1
|
Kumar M, Singh S, Rana P, D'souza M, Kumaran SS, Sekhri T, Khushu S. Neurometabolite and cognitive changes in hypothyroid patients in response to treatment: In-vivo 1H MRS study. Neurochem Int 2025; 182:105915. [PMID: 39653184 DOI: 10.1016/j.neuint.2024.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
The disturbances in thyroid hormones lead to altered brain metabolism, function, and cognition. Neuroimaging studies have shown structural and functional changes in hypothyroidism. Present study investigates the neuro-metabolite changes in dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) and associated decline cognitive function in hypothyroid patients before and after thyroxine treatment. We performed neuropsychological test and 1H MRS in hypothyroid patients (n = 25) and controls (n = 30). In addition, follow-up data was also collected from 19 patients treated with levo-thyroxine for 32 weeks. The concentration of the neurometabolites were calculated using LCModel. MRS data were analyzed using analysis of covariance (ANCOVA), with age and gender as covariates. A paired t-test was conducted to compare the baseline hypothyroid with the follow-up. Partial correlations were utilised to assess possible associations between neuropsychological scores and neurometabolites with age and gender as covariates. Spearman correlation was performed between thyroid hormone levels and neurometabolites. Hypothyroid patients showed an impairment in delayed recall, immediate recall of semantic, visual retention, recognition of objects memory, attention, and motor function at baseline, which improved significantly after thyroxine therapy. At baseline, patients with hypothyroidism exhibited significantly higher levels of choline compounds (GPC + PCh) [Cho]. No significant normalization of Cho levels was observed, despite achieving euthyroidism with thyroxine treatment. Cho levels showed a positive correlation with TSH in PPC and a negative correlation with T4 in DLPFC and PCC. Cho levels also showed negative correlations with delayed recall, immediate recall of semantic, visual retention memory and MMSE scores. The MRS findings show increased levels of Cho in hypothyroid patients compared to healthy controls. These Cho levels are not reversible within 32 weeks of treatment, suggesting that a longer follow-up may be needed to see if levels can be normalized.
Collapse
Affiliation(s)
- Mukesh Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India; Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Sadhana Singh
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India; Centre for Brain Research, Indian Institute of Science, Bengaluru, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Maria D'souza
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - S Senthil Kumaran
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Sekhri
- Thyroid Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India; Centre for Ayurveda Biology and Holistic Nutrition (CABHN), The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, India.
| |
Collapse
|
2
|
Graffunder AS, Bresser AAJ, Fernandez Vallone V, Megges M, Stachelscheid H, Kühnen P, Opitz R. Spatiotemporal expression of thyroid hormone transporter MCT8 and THRA mRNA in human cerebral organoids recapitulating first trimester cortex development. Sci Rep 2024; 14:9355. [PMID: 38654093 PMCID: PMC11039642 DOI: 10.1038/s41598-024-59533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.
Collapse
Affiliation(s)
- Adina Sophie Graffunder
- Department of Pediatric Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Audrey Amber Julie Bresser
- Department of Pediatric Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Valeria Fernandez Vallone
- Core Unit Pluripotent Stem Cells and Organoids (CUSCO), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Megges
- Department of Pediatric Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Harald Stachelscheid
- Core Unit Pluripotent Stem Cells and Organoids (CUSCO), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Kühnen
- Department of Pediatric Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Opitz
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Gao T, Luo S, Li H, Su Z, Wen Q. Prospective role of lusianthridin in attenuating cadmium-induced functional and cellular damage in rat thyroid. Heliyon 2024; 10:e27080. [PMID: 38449627 PMCID: PMC10915401 DOI: 10.1016/j.heliyon.2024.e27080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
The thyroid represents the most prevalent form of head and neck and endocrine cancer. The present investigation demonstrates the anticancer effects of Lusianthridin against cadmium (Cd)-induced thyroid cancer in rats. Swiss Wistar rats were utilized in this experimental study. Cd was employed to induce thyroid cancer, and the rats were divided into different groups, receiving oral administration of Lusianthridin (20 mg/kg) for 14 days. Thyroid parameters, deiodinase levels, hepatic parameters, lipid parameters, and antioxidant parameters were respectively estimated. The mRNA expression was assessed using real-time reverse transcriptase polymerase chain reaction (RT-PCR). Lusianthridin significantly (P < 0.001) improved protein levels, T4, T3, free iodine in urine, and suppressed the level of TSH. Lusianthridin significantly (P < 0.001) enhanced the levels of FT3, FT4, and decreased the level of rT3. Lusianthridin significantly (P < 0.001) reduced the levels of D1, D2, D3, and enhanced the levels of hepatic parameters like AST, ALT. Lusianthridin remarkably (P < 0.001) altered the levels of lipid parameters such as LDL, total cholesterol, HDL, and triglycerides; antioxidant parameters viz., MDA, GSH, CAT, and SOD. Lusianthridin significantly altered the mRNA expression of Bcl-2, Bax, MEK1, ERK1, ERK2, p-eIf2α, GRP78, eIf2α, and GRP94. The results clearly state that Lusianthridin exhibits protective effects against thyroid cancer.
Collapse
Affiliation(s)
- Teng Gao
- Department of Thyroid Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Sijia Luo
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, Hubei, 430070, China
| | - Hongguang Li
- Department of Thyroid Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Zijie Su
- Department of Thyroid Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Qinghui Wen
- Department of Clinical Laboratory, Dongguan People's Hospital, Dongguan, Guangdong, 523059, China
| |
Collapse
|
4
|
Datta A, Saha C, Godse P, Sharma M, Sarmah D, Bhattacharya P. Neuroendocrine regulation in stroke. Trends Endocrinol Metab 2023; 34:260-277. [PMID: 36922255 DOI: 10.1016/j.tem.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023]
Abstract
The neuroendocrine system, a crosstalk between the central nervous system and endocrine glands, balances and controls hormone secretion and their functions. Neuroendocrine pathways and mechanisms often get dysregulated following stroke, leading to altered hormone secretion and aberrant receptor expression. Dysregulation of the hypothalamus-pituitary-thyroid (HPT) axis and hypothalamus-pituitary-adrenal (HPA) axis often led to severe stroke outcomes. Post-stroke complications such as cognitive impairment, depression, infection etc. are directly or indirectly influenced by the altered neuroendocrine activity that plays a crucial role in stroke vulnerability and susceptibility. Therefore, it is imperative to explore various neurohormonal inter-relationships in regulating stroke, its outcome, and prognosis. Here, we review the biology of different hormones associated with stroke and explore their regulation with a view towards prospective therapeutics.
Collapse
Affiliation(s)
- Aishika Datta
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Chandrima Saha
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Pratiksha Godse
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Muskaan Sharma
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Deepaneeta Sarmah
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Pallab Bhattacharya
- Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
5
|
Hsu A, Tsou YA, Wang TC, Chang WD, Lin CL, Tyler RS. Hypothyroidism and related comorbidities on the risks of developing tinnitus. Sci Rep 2022; 12:3401. [PMID: 35233053 PMCID: PMC8888629 DOI: 10.1038/s41598-022-07457-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/18/2022] [Indexed: 01/10/2023] Open
Abstract
This is a retrospective longitudinal study that uses data from the National Health Insurance Research Database (NHIRD) of Taiwan of which hypothyroid patients who received a diagnosis between 2000 and 2010 were selected and followed up until 2011. The primary outcome of this study was the occurrence of tinnitus (ICD-9-CM code 388.3). The relevant comorbidities were selected as potential confounders according to the literature, which included vertigo (ICD-9-CM code 386), insomnia (ICD-9-CM code 780), anxiety (ICD-9-CM code 300.00), and hearing loss (ICD-9-CM code 388–389). The overall incidence of tinnitus was significantly higher in the hypothyroidism cohort than in the non-hypothyroidism cohort (9.49 vs. 6.03 per 1000 person-years), with an adjusted HR of 1.35 (95% CI 1.18–1.54) after adjusting potential confounders. The incidences of tinnitus, as stratified by gender, age, comorbidity, and follow-up time, were all significantly higher in the hypothyroidism cohort than those in the non-hypothyroidism cohort. The incidence of tinnitus significantly increased with age (aHR = 1.01, 95% CI 1.01–1.02). In conclusion, we report the relationship between hypothyroidism and the increased risk for tinnitus. We also found that hypothyroidism patients are at increased risk of developing tinnitus when associated with comorbidities including vertigo, hearing loss, and insomnia.
Collapse
Affiliation(s)
- Alan Hsu
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hsinchu Hospital, Zhubei City, Hsinchu County, Taiwan
| | - Yung-An Tsou
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Tang-Chuan Wang
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hsinchu Hospital, Zhubei City, Hsinchu County, Taiwan. .,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan. .,Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.
| | - Wen-Dien Chang
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data (DryLab), Clinical Trial Center (CTC), China Medical University Hospital, Taichung, Taiwan
| | - Richard S Tyler
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Nam SM, Seo JS, Nahm SS, Chang BJ. Effects of ascorbic acid treatment on developmental alterations in calcium-binding proteins and gamma-aminobutyric acid transporter 1 in the cerebellum of lead-exposed rats during pregnancy and lactation. J Toxicol Sci 2020; 44:799-809. [PMID: 31708536 DOI: 10.2131/jts.44.799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the present study, we investigated the effects of lead (Pb) and ascorbic acid co-administration on rat cerebellar development. Female rats were randomly divided into the following groups: control, Pb, and Pb plus ascorbic acid (PA) groups. From one week prior to mating, female rats were administered Pb (0.3% Pb acetate in drinking water) and ascorbic acid (100 mg/kg, oral intubation). The chemical administration was stopped on postnatal day 21 when the morphology of the offspring's cerebellum is similar to that of the adult brain. The blood Pb level was significantly increased following long-term Pb exposure. Ascorbic acid reduced Pb levels in the dams and offspring. Nissl staining demonstrated that the number of Purkinje cells was significantly reduced following Pb exposure, while ascorbic acid ameliorated this effect in the cerebellum of the offspring. Calcium-binding proteins, such as calbindin, calretinin, and parvalbumin were commonly expressed in Purkinje cells, and Pb exposure and ascorbic acid treatment resulted in similar patterns of change, namely Pb-induced impairment and ascorbic acid-mediated amelioration. The gamma-aminobutyric acid transporter 1 (GABAT1) is expressed in the pinceau structure where the somata of Purkinje cells are entwined in inhibitory synapses. The number of GABAT1-immunoreactive synapses was reduced following Pb exposure, and ascorbic acid co-treatment prevented this effect in the cerebellar cortex. Therefore, it can be concluded that ascorbic acid supplementation to mothers during gestation and lactation may have potential preventive effects against Pb-induced impairments in the developing cerebellum via protection of inhibitory neurons and synapses.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Korea
| | - Jin Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Korea
| | - Byung-Joon Chang
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Korea
| |
Collapse
|
7
|
Nam SM, Seo JS, Go TH, Nahm SS, Chang BJ. Ascorbic Acid Supplementation Prevents the Detrimental Effects of Prenatal and Postnatal Lead Exposure on the Purkinje Cell and Related Proteins in the Cerebellum of Developing Rats. Biol Trace Elem Res 2019; 190:446-456. [PMID: 30488169 DOI: 10.1007/s12011-018-1572-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
We investigated the effects of lead (Pb) and ascorbic acid co-administration on rat cerebellar development. Prior to mating, rats were randomly divided into control, Pb, and Pb plus ascorbic acid (PA) groups. Pregnant rats were administered Pb in drinking water (0.3% Pb acetate), and ascorbic acid (100 mg/kg) via oral intubation until the end of the experiment. Offspring were sacrificed at postnatal day 21, the age at which the morphology of the cerebellar cortex in developing pups is similar to that of the adult brain. In the cerebellum, Pb exposure significantly reduced Purkinje cells and ascorbic acid prevented their reduction. Along with the change of the Purkinje cells, long-term Pb exposure significantly reduced the expression of the synaptic marker (synaptophysin), γ-aminobutyric acid (GABA)-synthesizing enzyme (glutamic acid decarboxylase 67), and axonal myelin basic protein while ascorbic acid co-treatment attenuated Pb-mediated reduction of these proteins in the cerebellum of pups. However, glutamatergic N-methyl-D-aspartate receptor subtype 1 (NMDAR1), anchoring postsynaptic density protein 95 (PSD95), and antioxidant superoxide dismutases (SODs) were adversely changed; Pb exposure increased the expression of NMDAR1, PSD95, and SODs while ascorbic acid co-administration attenuated Pb-mediated induction. Although further studies are required about the neurotoxicity of the Pb exposure, the results presented here suggest that developmental Pb exposure disrupted normal development of Purkinje cells by increasing glutamatergic and oxidative stress in the cerebellum. Additionally, ascorbic acid co-treatment is beneficial in attenuating prenatal and postnatal Pb exposure-induced maldevelopment of Purkinje cells in the developing cerebellum.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
- College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, Republic of Korea
| | - Jin Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Tae-Hun Go
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
- College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, Republic of Korea
| | - Byung-Joon Chang
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
- College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, Republic of Korea.
| |
Collapse
|
8
|
Prezioso G, Giannini C, Chiarelli F. Effect of Thyroid Hormones on Neurons and Neurodevelopment. Horm Res Paediatr 2019; 90:73-81. [PMID: 30157487 DOI: 10.1159/000492129] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/15/2018] [Indexed: 11/19/2022] Open
Abstract
This review focuses on the current knowledge of the effects of thyroid hormones on central nervous system differentiation and development in animals and the human fetal brain. The outcomes of children with congenital hypothyroidism and of newborns with hypothyroid pregnant mothers are emphasized, focusing on how therapies could affect and especially improve the outcomes.
Collapse
|
9
|
Nam SM, Chang BJ, Kim JH, Nahm SS, Lee JH. Ascorbic acid ameliorates lead-induced apoptosis in the cerebellar cortex of developing rats. Brain Res 2018; 1686:10-18. [PMID: 29462607 DOI: 10.1016/j.brainres.2018.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/11/2018] [Indexed: 12/17/2022]
Abstract
We investigated the effects of the gestational administration of lead (Pb) and ascorbic acid on cerebellar development. Pregnant female rats were randomly assigned to the control, Pb, or Pb plus ascorbic acid (PA) groups; six offspring per cage were randomly selected for analysis. Compared to the control group, fewer Purkinje cells were observed in the Pb-exposed pups at postnatal day 21. However, co-administrating Pb and ascorbic acid inhibited the Pb-induced reduction in Purkinje cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, which detected DNA fragmentation in the dying cells, showed more TUNEL-positive cells in the Pb group, while co-treatment with Pb and ascorbic acid mitigated the Pb-induced cellular degeneration. Using immunohistochemistry and immunoblotting, we additionally found that Pb exposure induced a rise in the apoptotic factor Bax in the cerebellum, while Pb plus ascorbic acid treatment ameliorated this Bax induction. Since, Pb competes with the iron in the cell and the accumulation of free iron triggers oxidative stress, we performed iron staining, which revealed that ascorbic acid prevented the Pb-induced rises in iron-reactive cells and iron-reactivity. The anti-oxidant enzyme manganese-dependent superoxide dismutase showed change patterns that were similar to those of iron in the cerebellum. Finally, the pups' blood Pb levels were highest in the Pb group but were reduced in the PA group. Our findings suggest that ascorbic acid effectively ameliorates Pb-induced apoptosis and oxidative stress in the cerebellum. The present results imply that ascorbic acid treatment during pregnancy may protect against Pb-mediated developmental impairments in the cerebellum.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05030, Republic of Korea
| | - Byung-Joon Chang
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05030, Republic of Korea
| | - Ji-Hye Kim
- Department of Rehabilitation Psychology, Seoul Rehabilitation Hospital, Seoul 03428, Republic of Korea
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05030, Republic of Korea
| | - Jong-Hwan Lee
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05030, Republic of Korea; College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul 05030, Republic of Korea.
| |
Collapse
|
10
|
Miranda A, Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav 2018; 8:e00920. [PMID: 29484271 PMCID: PMC5822586 DOI: 10.1002/brb3.920] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022] Open
Abstract
An adverse maternal hormonal environment during pregnancy can be associated with abnormal brain growth. Subtle changes in fetal brain development have been observed even for maternal hormone levels within the currently accepted physiologic ranges. In this review, we provide an update of the research data on maternal hormonal impact on fetal neurodevelopment, giving particular emphasis to thyroid hormones and glucocorticoids. Thyroid hormones are required for normal brain development. Despite serum TSH appearing to be the most accurate indicator of thyroid function in pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the major determinant of postnatal psychomotor development. Even a transient period of maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk of expressive language and nonverbal cognitive delays in offspring. Nevertheless, most recent clinical guidelines advocate for targeted high-risk case finding during first trimester of pregnancy despite universal thyroid function screening. Corticosteroids are determinant in suppressing cell proliferation and stimulating terminal differentiation, a fundamental switch for the maturation of fetal organs. Not surprisingly, intrauterine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, has a molecular and structural impact on brain development and appears to impair cognition and increase anxiety and reactivity to stress. Limbic regions, such as hippocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corticosteroids seem to have short-term benefits of less respiratory distress and fewer serious health problems in offspring. Nevertheless, neurodevelopmental growth in later childhood and adulthood needs further clarification. Future studies should address the relevance of monitoring the level of thyroid hormones and corticosteroids during pregnancy in the risk stratification for impaired postnatal neurodevelopment.
Collapse
Affiliation(s)
- Alexandra Miranda
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Obstetrics and GynecologyHospital de BragaBragaPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinic Academic Center ‐ 2CABragaPortugal
| |
Collapse
|
11
|
Vancamp P, Darras VM. Dissecting the role of regulators of thyroid hormone availability in early brain development: Merits and potential of the chicken embryo model. Mol Cell Endocrinol 2017; 459:71-78. [PMID: 28153797 DOI: 10.1016/j.mce.2017.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormones (THs) are important mediators of vertebrate central nervous system (CNS) development, thereby regulating the expression of a wide variety of genes by binding to nuclear TH receptors. TH transporters and deiodinases are both needed to ensure appropriate intracellular TH availability, but the precise function of each of these regulators and their coaction during brain development is only partially understood. Rodent knockout models already provided some crucial insights, but their in utero development severely hampers research regarding the role of TH regulators during early embryonic stages. The establishment of novel gain- and loss-of-function techniques has boosted the position of externally developing non-mammalian vertebrates as research models in developmental endocrinology. Here, we elaborate on the chicken as a model organism to elucidate the function of TH regulators during embryonic CNS development. The fast-developing, relatively big and accessible embryo allows easy experimental manipulation, especially at early stages of brain development. Recent data on the characterisation and spatiotemporal expression pattern of different TH regulators in embryonic chicken CNS have provided the necessary background to dissect the function of each of them in more detail. We highlight some recent advances and important strategies to investigate the role of TH transporters and deiodinases in various CNS structures like the brain barriers, the cerebellum, the retina and the hypothalamus. Exploiting the advantages of this non-classical model can greatly contribute to complete our understanding of the regulation of TH bioavailability throughout embryonic CNS development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium.
| |
Collapse
|
12
|
Delbaere J, Van Herck SLJ, Bourgeois NMA, Vancamp P, Yang S, Wingate RJT, Darras VM. Mosaic Expression of Thyroid Hormone Regulatory Genes Defines Cell Type-Specific Dependency in the Developing Chicken Cerebellum. THE CEREBELLUM 2017; 15:710-725. [PMID: 26559893 DOI: 10.1007/s12311-015-0744-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cerebellum is a morphologically unique brain structure that requires thyroid hormones (THs) for the correct coordination of key cellular events driving its development. Unravelling the interplay between the multiple factors that can regulate intracellular TH levels is a key step to understanding their role in the regulation of these cellular processes. We therefore investigated the regional/cell-specific expression pattern of TH transporters and deiodinases in the cerebellum using the chicken embryo as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), L-type amino acid transporter 1 (LAT1) and organic anion transporting polypeptide 1C1 (OATP1C1) as well as the inactivating type 3 deiodinase (D3) in the fourth ventricle choroid plexus, suggesting a possible contribution of the resulting proteins to TH exchange and subsequent inactivation of excess hormone at the blood-cerebrospinal fluid barrier. Exclusive expression of LAT1 and the activating type 2 deiodinase (D2) mRNA was found at the level of the blood-brain barrier, suggesting a concerted function for LAT1 and D2 in the direct access of active T3 to the developing cerebellum via the capillary endothelial cells. The presence of MCT8 mRNA in Purkinje cells and cerebellar nuclei during the first 2 weeks of embryonic development points to a potential role of this transporter in the uptake of T3 in central neurons. At later stages, together with MCT10, detection of MCT8 signal in close association with the Purkinje cell dendritic tree suggests a role of both transporters in TH signalling during Purkinje cell synaptogenesis. MCT10 was also expressed in late-born cells in the rhombic lip lineage with a clear hybridisation signal in the outer external granular layer, indicating a potential role for MCT10 in the proliferation of granule cell precursors. By contrast, expression of D3 in the first-born rhombic lip-derived population may serve as a buffering mechanism against high T3 levels during early embryonic development, a hypothesis supported by the pattern of expression of a fluorescent TH reporter in this lineage. Overall, this study builds a picture of the TH dependency in multiple cerebellar cell types starting from early embryonic development.
Collapse
Affiliation(s)
- Joke Delbaere
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Stijn L J Van Herck
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Nele M A Bourgeois
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Shuo Yang
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard J T Wingate
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, UK
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium.
| |
Collapse
|
13
|
van der Stijl R, Withoff S, Verbeek DS. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration. Neurobiol Dis 2017; 108:148-158. [PMID: 28823930 DOI: 10.1016/j.nbd.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs.
Collapse
Affiliation(s)
- Rogier van der Stijl
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Delbaere J, Vancamp P, Van Herck SLJ, Bourgeois NMA, Green MJ, Wingate RJT, Darras VM. MCT8 deficiency in Purkinje cells disrupts embryonic chicken cerebellar development. J Endocrinol 2017; 232:259-272. [PMID: 27879339 DOI: 10.1530/joe-16-0323] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 01/17/2023]
Abstract
Inactivating mutations in the human SLC16A2 gene encoding the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in the Allan-Herndon-Dudley syndrome accompanied by severe locomotor deficits. The underlying mechanisms of the associated cerebellar maldevelopment were studied using the chicken as a model. Electroporation of an MCT8-RNAi vector into the cerebellar anlage of a 3-day-old embryo allowed knockdown of MCT8 in Purkinje cell precursors. This resulted in the downregulation of the thyroid hormone-responsive gene RORα and the Purkinje cell-specific differentiation marker LHX1/5 at day 6. MCT8 knockdown also results in a smaller and less complex dendritic tree at day 18 suggesting a pivotal role of MCT8 for cell-autonomous Purkinje cell maturation. Early administration of the thyroid hormone analogue 3,5,3'-triiodothyroacetic acid partially rescued early Purkinje cell differentiation. MCT8-deficient Purkinje cells also induced non-autonomous effects as they led to a reduced granule cell precursor proliferation, a thinner external germinal layer and a loss of PAX6 expression. By contrast, at day 18, the external germinal layer thickness was increased, with an increase in presence of Axonin-1-positive post-mitotic granule cells in the initial stage of radial migration. The concomitant accumulation of presumptive migrating granule cells in the molecular layer, suggests that inward radial migration to the internal granular layer is stalled. In conclusion, early MCT8 deficiency in Purkinje cells results in both cell-autonomous and non-autonomous effects on cerebellar development and indicates that MCT8 expression is essential from very early stages of development, providing a novel insight into the ontogenesis of the Allan-Herndon-Dudley syndrome.
Collapse
Affiliation(s)
- Joke Delbaere
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| | - Stijn L J Van Herck
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| | - Nele M A Bourgeois
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| | - Mary J Green
- Medical Research Council Centre for Developmental NeurobiologyKing's College London, London, UK
| | - Richard J T Wingate
- Medical Research Council Centre for Developmental NeurobiologyKing's College London, London, UK
| | - Veerle M Darras
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Low Tri-Iodothyronine Syndrome in Neurosurgical Patients: A Systematic Review of Literature. World Neurosurg 2016; 95:197-207. [DOI: 10.1016/j.wneu.2016.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022]
|
16
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
17
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Dezonne RS, Lima FRS, Trentin AG, Gomes FC. Thyroid hormone and astroglia: endocrine control of the neural environment. J Neuroendocrinol 2015; 27:435-45. [PMID: 25855519 DOI: 10.1111/jne.12283] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 02/03/2023]
Abstract
Thyroid hormones (THs) play key roles in brain development and function. The lack of THs during childhood is associated with the impairment of several neuronal connections, cognitive deficits and mental disorders. Several lines of evidence point to astrocytes as TH targets and as mediators of TH action in the central nervous system; however, the mechanisms underlying these events are still not completely known. In this review, we focus on advances in our understanding of the effects of THs on astroglial cells and the impact of these effects on neurone-astrocyte interactions. First, we discuss the signalling pathways involved in TH metabolism and the molecular mechanisms underlying TH receptor function. Then, we discuss data related to the effects of THs on astroglial cells, as well as studies regarding the generation of mutant TH receptor transgenic mice that have contributed to our understanding of TH function in brain development. We argue that astrocytes are key mediators of hormone actions on development of the cerebral cortex and cerebellum and that the identification of the molecules and pathways involved in these events might be important for determining the molecular-level basis of the neural deficits associated with endocrine diseases.
Collapse
Affiliation(s)
- R S Dezonne
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - F R S Lima
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - A G Trentin
- Departamento de Biologia Celular, Centro de Ciências Biológicas, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - F C Gomes
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Bunevicius A, Iervasi G, Bunevicius R. Neuroprotective actions of thyroid hormones and low-T3 syndrome as a biomarker in acute cerebrovascular disorders. Expert Rev Neurother 2015; 15:315-26. [DOI: 10.1586/14737175.2015.1013465] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Flamant F, Koibuchi N, Bernal J. Editorial: "Thyroid Hormone in Brain and Brain Cells". Front Endocrinol (Lausanne) 2015; 6:99. [PMID: 26157419 PMCID: PMC4475825 DOI: 10.3389/fendo.2015.00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/29/2015] [Indexed: 12/28/2022] Open
Affiliation(s)
- Frédéric Flamant
- CNRS, INRA, Université de Lyon, Université Lyon 1, Lyon, France
- CNRS, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Lyon, France
- *Correspondence: Frédéric Flamant,
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Juan Bernal
- Consejo Superior de Investigaciones Científicas, Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Yu J. Endocrine disorders and the neurologic manifestations. Ann Pediatr Endocrinol Metab 2014; 19:184-90. [PMID: 25654063 PMCID: PMC4316409 DOI: 10.6065/apem.2014.19.4.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 12/30/2014] [Indexed: 11/30/2022] Open
Abstract
The nervous system and the endocrine system are closely interrelated and both involved intimately in maintaining homeostasis. Endocrine dysfunctions may lead to various neurologic manifestations such as headache, myopathy, and acute encephalopathy including coma. It is important to recognize the neurologic signs and symptoms caused by the endocrine disorders while managing endocrine disorders. This article provides an overview of the neurologic manifestations found in various endocrine disorders that affect pediatric patients. It is valuable to think about 'endocrine disorder' as a cause of the neurologic manifestations. Early diagnosis and treatment of hormonal imbalance can rapidly relieve the neurologic symptoms. Better understanding of the interaction between the endocrine system and the nervous system, combined with the knowledge about the pathophysiology of the neurologic manifestations presented in the endocrine disorders might allow earlier diagnosis and better treatment of the endocrine disorders.
Collapse
Affiliation(s)
- Jeesuk Yu
- Department of Pediatrics, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|