allergy. We also analyzed specific biomarkers indicative of different sensitization phenotypes in children with MA. The candidate metabolites were validated in an independent quantification cohort (n = 41). RESULTS Metabolomic profiling confirmed the presence of a distinct metabolic signature that discriminated children with MA from those with milk-sensitized tolerance. Amino acid metabolites generated via arginine, proline, and glutathione metabolism were uniquely altered in children with sensitized tolerance. Arginine depletion and metabolism through the polyamine pathway to fuel glutamate synthesis were closely associated with suppression of clinical symptoms in the presence of allergen-specific IgE. In children with MA, the polysensitized state was characterized by disturbances in tryptophan metabolism. CONCLUSIONS By combining untargeted metabolomics with targeted validation in an independent quantification cohort, we identified candidate metabolites as phenotypic and diagnostic biomarkers of food allergy. Our results provide insights into the pathologic mechanisms underlying childhood allergy and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shenyu Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Mingwu Chen
- Department of Pediatrics, the First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Zhongshan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, China
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jizhou Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China.
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
6
|
Madonna R, Biondi F, Alberti M, Ghelardoni S, Mattii L, D'Alleva A. Cardiovascular outcomes and molecular targets for the cardiac effects of Sodium-Glucose Cotransporter 2 Inhibitors: A systematic review. Biomed Pharmacother 2024; 175:116650. [PMID: 38678962 DOI: 10.1016/j.biopha.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage. In this systematic review we provide a state of the art of the randomized controlled trials investigating the effect of SGLT2i on cardiovascular outcomes in patients with chronic kidney disease and/or heart failure irrespective of ejection fraction and diabetes. We also discuss the molecular targets and signaling pathways potentially explaining the cardiac effects of these pharmacological agents, from a clinical and experimental perspective.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy.
| | - Filippo Biondi
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Mattia Alberti
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, Histology Division, University of Pisa, Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| |
Collapse
|
7
|
Xiong RQ, Li YP, Lin LP, Yao JY. Identification of potential biomarkers for diabetic cardiomyopathy using LC-MS-based metabolomics. Endocr Connect 2024; 13:e230384. [PMID: 38180052 PMCID: PMC10831537 DOI: 10.1530/ec-23-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of type 2 diabetes mellitus (T2DM) that contributes to cardiovascular morbidity and mortality. However, the metabolic alterations and specific biomarkers associated with DCM in T2DM remain unclear. In this study, we conducted a comprehensive metabolomic analysis using liquid chromatography-mass spectrometry (LC-MS) to investigate the plasma metabolite profiles of T2DM patients with and without DCM. We identified significant differences in metabolite levels between the groups, highlighting the dysregulation of various metabolic pathways, including starch and sucrose metabolism, steroid hormone biosynthesis, tryptophan metabolism, purine metabolism, and pyrimidine metabolism. Although several metabolites showed altered abundance in DCM, they also shared characteristics of DCM and T2DM rather than specific to DCM. Additionally, through biomarker analyses, we identified potential biomarkers for DCM, such as cytidine triphosphate, 11-ketoetiocholanolone, saccharopine, nervonic acid, and erucic acid. These biomarkers demonstrated distinct patterns and associations with metabolic pathways related to DCM. Our findings provide insights into the metabolic changes associated with DCM in T2DM patients and highlight potential biomarkers for further validation and clinical application. Further research is needed to elucidate the underlying mechanisms and validate the diagnostic and prognostic value of these biomarkers in larger cohorts.
Collapse
Affiliation(s)
- Run-Qing Xiong
- Department of Ultrasonic Imaging, Xiamen Medical College Affiliated Second Hospital, Fujian, China
| | - Yan-Ping Li
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Fujian, China
| | - Lu-Ping Lin
- Department of Endocrinology, Xiamen Medical College Affiliated Second Hospital, Fujian, China
| | - Jeng-Yuan Yao
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Fujian, China
| |
Collapse
|
8
|
Wu H, Yang Z, Wang J, Bu Y, Wang Y, Xu K, Li J, Yan C, Liu D, Han Y. Exploring shared therapeutic targets in diabetic cardiomyopathy and diabetic foot ulcers through bioinformatics analysis. Sci Rep 2024; 14:230. [PMID: 38168477 PMCID: PMC10761883 DOI: 10.1038/s41598-023-50954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Advanced diabetic cardiomyopathy (DCM) patients are often accompanied by severe peripheral artery disease. For patients with DCM combined with diabetic foot ulcer (DFU), there are currently no good therapeutic targets and drugs. Here, we investigated the underlying network of molecular actions associated with the occurrence of these two complications. The datasets were downloaded from the Gene Expression Omnibus (GEO) database. We performed enrichment and protein-protein interaction analyses, and screened for hub genes. Construct transcription factors (TFs) and microRNAs regulatory networks for validated hub genes. Finally, drug prediction and molecular docking verification were performed. We identified 299 common differentially expressed genes (DEGs), many of which were involved in inflammation and lipid metabolism. 6 DEGs were identified as hub genes (PPARG, JUN, SLC2A1, CD4, SCARB1 and SERPINE1). These 6 hub genes were associated with inflammation and immune response. We identified 31 common TFs and 2 key miRNAs closely related to hub genes. Interestingly, our study suggested that fenofibrate, a lipid-lowering medication, holds promise as a potential treatment for DCM combined with DFU due to its stable binding to the identified hub genes. Here, we revealed a network involves a common target for DCM and DFU. Understanding these networks and hub genes is pivotal for advancing our comprehension of the multifaceted complications of diabetes and facilitating the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Hanlin Wu
- Dalian Medical University, Dalian, 116044, Liaoning Province, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China
| | - Zheming Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China
| | - Jing Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China
| | - Yuxin Bu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China
| | - Yani Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China
| | - Jing Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
9
|
Su S, Ji X, Li T, Teng Y, Wang B, Han X, Zhao M. The changes of cardiac energy metabolism with sodium-glucose transporter 2 inhibitor therapy. Front Cardiovasc Med 2023; 10:1291450. [PMID: 38124893 PMCID: PMC10731052 DOI: 10.3389/fcvm.2023.1291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Background/aims To investigate the specific effects of s odium-glucose transporter 2 inhibitor (SGLT2i) on cardiac energy metabolism. Methods A systematic literature search was conducted in eight databases. The retrieved studies were screened according to the inclusion and exclusion criteria, and relevant information was extracted according to the purpose of the study. Two researchers independently screened the studies, extracted information, and assessed article quality. Results The results of the 34 included studies (including 10 clinical and 24 animal studies) showed that SGLT2i inhibited cardiac glucose uptake and glycolysis, but promoted fatty acid (FA) metabolism in most disease states. SGLT2i upregulated ketone metabolism, improved the structure and functions of myocardial mitochondria, alleviated oxidative stress of cardiomyocytes in all literatures. SGLT2i increased cardiac glucose oxidation in diabetes mellitus (DM) and cardiac FA metabolism in heart failure (HF). However, the regulatory effects of SGLT2i on cardiac FA metabolism in DM and cardiac glucose oxidation in HF varied with disease types, stages, and intervention duration of SGLT2i. Conclusion SGLT2i improved the efficiency of cardiac energy production by regulating FA, glucose and ketone metabolism, improving mitochondria structure and functions, and decreasing oxidative stress of cardiomyocytes under pathological conditions. Thus, SGLT2i is deemed to exert a benign regulatory effect on cardiac metabolic disorders in various diseases. Systematic review registration https://www.crd.york.ac.uk/, PROSPERO (CRD42023484295).
Collapse
Affiliation(s)
- Sha Su
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Ji
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Teng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowan Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Scisciola L, Chianese U, Caponigro V, Basilicata MG, Salviati E, Altucci L, Campiglia P, Paolisso G, Barbieri M, Benedetti R, Sommella E. Multi-omics analysis reveals attenuation of cellular stress by empagliflozin in high glucose-treated human cardiomyocytes. J Transl Med 2023; 21:662. [PMID: 37742032 PMCID: PMC10518098 DOI: 10.1186/s12967-023-04537-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute the gold standard treatment for type 2 diabetes mellitus (T2DM). Among them, empagliflozin (EMPA) has shown beneficial effects against heart failure. Because cardiovascular diseases (mainly diabetic cardiomyopathy) are the leading cause of death in diabetic patients, the use of EMPA could be, simultaneously, cardioprotective and antidiabetic, reducing the risk of death from cardiovascular causes and decreasing the risk of hospitalization for heart failure in T2DM patients. Interestingly, recent studies have shown that EMPA has positive benefits for people with and without diabetes. This finding broadens the scope of EMPA function beyond glucose regulation alone to include a more intricate metabolic process that is, in part, still unknown. Similarly, this significantly increases the number of people with heart diseases who may be eligible for EMPA treatment. METHODS This study aimed to clarify the metabolic effect of EMPA on the human myocardial cell model by using orthogonal metabolomics, lipidomics, and proteomics approaches. The untargeted and multivariate analysis mimicked the fasting blood sugar level of T2DM patients (hyperglycemia: HG) and in the average blood sugar range (normal glucose: NG), with and without the addition of EMPA. RESULTS Results highlighted that EMPA was able to modulate and partially restore the levels of multiple metabolites associated with cellular stress, which were dysregulated in the HG conditions, such as nicotinamide mononucleotide, glucose-6-phosphate, lactic acid, FA 22:6 as well as nucleotide sugars and purine/pyrimidines. Additionally, EMPA regulated the levels of several lipid sub-classes, in particular dihydroceramide and triacylglycerols, which tend to accumulate in HG conditions resulting in lipotoxicity. Finally, EMPA counteracted the dysregulation of endoplasmic reticulum-derived proteins involved in cellular stress management. CONCLUSIONS These results could suggest an effect of EMPA on different metabolic routes, tending to rescue cardiomyocyte metabolic status towards a healthy phenotype.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vicky Caponigro
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
- IEOS CNR, Naples, Italy
- Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program, Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Azienda Ospedaliera Universitaria "Luigi Vanvitelli", Medical Epigenetics Program, Naples, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
11
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Significance of Endothelial Dysfunction Amelioration for Sodium-Glucose Cotransporter 2 Inhibitor-Induced Improvements in Heart Failure and Chronic Kidney Disease in Diabetic Patients. Metabolites 2023; 13:736. [PMID: 37367894 DOI: 10.3390/metabo13060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Beyond lowering plasma glucose levels, sodium-glucose cotransporter 2 inhibitors (SGLT2is) significantly reduce hospitalization for heart failure (HF) and retard the progression of chronic kidney disease (CKD) in patients with type 2 diabetes. Endothelial dysfunction is not only involved in the development and progression of cardiovascular disease (CVD), but is also associated with the progression of CKD. In patients with type 2 diabetes, hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia induce the development of endothelial dysfunction. SGLT2is have been shown to improve endothelial dysfunction, as assessed by flow-mediated vasodilation, in individuals at high risk of CVD. Along with an improvement in endothelial dysfunction, SGLT2is have been shown to improve oxidative stress, inflammation, mitochondrial dysfunction, glucotoxicity, such as the advanced signaling of glycation end products, and nitric oxide bioavailability. The improvements in endothelial dysfunction and such endothelium-derived factors may play an important role in preventing the development of coronary artery disease, coronary microvascular dysfunction and diabetic cardiomyopathy, which cause HF, and play a role in retarding CKD. The suppression of the development of HF and the progression of CKD achieved by SGLT2is might have been largely induced by their capacity to improve vascular endothelial function.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| |
Collapse
|
12
|
Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023; 208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Collapse
|
13
|
Katano S, Yano T, Kouzu H, Nagaoka R, Numazawa R, Yamano K, Fujisawa Y, Ohori K, Nagano N, Fujito T, Nishikawa R, Ohwada W, Katayose M, Sato T, Kuno A, Furuhashi M. Elevated circulating level of β-aminoisobutyric acid (BAIBA) in heart failure patients with type 2 diabetes receiving sodium-glucose cotransporter 2 inhibitors. Cardiovasc Diabetol 2022; 21:285. [PMID: 36539818 PMCID: PMC9768967 DOI: 10.1186/s12933-022-01727-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS The mechanism by which a sodium-glucose cotransporter inhibitor (SGLT2i) induces favorable effects on diabetes and cardiovascular diseases including heart failure (HF) remains poorly understood. Metabolomics including amino acid profiling enables detection of alterations in whole body metabolism. The aim of this study was to determine whether plasma amino acid profiles are modulated by SGLT2i use in HF patients with type 2 diabetes mellitus (T2DM). METHODS We retrospectively examined 81 HF patients with T2DM (68 ± 11 years old; 78% male). Plasma amino acid concentrations in a fasting state after stabilization of HF were determined using ultraperformance liquid chromatography. To minimize potential selection bias in the retrospective analyses, the differences in baseline characteristics between patients receiving an SGLT2i and patients not receiving an SGLT2i were controlled by using an inverse probability of treatment weighting (IPTW)-adjusted analysis. RESULTS Of amino acids measurable in the present assay, plasma β-aminoisobutyric acid (BAIBA), an exercise-induced myokine-like molecule also known as 3-aminoisobutyric acid or 3-amino-2-methyproponic acid, was detected in 77% of all patients and the proportion of patients in whom plasma BAIBA was detected was significantly higher in patients receiving an SGLT2i than in patients not receiving an SGLT2i (93% vs. 67%, p = 0.01). Analyses in patients in whom plasma BAIBA was detected showed that plasma BAIBA concentration was significantly higher in patients receiving an SGLT2i than in patients not receiving an SGLT2i (6.76 ± 4.72 vs. 4.56 ± 2.93 nmol/ml, p = 0.03). In multivariate logistic regression analyses that were adjusted for age and sex, SGLT2i use was independently associated with BAIBA detection. The independent association between BAIBA and SGLT2i use remained after inclusion of body mass index, HF with reduced ejection fraction, ischemic etiology, renal function, NT-proBNP, albumin, hemoglobin, and HbA1c into the Cox proportional hazards model. When the differences in baseline characteristics between patients receiving an SGLT2i and patients not receiving an SGLT2i were controlled by using an IPTW-adjusted analysis, least squares mean of plasma BAIBA concentration was significantly higher in patients receiving an SGLT2i than in patients not receiving an SGLT2i. CONCLUSION SGLT2i use is closely associated with increased circulating BAIBA concentration in HF patients with T2DM.
Collapse
Affiliation(s)
- Satoshi Katano
- Division of Rehabilitation, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Ryohei Nagaoka
- Division of Rehabilitation, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Ryo Numazawa
- Graduate School of Medicine, Sapporo Medical University, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Kotaro Yamano
- Division of Rehabilitation, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Yusuke Fujisawa
- Division of Rehabilitation, Sapporo Medical University Hospital, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Katsuhiko Ohori
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
- Department of Cardiology, Hokkaido Cardiovascular Hospital, Sapporo, Japan
| | - Nobutaka Nagano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Takefumi Fujito
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Masaki Katayose
- Second Division of Physical Therapy, Sapporo Medical University School of Health Science, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| |
Collapse
|