1
|
Ma Y, Yu X, Liu YF, Song B, Sun Z, Zhao S. Immunoregulation and male reproductive function: Impacts and mechanistic insights into inflammation. Andrology 2024. [PMID: 39428853 DOI: 10.1111/andr.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
This paper investigates the complex relationship between the immune system and male reproductive processes, emphasizing how chronic inflammation can adversely affect male reproductive health. The immune system plays a dual role; it protects and regulates reproductive organs and spermatogenesis while maintaining reproductive health through immune privilege in the testes and the activities of various immune cells and cytokines. However, when chronic inflammation persists or intensifies, it can disrupt this balance, leading to immune attacks on reproductive tissues and resulting in infertility.This study provides a detailed analysis of how chronic inflammation can impair sperm production, sperm quality, and the secretion of gonadal hormones both directly and indirectly. It also delves into the critical roles of testicular immune privilege, various immune cells, and cytokines in sustaining reproductive health and examines the impacts of infections, autoimmune diseases, and environmental factors on male fertility.
Collapse
Affiliation(s)
- Yingjie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinru Yu
- School of PharmacyJinan, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bihan Song
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengao Sun
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengtian Zhao
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Yantai, Shandong, China
- Institute of Urology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Hu Y, Cai TT, Yan RN, Liu BL, Ding B, Ma JH. Single-Cell RNA Sequencing Analysis of Steroidogenesis and Spermatogenesis Impairment in the Testis of db/db Mice. Int J Endocrinol 2024; 2024:8797972. [PMID: 38817616 PMCID: PMC11139535 DOI: 10.1155/2024/8797972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Objective The mechanism of steroidogenesis and spermatogenesis impairment in men with type 2 diabetes remains unclear. We aimed to explore the local changes of steroidogenesis and spermatogenesis in the testis of db/db mice. Research Design and Methods. We performed single-cell RNA sequencing analysis in the testis of db/db and C57BL/6J mice. The differentially expressed genes were then confirmed by real-time PCR. The histopathological characteristics of testis in db/db mice and C57BL/6J control were also performed. Results The 20-week-old db/db mice had significantly higher blood glucose and body weight (both p < 0.001). The serum testosterone levels (4.4 ± 0.8 vs. 9.8 ± 0.7 ng/ml, p=0.001) and weight of the testis (0.16 ± 0.01 vs. 0.24 ± 0.01 g, p < 0.001) were significantly lower in db/db mice than that in C57BL/6J controls. db/db mice had a lower cross-sectional area of seminiferous tubules and thickness of the cell layer (both p < 0.05). The numbers of Sertoli cells and Leydig cells decreased in db/db mice (both p < 0.01). Single-cell RNA sequencing analysis showed that compared with the control group, the percentage of spermatogonia was significantly higher in the db/db mouse (p < 0.001), while the proportions of spermatocytes, round and elongating spermatids, and sperms were all lower in the db/db mouse (p all < 0.001). The most differentially expressed genes were found in round spermatids (n = 86), which were not found in spermatogonia, spermatocyte, and sperm. Igfbp5 was the most significantly decreased gene in Leydig cells of the db/db mouse, while the expression of Cd74, H2-Aa, and H2-Eb1 was elevated. Ccl7 and Ptgds were the most significantly increased and decreased genes in Sertoli cells of the db/db mouse. Conclusions The present study indicates spermiogenesis and steroidogenesis defects in db/db mice. The mechanism of steroidogenesis impairment in the testis of db/db mice deserves further investigation.
Collapse
Affiliation(s)
- Yun Hu
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting-Ting Cai
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Reng-Na Yan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bing-Li Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Ding
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Hua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Xin S, Xiaoxuan L, Yixuan Z, Zhikang C. Leptin promotes proliferation of human undifferentiated spermatogonia by activating the PI3K/AKT/mTOR pathway. Am J Reprod Immunol 2024; 91:e13811. [PMID: 38282611 DOI: 10.1111/aji.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Male infertility is a common disease affecting male reproductive health. Leptin is an important hormone that regulates various physiological processes, including reproductive function. However, few experimental studies have been carried out to elucidate the mechanism of leptin's effects on male reproductive function. OBJECTIVE The purpose of this study was to investigate the effects of leptin on testicular spermatogenesis and its mechanism, so as to provide potential targets for the treatment of patients with spermatogenic dysfunction. METHODS Testicular tissues were collected from eight prostate cancer patients undergoing surgical castration. GPR125-positive spermatogonia were isolated by two consecutive magnetic activated cell sorting (MACS), followed by incubation with conditioned medium. To identify the signaling pathway(s) involved in the effects of leptin, undifferentiated spermatogonia were treated with different concentrations of leptin and antagonists of leptin-related pathways. The proliferative effect of leptin was evaluated by cell counting using a hemocytometer. Expressions of p-AKT, p-ERK, p-STAT, and p-S6K were determined by western blotting analysis. RESULTS Leptin promoted the growth of human GPR125-positive spermatogonia in a concentration-dependent manner. The most significant proliferative effect was observed using 100 ng/mL leptin after 6 days of culture. Leptin significantly increased the phosphorylation of STAT3, AKT, and ERK in undifferentiated spermatogonia. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 inhibited the leptin-induced activation of AKT, ERK, and downstream S6K. Treatment with the mammalian target of rapamycin (mTOR) inhibitor rapamycin also inhibited S6K phosphorylation. Moreover, both LY294002 and rapamycin were found to inhibit the leptin-induced proliferation of undifferentiated spermatogonia. These results suggested that the leptin-induced proliferation of GPR125-positive spermatogonia was dependent on the PI3K/AKT/mTOR pathway. Further exploration of proliferation and apoptotic markers suggested that leptin may alleviate cell apoptosis by regulating the expression of Bax and FasL. CONCLUSIONS A certain concentration of leptin (25∼100 ng/mL) could promote proliferation of undifferentiated spermatogonia, which was mediated by PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Song Xin
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Li Xiaoxuan
- School of Medicine, Qingdao University, Qingdao, China
| | - Zhang Yixuan
- School of Medicine, Qingdao University, Qingdao, China
| | - Cai Zhikang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
4
|
Chludzińska-Kasperuk S, Lewko J, Sierżantowicz R, Krajewska-Kułak E, Reszeć-Giełażyn J. The Effect of Serum Leptin Concentration and Leptin Receptor Expression on Colorectal Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4951. [PMID: 36981858 PMCID: PMC10048899 DOI: 10.3390/ijerph20064951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The level of leptin in the blood shows a positive, strong correlation with the mass of adipose tissue. Being overweight and having metabolic disorders increase the risk of developing colorectal cancer. AIM OF THE PAPER The aim of the study was to assess the concentration of leptin in the blood serum as well as the expression of the leptin receptor in colorectal cancer cells. In addition, the effect of serum leptin concentration and leptin receptor expression on clinical and pathological parameters such as BMI, obesity, TNM, and tumor size was assessed. METHODS The study included 61 patients diagnosed with colorectal cancer and treated with surgery. RESULTS Strong leptin receptor expression and the prevalence of overweight and obesity are factors influencing the occurrence of excessive leptin concentrations. CONCLUSION Leptin may be involved in the development and progression of colorectal cancer. More research is needed to better elucidate the role of leptin in the development and progression of the disease.
Collapse
Affiliation(s)
- Sylwia Chludzińska-Kasperuk
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Primary Health Care, Medical University of Bialystok, 15-054 Bialystok, Poland
| | - Jolanta Lewko
- Department of Primary Health Care, Medical University of Bialystok, 15-054 Bialystok, Poland
| | - Regina Sierżantowicz
- Department of Surgical Nursing, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Elżbieta Krajewska-Kułak
- Department of Integrated Medical Care, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
5
|
Yousif Al-Fatlawi AC. Evaluation of leptin serum concentration in cases of blood transfusion dependent Beta thalassemia and its relationship with thyroid dysfunction. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i5.2276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction and Aim: Thalassemia disorder is characterized by the body’s inability to produce hemoglobin. This is an inherited disorder and arises due to defects in one or more globin chains. Thalassemia patients have been associated with endocrine dysfunction leading to toxic and deleterious effects. In the present study, we aimed to correlate leptin levels in Transfusion-dependent beta-thalassemia (TDT) patients to their thyroid hormonal levels and hematological parameters.
Materials and Methods: The study included 50 individuals (25 male and 25 female) aged 11-20 years with beta-thalassemia major and 20 healthy individuals (10 male, 10 females) aged 13-20 years as controls. All individuals included in the study were assessed for their BMI, complete blood count, serum ferritin and iron, thyroid function, leptin and ghrelin hormonal levels.
Results: This study showed a low BMI in patients as compared to healthy individuals. A high increase in TSH and ferritin was found in patients of both genders as compared to controls. T4 significantly decreased in males and females as compared to control. Significant reduction in leptin levels was observed in both male and female patients. A positive correlation was observed between leptin and TSH in males while a negative correlation between leptin and T4 was observed in females. A significant positive correlation was seen between leptin and T4 and between TSH and T4. BMI in males and female significant low compared to control.
Conclusion: Leptin probably plays an important role in thyroid dysfunction. Serum leptin, ferritin and thyroid hormonal levels in patients could be used as a guide in predicting hormonal modulation in major beta thalassemic patients.
Collapse
|
6
|
Zastosowanie leptyny rekombinowanej w leczeniu różnych typów lipodystrofii Treatment options with recombinant leptin in various types of lipodystrophy. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Lipodystrofie to grupa chorób objawiających się zanikiem i/lub nieprawidłowym rozmieszczeniem tkanki tłuszczowej w organizmie człowieka. W związku z tym, że tkanka tłuszczowa jest narządem hormonalnie czynnym, jej niedobór doprowadza do powstania wielu zaburzeń metabolicznych i hormonalnych, wynikających w dużej mierze ze zmniejszonego wytwarzania leptyny, jednego z ważniejszych hormonów wydzielanych przez tkankę tłuszczową. Leptyna jest cytokiną, która po połączeniu z receptorem leptynowym uczestniczy przede wszystkim w regulacji ośrodka głodu, ale także wywołuje angiogenezę i stymuluje układ odpornościowy, przez stymulację wysp beta trzustki reguluje glikemię, działa protekcyjnie na układ kostny, wpływa na płodność, cykl menstruacyjny i ciążę, hamuje syntezę triglicerydów w wątrobie i tkance tłuszczowej oraz stymuluje lipolizę. W związku z tym uważa się, że to właśnie niedobór leptyny jest odpowiedzialny za zaburzenia metaboliczne powstałe w przebiegu lipodystrofii. Badania kliniczne wskazują na możliwość wykorzystania rekombinowanej leptyny – metreleptyny w celu uzupełnienia niedoboru hormonu. U pacjentów z różnymi typami lipodystrofii po zastosowaniu metreleptyny zaobserwowano normalizację poziomu glukozy, triglicerydów i cholesterolu frakcji HDL. Ponadto pacjenci sygnalizowali zmniejszenie apetytu i spadek BMI przy jednoczesnym braku istotnych działań niepożądanych leku. W związku z tym dopuszczono wykorzystanie metreleptyny w Stanach Zjednoczonych i Europie do leczenia chorych z niektórymi typami lipodystrofii. Natomiast zastosowanie leku w innych schorzeniach objawiających się zaburzeniami metabolicznymi jest w fazie badań klinicznych.
Collapse
|
7
|
Endocrinopathies and Male Infertility. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010010. [PMID: 35054403 PMCID: PMC8779600 DOI: 10.3390/life12010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023]
Abstract
Male infertility is approaching a concerning prevalence worldwide, and inflicts various impacts on the affected couple. The hormonal assessment is a vital component of male fertility evaluation as endocrine disorders are markedly reversible causatives of male infertility. Precise hormonal regulations are prerequisites to maintain normal male fertility parameters. The core male reproductive event, spermatogenesis, entails adequate testosterone concentration, which is produced via steroidogenesis in the Leydig cells. Physiological levels of both the gonadotropins are needed to achieve normal testicular functions. The hypothalamus-derived gonadotropin-releasing hormone (GnRH) is considered the supreme inducer of the gonadotropins and thereby the subsequent endocrine reproductive events. This hypothalamic–pituitary–gonadal (HPG) axis may be modulated by the thyroidal or adrenal axis and numerous other reproductive and nonreproductive hormones. Disruption of this fine hormonal balance and their crosstalk leads to a spectrum of endocrinopathies, inducing subfertility or infertility in men. This review article will discuss the most essential endocrinopathies associated with male factor infertility to aid precise understanding of the endocrine disruptions-mediated male infertility to encourage further research to reveal the detailed etiology of male infertility and perhaps to develop more customized therapies for endocrinopathy-induced male infertility.
Collapse
|
8
|
Leisegang K, Sengupta P, Agarwal A, Henkel R. Obesity and male infertility: Mechanisms and management. Andrologia 2020; 53:e13617. [PMID: 32399992 DOI: 10.1111/and.13617] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered a global health problem affecting more than a third of the population. Complications of obesity include cardiovascular diseases, type 2 diabetes mellitus, malignancy (including prostatic cancer), neurodegeneration and accelerated ageing. In males, these further include erectile dysfunction, poor semen quality and subclinical prostatitis. Although poorly understood, important mediators of obesity that may influence the male reproductive system include hyperinsulinemia, hyperleptinemia, chronic inflammation and oxidative stress. Obesity is known to disrupt male fertility and the reproduction potential, particularly through alteration in the hypothalamic-pituitary-gonadal axis, disruption of testicular steroidogenesis and metabolic dysregulation, including insulin, cytokines and adipokines. Importantly, obesity and its underlying mediators result in a negative impact on semen parameters, including sperm concentration, motility, viability and normal morphology. Moreover, obesity inhibits chromatin condensation, DNA fragmentation, increases apoptosis and epigenetic changes that can be transferred to the offspring. This review discusses the impact of obesity on the male reproductive system and fertility, including associated mechanisms. Furthermore, weight management strategies, lifestyle changes, prescription medication, and complementary and alternative medicine in the management of obesity-induced subfertility is discussed.
Collapse
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine, University of the Western Cape, Cape Town, South Africa
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
9
|
Milon A, Pawlicki P, Rak A, Mlyczynska E, Płachno BJ, Tworzydlo W, Gorowska-Wojtowicz E, Bilinska B, Kotula-Balak M. Telocytes are localized to testis of the bank vole (Myodes glareolus) and are affected by lighting conditions and G-coupled membrane estrogen receptor (GPER) signaling. Gen Comp Endocrinol 2019; 271:39-48. [PMID: 30391242 DOI: 10.1016/j.ygcen.2018.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
We aim to explore the presence of a novel cell type, telocytes (TCs), in the bank vole testis interstitium following G-coupled membrane estrogen receptor (GPER) signaling withdrawal. In addition, the involvement of interstitial cells in lipid homeostasis was investigated. Bank voles (actively reproducing or regressed) were administered with GPER antagonist (G-15; 50 μg/kg bw) injections. To examine TC distribution, ultrastructure, function, and their connotation in the interstitial tissue lipid balance, electron microscopic observations were implemented. Immunohistochemistry and Western blot for the TC marker, CD34, and lipid balance molecules: leptin, adiponectin, and perilipin were performed. Photoperiod-regulated testis steroidogenic function was estimated via serum melatonin level and intratesticular cholesterol concentrations in immunoenzymatic assays. We demonstrate the presence of TCs in bank vole testis interstitium. Distinctive TC morphology: small cell bodies with very long, slender prolongations, constituting a three-dimensional network around the interstitial cells was seen. Ultrastructurally, scarce mitochondria, a few cisternae of the endoplasmic reticulum, and lipid droplets indicated possible TC implications in lipid homeostasis. Changes in CD34 expression in TCs were seen in relation to GPER disturbances. In GPER-blocked testis, single TCs were present in the LD interstitium when in SD ones they were occasionally absent. Moreover, in TCs of SD voles, a lack of lipid droplets was revealed, likely reflecting attenuated TC function during regression. However, melatonin levels decreased in GPER-blocked LD and SD. Concomitantly, leptin, adiponectin, and perilipin expressions together with cholesterol content varied after blockage. Based on our results we suggest TCs are an important component of the bank vole testis interstitium as they are implicated in ultramorphology maintenance, protein interactions, and lipid homeostasis.
Collapse
Affiliation(s)
- Agnieszka Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Piotr Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewa Mlyczynska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewelina Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
10
|
Domingues JT, Wajima CS, Cesconetto PA, Parisotto EB, Winkelmann-Duarte E, Santos KD, Saleh N, Filippin-Monteiro FB, Razzera G, Mena Barreto Silva FR, Pessoa-Pureur R, Zamoner A. Experimentally-induced maternal hypothyroidism alters enzyme activities and the sensorimotor cortex of the offspring rats. Mol Cell Endocrinol 2018; 478:62-76. [PMID: 30031104 DOI: 10.1016/j.mce.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/19/2023]
Abstract
In this study, we used an experimental model of congenital hypothyroidism to show that deficient thyroid hormones (TH) disrupt different neurochemical, morphological and functional aspects in the cerebral cortex of 15-day-old offspring. Our results showing decreased glutamine synthetase (GS) activity and Ca2+ overload in the cerebral cortex of hypothyroid pups suggest misregulated glutamate metabolism associated with developmentally induced TH deficiency. The 14C-MeAIB accumulation indicates upregulated System A activity and glutamine uptake by neurons. Energy metabolism in hypothyroid cortical slices was preserved, as demonstrated by unaltered glucose metabolism. We also found upregulated acetylcholinesterase activity, depleting acetylcholine from the synaptic cleft, pointing to disrupted cholinergic system. Increased reactive oxygen species (ROS) generation, lipid peroxidation, glutathione (GSH) depletion, which were associated with glutathione peroxidase, superoxide dismutase and gamma-glutamyltransferase downregulation suggest redox imbalance. Disrupted astrocyte cytoskeleton was evidenced by downregulated and hyperphosphorylated glial fibrillary acidic protein (GFAP). Morphological and structural characterization of the sensorimotor cerebral cortex (SCC) showed unaltered thickness of the SCC. However, decreased size of neurons on the layers II & III and IV in the right SCC and increased NeuN positive neurons in specific SCC layers, suggest that they are differently affected by the low TH levels during neurodevelopment. Hypothyroid pups presented increased number of foot-faults in the gridwalk test indicating affected motor functions. Taken together, our results show that congenital hypothyroidism disrupts glutamatergic and cholinergic neurotransmission, Ca2+ equilibrium, redox balance, cytoskeleton integrity, morphological and functional aspects in the cerebral cortex of young rats.
Collapse
Affiliation(s)
- Juliana Tonietto Domingues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carolinne Sayury Wajima
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Patricia Acordi Cesconetto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Benedetti Parisotto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Elisa Winkelmann-Duarte
- Departamento de Ciências Morfológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Karin Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Najla Saleh
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabíola Branco Filippin-Monteiro
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Razzera
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Aiceles V, Gombar F, da Fonte Ramos C. Hormonal and testicular changes in rats submitted to congenital hypothyroidism in early life. Mol Cell Endocrinol 2017; 439:65-73. [PMID: 27793676 DOI: 10.1016/j.mce.2016.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
The goal of this study was to evaluate the influence of hypothyroidism induced by MMI, during gestation (G) or gestation plus lactation (GL) on testis and its relation with leptin in rats. Six to eight pups were killed at 90 days of age. For statistical analysis One-way ANOVA followed by the Holm-Sìdak post hoc test was used. Hypothyroidism resulted in a significant reduction in LH, FSH and testosterone and an increase in leptin serum levels (p < 0.04). There was a significant decrease in StAR, AR, FSHR, LHR, pSTAT3 and SOCS3 (p < 0.04) protein expression and in the fertility parameters (p < 0.04). We can conclude that hypothyroidism is associated with reduction of steroidogenesis and spermatogenesis leading to a low fertility potential in these animals. This outcome could be a consequence of low pituitary stimulus and testicular response and probably are not related with leptin hormone since its signaling pathway is down-regulated in the testis.
Collapse
Affiliation(s)
- Veronica Aiceles
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Flavia Gombar
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Cristiane da Fonte Ramos
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Mintziori G, Kita M, Duntas L, Goulis DG. Consequences of hyperthyroidism in male and female fertility: pathophysiology and current management. J Endocrinol Invest 2016; 39:849-53. [PMID: 26956000 DOI: 10.1007/s40618-016-0452-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
Thyroid hormone acts on the oocytes, sperm and embryo during fertilization, implantation and placentation. Both hypothyroidism and hyperthyroidism may influence fertility. However, evidence of the association of hyperthyroidism with infertility is scarce and sometimes conflicting. Thyroid hormone influences human reproduction via a variety of mechanisms at both the central and the peripheral level. Infertility may occur in hyperthyroid men and women, but it is usually reversible upon restoration of euthyroidism. This review aims to summarize the available data on the association of hyperthyroidism and infertility in both men and women and to provide practical suggestions for the management of these patients.
Collapse
Affiliation(s)
- G Mintziori
- Unit of Reproductive Endocrinology and Unit of Human Reproduction, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Endocrinology, Diabetes and Metabolism, Hippokration General Hospital, Thessaloniki, Greece
| | - M Kita
- Department of Endocrinology, Diabetes and Metabolism, Hippokration General Hospital, Thessaloniki, Greece
| | - L Duntas
- Evgenidion Hospital, Thyroid Unit, University of Athens, Athens, Greece
| | - D G Goulis
- Unit of Reproductive Endocrinology and Unit of Human Reproduction, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
13
|
Esmaili-Nejad MR, Babaei H, Kheirandish R. The effects of long-term leptin administration on morphometrical changes of mice testicular tissue. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:1176-82. [PMID: 26877846 PMCID: PMC4744356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Leptin is a novel and interesting hormone for anyone trying to lose weight, but its effects on male gonad structure in longitudinal study is unknown. The present study was designed to explore morphometrical changes of mouse testicular tissue after long-term administration of leptin. MATERIALS AND METHODS Thirty healthy mature male mice were randomly assigned to either control (n=15) or treatment (n=15) groups. Leptin was intraperitoneally injected to the treatment group (0.1 µg/100 µl of physiological saline) once a day for 30 consecutive days, and control animals received normal saline with the same volume and route. Five mice from each experimental group were sacrificed at 15, 30 and 60 days after the beginning of treatments. Left testes were removed, weighted and then fixed in 10% buffered formalin, and stained with hematoxylin and eosine for morphometrical assays. RESULTS Except for sertoli cell nucleus diameter, which was affected from 30(th) day, evaluation of other morphometrical parameters such as Johnsen's score, meiotic index, spermatogenesis, epithelial height, seminiferous tubules diameter and spermatogonial nucleus diameter revealed significant decrease from 15(th) day after leptin administration compare to those of the control group (P<0.05). Thus, meiotic index and spermatogonial cell nucleus diameter were two parameters that were further disturbed on 30(th) day compare to the day 15 (3.09±0.03 vs. 3.23±0.03, P=0.006 and 5.50±0.09 vs. 6.08±0.14, P=0.007, respectively). CONCLUSION Our results showed that long-term administration of leptin could disturb testicular tissue structure and delay spermatogenesis process.
Collapse
Affiliation(s)
| | - Homayoon Babaei
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran,Corresponding author: Homayoon Babaei. Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran. Tel: +98-341-3202918; Fax: +98-341-3222047;
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
14
|
Yan WJ, Mu Y, Yu N, Yi TL, Zhang Y, Pang XL, Cheng D, Yang J. Protective effects of metformin on reproductive function in obese male rats induced by high-fat diet. J Assist Reprod Genet 2015; 32:1097-104. [PMID: 26081124 DOI: 10.1007/s10815-015-0506-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE The study aims to elucidate the changes in testicular spermatogenic function in high-fat diet (HFD)-induced obese rats and to evaluate the protective effects of metformin intervention. METHODS Male Sprague-Dawley rats (n = 18) were randomly divided into a control group (standard diet), an HFD group, and a metformin group (HFD + metformin at 100 mg/kg, once daily by oral gavage). After 8 weeks, rats were euthanized, and the weights of body and testes were measured. Testis and epididymis were dissected and hematoxylin-eosin-stained for histopathological examination and semen parameter analysis. Blood samples were collected for assessment of sex hormones and metabolic parameters (serum glucose, insulin, and leptin). Spermatogenic cell apoptosis was accessed by TUNEL. RESULTS Compared with the control group, the final body weight and weight gain were significantly higher in HFD rats, while the testicle weight and coefficients were lower. In HFD rats, metformin treatment induced weight loss and increased testicle weight (P < 0.05). In HFD rats, obvious pathological changes in the testicular tissue were characterized by small, atrophic, and distorted seminiferous tubules and destroyed basement membrane. Metformin treatment protected against the HFD-induced decrease in the number of spermatogonia, Sertoli cells, and Leydig cells (P < 0.05); ameliorated the HFD-induced increases in serum glucose, insulin, leptin, and estrogen; and decreased serum testosterone (P < 0.05) and reduced the rate of testicular cell apoptosis in obese male rats. Finally, metformin significantly improved semen parameters (including concentration, viability, motility, and normal morphology) in HFD rats (P < 0.05). CONCLUSIONS HFD-induced obesity in rats results in detrimental effects on spermatogenesis, semen quality, endogenous hormones, and testicular cell apoptosis. Metformin intervention improved the semen parameters, possibly due to its effects on weight loss, increased testicular weight, reduced testicular cell apoptosis, and resulted in restoration of hormonal homeostasis and correction of metabolic disorder.
Collapse
Affiliation(s)
- Wen-jie Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rizk NM, Sharif E. Leptin as well as Free Leptin Receptor Is Associated with Polycystic Ovary Syndrome in Young Women. Int J Endocrinol 2015; 2015:927805. [PMID: 26180527 PMCID: PMC4477211 DOI: 10.1155/2015/927805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/07/2015] [Indexed: 02/07/2023] Open
Abstract
Background and Aim. Leptin has two forms in the circulation: free and bound forms. The soluble leptin receptor (sOB-R) circulates in the blood and can bind to leptin. The aim of this study is to assess the concentrations of the leptin and the sOB-R in PCOS and its relation to adiposity, insulin resistance, and androgens. Methods. A cross-sectional study included 78 female students aged 17-25 years. Fasting serum leptin and sOB-R concentrations were measured. The anthropometric variables and the hormonal profile such as insulin, female and male sex hormones, and prolactin were assessed. Results. In PCOS, leptin level (ng/ml) and free leptin index (FLI) increased significantly while sOB-R (ng/ml) significantly decreased compared to control subjects. In age-matched subjects, obese PCOS had increased leptin level in ng/ml (median level with interquartile levels) of 45.67 (41.98-48.04) and decreased sOB-R in ng/ml 11.47 (7.59-16.44) compared to lean PCOS 16.97 (10.60-45.55) for leptin and 16.62 (11.61-17.96) for sOB-R with p values 0.013 and 0.042, respectively. However, body mass index (BMI) is significantly correlated with leptin and s-OBR, while no significant correlations with parameters of insulin resistance were detected. Conclusion. PCOS is associated with hyperleptinemia and increased free leptin index. Decreased sOB-R could be a compensatory mechanism for the defective action of leptin.
Collapse
Affiliation(s)
- Nasser M. Rizk
- Health Sciences Department, CAS, Qatar University, P.O. Box 2713, Doha, Qatar
- *Nasser M. Rizk:
| | - Elham Sharif
- Health Sciences Department, CAS, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|