1
|
Kundu S, Kumar Das B, Das Gupta S. Hormonal symphony: The dynamic duo of IGF and EGF in gonadotropin-induced fish ovarian development and egg maturation. Anim Reprod Sci 2025; 273:107663. [PMID: 39674119 DOI: 10.1016/j.anireprosci.2024.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Fish oocyte maturation (FOM) is a critical biological process that occurs before ovulation and is influenced by gonadotropins, particularly luteinizing hormone (LH). The release of LH stimulates the ovarian follicle to produce a maturation-inducing hormone (MIH), specifically 17α, 20β-dihydroxy-4-pregnen-3-one (17α, 20β-DP), which initiates the formation of maturation-promoting factor (MPF) through the activation of cyclin B and cdc2 kinase. Insulin-like growth factor I (IGF-I) significantly regulates ovarian functions, including steroidogenesis, by activating its membrane receptors and the tyrosine kinase pathway. IGF-I influences oocyte maturation directly via the PI3 kinase pathway, independent of steroid hormones. Additionally, epidermal growth factor (EGF) promotes cell growth and differentiation by binding to its receptor (EGFR). It is implicated in mediating human chorionic gonadotropin (hCG)-induced DNA synthesis in ovarian follicles while suppressing apoptosis. The presence of EGF in follicle cells and oocytes, along with its higher expression in oocytes, suggests it may act as a paracrine signal regulating somatic cell activity. Recent studies indicate that the activin system in follicle cells could be a target for EGF activity. The EGFR signaling pathway enhances gonadotropin-induced steroidogenesis and governs the transition of oocyte maturation stages, essential for successful fertilization. This review synthesizes current research on the roles of gonadotropins, IGFs, and EGFs in fish oocyte maturation and ovarian steroid production.
Collapse
Affiliation(s)
- Sourav Kundu
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India.
| | - Subhadeep Das Gupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India
| |
Collapse
|
2
|
Ma H, Gao G, Palti Y, Tripathi V, Birkett JE, Weber GM. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. Int J Mol Sci 2024; 25:12683. [PMID: 39684392 DOI: 10.3390/ijms252312683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation. A total of 5292 differentially expressed genes were identified from our transcriptome sequencing datasets comparing four treatments: fresh tissue; untreated control; 17,20βP-treated; and salmon pituitary homogenate-treated follicles. Extensive overlap in affected genes suggests many gonadotropin actions leading to the acquisition of maturational and ovulatory competence are mediated in part by gonadotropin induction of 17,20βP synthesis. KEGG analysis identified signaling pathways, including MAPK, TGFβ, FoxO, and Wnt signaling pathways, among the most significantly enriched pathways altered by 17,20βP treatment, suggesting pervasive influences of 17,20βP on actions of other endocrine and paracrine factors in the follicle complex.
Collapse
Affiliation(s)
- Hao Ma
- US Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA 50010, USA
| | - Guangtu Gao
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Yniv Palti
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Vibha Tripathi
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Jill E Birkett
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory M Weber
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
3
|
Huang J, Sun C, Huang Z, Zhu Y, Chen SX. Upregulation of coagulation factor V by glucocorticoid in the preovulatory follicles of zebrafish. J Steroid Biochem Mol Biol 2024; 241:106521. [PMID: 38631601 PMCID: PMC11140551 DOI: 10.1016/j.jsbmb.2024.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Increased cortisol levels in the preovulatory follicular fluid suggests a role of glucocorticoid in human ovulation. However, the mechanisms through which cortisol regulates the ovulatory process remain poorly understood. In this study, we examined the upregulation of f5 mRNA by glucocorticoid and its receptor (Gr) in the preovulatory follicles of zebrafish. Our findings demonstrate a significant increase in 11β-hydroxysteroid dehydrogenase type 2 (hsd11b2), a cortisol response gene, in preovulatory follicles. Additionally, hydrocortisone exerts a dose- and time-dependent upregulation of f5 mRNA in these follicles. Importantly, this stimulatory effect is Gr-dependent, as it was completely abolished in gr-/- mutants. Furthermore, site-directed mutagenesis identified a glucocorticoid response element (GRE) in the promoter of zebrafish f5. Interestingly, successive incubation of hydrocortisone and the native ovulation-inducing steroid, progestin (17α,20β-dihydroxy-4-pregnen-3-one, DHP), further enhanced f5 expression in preovulatory follicles. Overall, our results indicate that the dramatic increase of f5 expression in preovulatory follicles is partially attributable to the regulation of glucocorticoid and Gr.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chao Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhuo Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Biology, East Carolina University, 101 E. 10th Street, Greenville, NC 27858, USA
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
4
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
5
|
Ghosh S, Biswas S, Mukherjee U, Karmakar S, Maitra S. Participation of follicular superoxides, inflammatory modulators, and endocrine factors in zebrafish (Danio rerio) ovulation: Cross-talk between PKA and MAPK signaling in Pgr regulation of ovulatory markers. Mol Cell Endocrinol 2024; 585:112180. [PMID: 38342135 DOI: 10.1016/j.mce.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
The ovulatory response involves diverse molecular determinants, the interplay between which remains less investigated in fish. This study explores the temporal changes in the follicular microenvironment, regulatory factors, and underlying signaling events during ovulation in female zebrafish subjected to 14L:10D at 28 ± 1 °C in vivo vis-à-vis in hCG-stimulated full-grown (FG) follicles in vitro. Congruent with reduced GSH levels, SOD, and GPx activity, a graded increase in follicular free radicals, Nox4, and p38 MAPK phosphorylation in the morning hour groups (05:00 and 06:30) correlates positively with the ovulatory surge in inflammatory mediators (Tnf-α, Il-1β, Il-6, Nos2, and Cox-2). Further, elevated Pgr expression and its nuclear translocation, congruent with follicular lhcgr, star, and hsd20b2 upregulation in vivo, corroborates well with the transcriptional activation of genes (pla2g4aa, ptgesl, ptger4b, mmp9, adamts9), triggering ovulation in this species. Mechanistically, an elevated ovulatory response in hCG-treated FG follicles in vitro involves the upregulation of inflammatory mediators, pgr and ovulation-associated genes in a manner sensitive to PKA- and MAPK3/1-mediated signaling.
Collapse
Affiliation(s)
- Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sampurna Karmakar
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
6
|
Chen J, Meng Y, Huang X, Liao X, Tang X, Xu Y, Li J. Potential effective diagnostic biomarker in patients with primary and metastatic small intestinal neuroendocrine tumors. Front Genet 2023; 14:1110396. [PMID: 37091799 PMCID: PMC10119396 DOI: 10.3389/fgene.2023.1110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Small intestinal neuroendocrine tumors (SI-NETs) are the most common malignant tumors of the small intestine, with many patients presenting with metastases and their incidence increasing. We aimed to find effective diagnostic biomarkers for patients with primary and metastatic SI-NETs that could be applied for clinical diagnosis. Methods: We downloaded GSE65286 (training set) and GSE98894 (test set) from the GEO database and performed differential gene expression analysis to obtain differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElncRNAs). The functions and pathways involved in these genes were further explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In addition, a global regulatory network involving dysregulated genes in SI-NETs was constructed based on RNAInter and TRRUST v2 databases, and the diagnostic power of hub genes was identified by receiver operating characteristic curve (ROC). Results: A total of 2,969 DEGs and DElncRNAs were obtained in the training set. Enrichment analysis revealed that biological processes (BPs) and KEGG pathways were mainly associated with cancer. Based on gene set enrichment analysis (GSEA), we obtained five BPs (cytokinesis, iron ion homeostasis, mucopolysaccharide metabolic process, platelet degranulation and triglyceride metabolic process) and one KEGG pathway (ppar signaling pathway). In addition, the core set of dysregulated genes obtained included MYL9, ITGV8, FGF2, FZD7, and FLNC. The hub genes were upregulated in patients with primary SI-NETs compared to patients with metastatic SI-NETs, which is consistent with the training set. Significantly, the results of ROC analysis showed that the diagnostic power of the hub genes was strong in both the training and test sets. Conclusion: In summary, we constructed a global regulatory network in SI-NETs. In addition, we obtained the hub genes including MYL9, ITGV8, FGF2, FZD7, and FLNC, which may be useful for the diagnosis of patients with primary and metastatic SI-NETs.
Collapse
|
7
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
8
|
Mawed SA, Marini C, Alagawany M, Farag MR, Reda RM, El-Saadony MT, Elhady WM, Magi GE, Di Cerbo A, El-Nagar WG. Zinc Oxide Nanoparticles (ZnO-NPs) Suppress Fertility by Activating Autophagy, Apoptosis, and Oxidative Stress in the Developing Oocytes of Female Zebrafish. Antioxidants (Basel) 2022; 11:1567. [PMID: 36009286 PMCID: PMC9404823 DOI: 10.3390/antiox11081567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, the core mechanisms that control gametogenesis are largely multiple, complex, successive, and orchestrated by intrinsic and extrinsic factors. However, age, health status, and hormonal activity are important factors for good fertility; other intangible intracellular molecular mechanisms that manage oocyte development are still unclear. The present study was designed to elucidate the ultrastructure changes in the ovary in response to its exposure to zinc oxide nanoparticles (ZnO-NPs) and to explore the role of autophagy and apoptosis during egg maturation and ovulation on the fertility of female zebrafish. In our study, ZnO-NPs could induce cytotoxicity in the maturing oocyte by activating autophagy and apoptosis in a caspase-dependent manner and could induce oxidative stress by generating reactive oxygen species (ROS) that elevated the mutated ovarian tP53 protein. Simultaneously, necroptosis developed, mimicking the features of apoptosis and necrosis. Collectively, ZnO-NPs created a suitable necrotic environment that led to follicular developmental retardation that altered oocyte ovulation and reduced fecundity of female zebrafish.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha M. Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gian E. Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Wafaa G. El-Nagar
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
9
|
Huang J, Sun C, Teng Liu D, Zhao NN, Shavit JA, Zhu Y, Chen SX. Nuclear Progestin Receptor-mediated Linkage of Blood Coagulation and Ovulation. Endocrinology 2022; 163:bqac057. [PMID: 35511048 PMCID: PMC9653010 DOI: 10.1210/endocr/bqac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 01/22/2023]
Abstract
Ovulation is a dramatic remodeling process that includes rupture of blood capillaries and clotting, but coagulation is not thought to directly regulate this process. Herein, we report remarkable increases of coagulation factors V (f5, ~3145-fold) and tissue factor (f3a, ~120-fold) in zebrafish ovarian follicle cells during ovulation. This increase was mediated through the nuclear progestin receptor (Pgr), which is essential for ovulation in zebrafish, and was totally abolished in ovarian follicular cells from pgr-/- mutants. In addition, promoter activities of f5 and f3a were significantly enhanced by progestin (DHP) via Pgr. Similar regulation of human F5 promoter activity was induced via human PGRB, suggesting a conserved mechanism. Site-directed mutagenesis of the zebrafish f5 promoter further demonstrated a direct regulation of coagulation factors via progestin response elements. Moreover, a stark increase of erythrocytes occurred in capillaries meshed in wild-type preovulatory follicles but was absent in pgr-/- mutants. Interestingly, anticoagulants significantly inhibited ovulation both in vitro and in vivo, respectively. Furthermore, reduced fecundity was observed in f5+/- female zebrafish. Taken together, our study provides plausible evidence for steroid regulation of coagulation factors, and a new hypothesis for blood clotting-triggered ovulation in vertebrates.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Chao Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Nan Nan Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Jordan A Shavit
- Departments of Pediatrics and Human Genetics, University of
Michigan, Ann Arbor, Michigan 48109, USA
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
- Department of Biology, East Carolina University,
Greenville, North Carolina 27858, USA
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and
Technology, Xiamen University, Xiamen, Fujian
361102, China
| |
Collapse
|
10
|
Takahashi T, Ogiwara K. Signal pathway of LH-induced expression of nuclear progestin receptor in vertebrate ovulation. Gen Comp Endocrinol 2022; 321-322:114025. [PMID: 35292264 DOI: 10.1016/j.ygcen.2022.114025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Nuclear progestin receptor (PGR), which is induced in the follicles destined to undergo ovulation, is believed to be obligatory for rupture of the follicles during ovulation in vertebrates. Studies in some mammals and teleost medaka have revealed the outline of the central signaling pathway that leads to the PGR expression in the preovulatory follicles at ovulation. In this review, we summarize the current knowledge on what signaling mediators are involved in the LH-induced follicular expression of PGR at ovulation in these animals. LH-inducibility of follicular PGR expression is conserved. In both group of animals, activation of the LH receptor on the granulosa cell surface with LH commonly results in the increase of intracellular cAMP levels, while the downstream signaling cascades activated by high level of cAMP are totally different between mice and medaka. PGR is currently presumed to be induced via PKA/CREB-mediated transactivation and ERK1/2-dependent signaling in mice, but the receptor is induced via EPAC/RAP and AKT/CREB pathways in the teleost medaka. The differences and similarities in the signaling pathways for PGR expression between them is discussed from comparative and evolutionary aspects. We also discussed questions concerning PGR expression and its regulation needed to be investigated in future.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
11
|
Tsakoumis E, Ahi EP, Schmitz M. Impaired leptin signaling causes subfertility in female zebrafish. Mol Cell Endocrinol 2022; 546:111595. [PMID: 35139421 DOI: 10.1016/j.mce.2022.111595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Reproduction is an energetically costly event across vertebrates and tightly linked to nutritional status and energy reserves. In mammals, the hormone leptin is considered as a link between energy homeostasis and reproduction. However, its role in fish reproduction is still unclear. In this study, we investigated the possible role of leptin in the regulation of reproduction in zebrafish, using a loss of function leptin receptor (lepr) strain. Impaired leptin signaling resulted in severe reproductive deficiencies in female zebrafish. lepr mutant females laid significantly fewer eggs, with low fertilization rates compared to wild-type females. Folliculogenesis was not affected, but oocyte maturation and ovulation were disrupted in lepr mutants. Interestingly, the expression of luteinizing hormone beta (lhb) in the pituitary was significantly lower in mutant females. Analysis of candidate genes in the ovaries and isolated fully grown follicles revealed differential expression of genes involved in steroidogenesis, oocyte maturation and ovulation in the mutants, which are known to be regulated by LH signaling. Moreover, subfertility in lepr mutants could be partially restored by administration of human chorionic gonadotropin. In conclusion, our results show that leptin deficiency does not affect early stages of follicular development, but leptin might be essential in later steps, such as in oocyte maturation and ovulation. To our knowledge, this is the first time that leptin is associated to reproductive deficiencies in zebrafish.
Collapse
Affiliation(s)
- Emmanouil Tsakoumis
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland.
| | - Monika Schmitz
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Zhai G, Shu T, Yu G, Tang H, Shi C, Jia J, Lou Q, Dai X, Jin X, He J, Xiao W, Liu X, Yin Z. Augmentation of progestin signaling rescues testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling. eLife 2022; 11:e66118. [PMID: 35225789 PMCID: PMC8912926 DOI: 10.7554/elife.66118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Disruption of androgen signaling is known to cause testicular malformation and defective spermatogenesis in zebrafish. However, knockout of cyp17a1, a key enzyme responsible for the androgen synthesis, in ar-/- male zebrafish paradoxically causes testicular hypertrophy and enhanced spermatogenesis. Because Cyp17a1 plays key roles in hydroxylation of pregnenolone and progesterone (P4), and converts 17α-hydroxypregnenolone to dehydroepiandrosterone and 17α-hydroxyprogesterone to androstenedione, we hypothesize that the unexpected phenotype in cyp17a1-/-;androgen receptor (ar)-/- zebrafish may be mediated through an augmentation of progestin/nuclear progestin receptor (nPgr) signaling. In support of this hypothesis, we show that knockout of cyp17a1 leads to accumulation of 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and P4. Further, administration of progestin, a synthetic DHP mimetic, is sufficient to rescue testicular development and spermatogenesis in ar-/- zebrafish, whereas knockout of npgr abolishes the rescue effect of cyp17a1-/- in the cyp17a1-/-;ar-/- double mutant. Analyses of the transcriptomes among the mutants with defective testicular organization and spermatogenesis (ar-/-, ar-/-;npgr-/- and cyp17a-/-;ar-/-;npgr-/-), those with normal phenotype (control and cyp17a1-/-), and rescued phenotype (cyp17a1-/-;ar-/-) reveal a common link between a downregulated expression of insl3 and its related downstream genes in cyp17a-/-;ar-/-;npgr-/- zebrafish. Taken together, our data suggest that genetic or pharmacological augmentation of the progestin/nPgr pathway is sufficient to restore testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling.
Collapse
Affiliation(s)
- Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Tingting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
- Chinese Sturgeon Research Institute, China Three Gorges CorporationHubeiChina
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Haipei Tang
- 5State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen UniversityGuangzhouChina
| | - Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Jingyi Jia
- College of Fisheries, Huazhong Agriculture UniversityWuhanChina
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
| | - Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development and Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest UniversityChongqingChina
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
- The Innovative Academy of Seed Design, Chinese Academy of SciencesWuhanChina
| | - Xiaochun Liu
- 5State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen UniversityGuangzhouChina
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of SciencesWuhanChina
- College of Advanced Agricultural Sciences, University of Chinese Academy of SciencesBeijingChina
- The Innovative Academy of Seed Design, Chinese Academy of SciencesWuhanChina
| |
Collapse
|
14
|
Jiang DN, Peng YX, Liu XY, Mustapha UF, Huang YQ, Shi HJ, Li MH, Li GL, Wang DS. Homozygous Mutation of gsdf Causes Infertility in Female Nile Tilapia ( Oreochromis niloticus). Front Endocrinol (Lausanne) 2022; 13:813320. [PMID: 35242110 PMCID: PMC8886716 DOI: 10.3389/fendo.2022.813320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Gonadal somatic cell-derived factor (Gsdf) is a member of the TGF-β superfamily, which exists mainly in fishes. Homozygous gsdf mutations in Japanese medaka and zebrafish resulted in infertile females, and the reasons for their infertility remain unknown. This study presents functional studies of Gsdf in ovary development using CRISPR/Cas9 in Nile tilapia (Oreochromis niloticus). The XX wild type (WT) female fish regularly reproduced from 12 months after hatching (mah), while the XX gsdf-/- female fish never reproduced and were infertile. Histological observation showed that at 24 mah, number of phase IV oocyte in the XX gsdf-/- female fish was significantly lower than that of the WT fish, although their gonadosomatic index (GSI) was similar. However, the GSI of the XX gsdf-/- female at 6 mah was higher than that of the WT. The mutated ovaries were hyperplastic with more phase I oocytes. Transcriptome analysis identified 344 and 51 up- and down-regulated genes in mutants compared with the WT ovaries at 6 mah. Some TGF-β signaling genes that are critical for ovary development in fish were differentially expressed. Genes such as amh and amhr2 were up-regulated, while inhbb and acvr2a were down-regulated in mutant ovaries. The cyp19a1a, the key gene for estrogen synthesis, was not differentially expressed. Moreover, the serum 17β-estradiol (E2) concentrations between XX gsdf-/- and WT were similar at 6 and 24 mah. Results from real-time PCR and immunofluorescence experiments were similar and validated the transcriptome data. Furthermore, Yeast-two-hybrid assays showed that Gsdf interacts with TGF-β type II receptors (Amhr2 and Bmpr2a). Altogether, these results suggest that Gsdf functions together with TGF-β signaling pathway to control ovary development and fertility. This study contributes to knowledge on the function of Gsdf in fish oogenesis.
Collapse
Affiliation(s)
- Dong-Neng Jiang
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - You-Xing Peng
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Xing-Yong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Umar Farouk Mustapha
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Yuan-Qing Huang
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Hong-Juan Shi
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Ming-Hui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Guang-Li Li
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Lyu L, Wen H, Li Y, Li J, Wang X, Yao Y, Qi X. Brain Transcriptomic Dataset During Parturition in Ovoviviparous Sebastes schlegelii. Front Genet 2022; 13:840067. [PMID: 35186048 PMCID: PMC8854175 DOI: 10.3389/fgene.2022.840067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 12/05/2022] Open
|
16
|
Shi H, Ru X, Pan S, Jiang D, Huang Y, Zhu C, Li G. Transcriptomic analysis of pituitary in female and male spotted scat (Scatophagus argus) after 17β-estradiol injection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 41:100949. [PMID: 34942522 DOI: 10.1016/j.cbd.2021.100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Spotted scat (Scatophagus argus) is a popular species of marine fish cultured in China. It shows normal sexual growth dimorphism. Female spotted scat grows quicker and bigger than males. Growth and reproduction are the most important traits in aquaculture. In vertebrates, the pituitary gland occupies an important position in the growth and reproduction axis. Estrogen is involved in regulating growth and reproduction in the pituitary gland in an endocrine fashion. Transcriptome sequencing of the pituitary was performed in female and male fish at 6 h after 17β-estradiol injection (4.0 μg E2/g body weight, BW). Compared with the pituitary of female and male groups, 144 and 64 genes [|log2(fold change)| ≥ 1.0 and false discovery rate (FDR) < 0.05] were significantly differentially expressed in E2-injected females and males, respectively (p < 0.05). Of these, 59 and 48 were up-regulated, and 85 and 16 were down-regulated. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses, DEGs were involved in signal pathways, such as growth, reproduction, oocyte meiosis and steroid biosynthesis. Of these, estrogen affected the expression of some sex steroid synthesis and receptor genes in the pituitary gland through feedback, such as hsd17b7, pgr and cyp19a1b, regulating the reproductive activities. Besides, some growth-related genes, such as gap43, junbb, mstn2 and insm1a responded to estrogen. E2 might affect the expression level of gh mRNA by regulating the expression levels of growth-related genes. Our results provide a theoretical basis for studying the molecular mechanism of growth and reproduction regulation at the pituitary level of spotted scat responded to E2.
Collapse
Affiliation(s)
- Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoying Ru
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang 524088, China
| | - Shuhui Pan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
17
|
Zhu Y. Metalloproteases in gonad formation and ovulation. Gen Comp Endocrinol 2021; 314:113924. [PMID: 34606745 PMCID: PMC8576836 DOI: 10.1016/j.ygcen.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
Changes in expression or activation of various metalloproteases including matrix metalloproteases (Mmp), a disintegrin and metalloprotease (Adam) and a disintegrin and metalloprotease with thrombospondin motif (Adamts), and their endogenous inhibitors (tissue inhibitors of metalloproteases, Timp), have been shown to be critical for ovulation in various species from studies in past decades. Some of these metalloproteases such as Adamts1, Adamts9, Mmp2, and Mmp9 have also been shown to be regulated by luteinizing hormone (LH) and/or progestin, which are essential triggers for ovulation in all vertebrate species. Most of these metalloproteases also express broadly in various tissues and cells including germ cells and somatic gonad cells. Thus, metalloproteases likely play roles in gonad formation processes comprising primordial germ cell (PGC) migration, development of germ and somatic cells, and sex determination. However, our knowledge on the functions and mechanisms of metalloproteases in these processes in vertebrates is still lacking. This review will summarize our current knowledge on the metalloproteases in ovulation and gonad formation with emphasis on PGC migration and germ cell development.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
18
|
Zhou L, Li M, Wang D. Role of sex steroids in fish sex determination and differentiation as revealed by gene editing. Gen Comp Endocrinol 2021; 313:113893. [PMID: 34454946 DOI: 10.1016/j.ygcen.2021.113893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The involvement of sex steroids in sex determination and differentiation is relatively conserved among non-mammalian vertebrates, especially in fish. Thanks to the advances in genome sequencing and genome editing, significant progresses have been made in the understanding of steroidogenic pathway and hormonal regulation of sex determination and differentiation in fish. It seems that loss of function study of single gene challenges the traditional views that estrogen is required for ovarian differentiation and androgen is needed for testicular development, but it is not so in essence. Steroidogenic enzymes can be classified into two categories based on expression and enzyme activities in fish. One type, encoded by star2, cyp17a1 and cyp19a1a, is involved in estrogen production and exclusively expressed in the gonads. Mutation of these genes results in the up-regulation of male pathway genes and sex reversal from genetic female to male. The other type, encoded by the duplicated paralogs of the above genes, including star1, cyp11a1, cyp17a2 and cyp19a1b, as well as cyp11c1 gene, is dominantly expressed both in gonads and extra-gonadal tissues. Mutation of these genes alters the steroids (androgen, DHP and cortisol) production and spermatogenesis, fertility, secondary sexual characteristics and sexual behavior, but usually does not affect the sex differentiation. For the estrogen receptors (esr1, esr2a and esr2b), single mutation failed to, but double and triple mutation leads to sex reversal from female to male, indicating that at least Esr2a and Esr2b are required to mediate the role of estrogen in sex determination proved by gene editing experiments. Taken together, results from gene editing enrich our understanding of steroid synthesis pathways and further confirm the critical role of estrogen in female sex determination by antagonizing the male pathway in fish.
Collapse
Affiliation(s)
- Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Baker SJC, Van Der Kraak G. ADAMTS1 is regulated by the EP4 receptor in the zebrafish ovary. Gen Comp Endocrinol 2021; 311:113835. [PMID: 34181931 DOI: 10.1016/j.ygcen.2021.113835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Prostaglandins (PGs) are a class of fatty-acid derived hormones that are essential in ovulation of teleosts, but their exact role remains unknown. One putative target of PGs in ovulation is regulation of the expression of members of the A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) family, which are implicated in follicular rupture. This study investigated the regulation of ADAMTS, other proteases, and their inhibitors in response to treatment with PGE2 or PGF2α. Four members of the ADAMTS family, ADAMTS1, ADAMTS5, ADAMTS9, and ADAMTS16 were shown to be expressed in the ovary of zebrafish, but only adamts1 was upregulated in full-grown follicles following treatment with PGE2. Inhibitors of the PG receptors EP1 and EP2 had no effect on PGE2-stimulated adamts1 expression, while treatment of full-grown follicles with both PGE2 and GW627368x, an inhibitor of EP4 function, prevented the PGE2-induced increase in adamts1 expression. Treatment of full-grown follicles with the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P) in vitro had no effect on the expression of adamts1 mRNA. These findings suggest that expression of ADAMTS1 in zebrafish ovarian follicles is regulated by the prostaglandin PGE2 via the EP4 series prostaglandin receptor.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
20
|
Alvi SM, Zayed Y, Malik R, Peng C. The emerging role of microRNAs in fish ovary: A mini review. Gen Comp Endocrinol 2021; 311:113850. [PMID: 34245767 DOI: 10.1016/j.ygcen.2021.113850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression primarily at the post-transcriptional levels. It is now well established that miRNAs are crucial regulators of many developmental and physiological processes, including reproduction. In teleosts, expression profiling studies have shown that miRNAs are expressed in the fish ovary and their levels are regulated during follicle development and by hormones. Using CRISPR/Cas9 mediated gene knockout strategies, several recent studies have provided strong evidence that miR-202 and miR-200s on chromosome 23 play critical roles in regulating ovarian development, oogenesis, and ovulation. In this mini review, we provide a brief overview of canonical miRNA biogenesis and functions; summarize miRNAs that are expressed in fish ovary; and discuss the emerging role of miRNAs in regulating fish ovarian functions.
Collapse
Affiliation(s)
- Sajid M Alvi
- Department of Biology, York University, Toronto, ON, Canada
| | - Yara Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Ramsha Malik
- Department of Biology, York University, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada; Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada.
| |
Collapse
|
21
|
Baker SJC, Corrigan E, Melnyk N, Hilker R, Van Der Kraak G. Nuclear progesterone receptor regulates ptger4b and PLA2G4A expression in zebrafish (Danio rerio) ovulation. Gen Comp Endocrinol 2021; 311:113842. [PMID: 34252451 DOI: 10.1016/j.ygcen.2021.113842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
Previous studies have implicated the nuclear progesterone receptor (Pgr or nPR) as being critical to ovulation in fishes. This study investigated the expression of Pgr in zebrafish ovarian follicles throughout development as well as putative downstream targets of Pgr by searching the promoter regions of selected genes for specific DNA sequences to which Pgr binds and acts as a transcription factor. Expression of Pgr mRNA increases dramatically as follicles grow and mature. In silico analysis of selected genes linked to ovulation showed that the prostaglandin receptors ptger4a and ptger4b contained the progesterone responsive element (PRE) GRCCGGA in their promoter regions. Studies using full-grown follicles incubated in vitro revealed that ptger4b was upregulated in response to 17,20β-P. Our studies also showed that the expression of phospholipase A2 (PLA2G4A) mRNA and protein, a key enzyme in prostaglandin synthesis, was upregulated in response to 17,20β-P treatment. pla2g4a was not found to contain a PRE, indicating that it is regulated indirectly by 17,20β-P or that it may contain an as-of-yet unidentified PRE in its promoter region. Collectively, these studies provide further evidence of the importance of Pgr during the periovulatory periods through its involvement in prostaglandin production and function by controlling expression of PLA2G4A and the receptor EP4b and that these genes appear to be regulated through the actions of 17,20β-P.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Emily Corrigan
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Nicholas Melnyk
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Renee Hilker
- Department of Animal Biosciences, University of Guelph, Ont. N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada.
| |
Collapse
|
22
|
Carver JJ, Carrell SC, Chilton MW, Brown JN, Yong L, Zhu Y, Issa FA. Nuclear androgen and progestin receptors inversely affect aggression and social dominance in male zebrafish (Danio rerio). Horm Behav 2021; 134:105012. [PMID: 34153924 PMCID: PMC8403641 DOI: 10.1016/j.yhbeh.2021.105012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Aggression is a fundamental behavior displayed universally among animal species, but hyper- or hypo-aggressiveness can be maladaptive with negative consequences for individuals and group members. While the social and ecological significance of aggression is well understood, the specific neurobiological and hormonal mechanisms responsible for mediating aggression have not been fully elucidated. Previous studies have shown a relationship between aggressive acts and circulating gonadal steroids, but whether classical nuclear steroid receptors regulate aggression in animals is still uncertain. We examined whether the nuclear androgen receptor (Ar) and nuclear progestin receptor (Pgr) were necessary for aggressive behaviors and maintenance of a dominance relationship in male zebrafish (Danio rerio). Dyadic social interactions of Ar knockout (ArKO), Pgr knockout (PgrKO) and wildtype (WT) controls were observed for two weeks (2-weeks). ArKO zebrafish were significantly less aggressive and had a less defined dominance relationship, whereas PgrKO dominant zebrafish were significantly and persistently more aggressive with a robust dominance relationship. Our results demonstrate the importance of nuclear steroid hormone receptors in regulating aggression of adult male zebrafish and provide new models for understanding of the mechanisms of aggression.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Skyler C Carrell
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Matthew W Chilton
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Julia N Brown
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Lengxob Yong
- Department of Biology, East Carolina University, Greenville, NC 27285, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27285, USA.
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC 27285, USA.
| |
Collapse
|
23
|
Dong Y, Lyu L, Zhang D, Li J, Wen H, Shi B. Integrated lncRNA and mRNA Transcriptome Analyses in the Ovary of Cynoglossus semilaevis Reveal Genes and Pathways Potentially Involved in Reproduction. Front Genet 2021; 12:671729. [PMID: 34093665 PMCID: PMC8172126 DOI: 10.3389/fgene.2021.671729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in multiple biological processes. However, the roles of lncRNAs in the reproduction of half-smooth tongue sole (Cynoglossus semilaevis) are unclear, especially in the molecular regulatory mechanism driving ovarian development and ovulation. Thus, to explore the mRNA and lncRNA mechanisms regulating reproduction, we collected tongue sole ovaries in three stages for RNA sequencing. In stage IV vs. V, we identified 312 differentially expressed (DE) mRNAs and 58 DE lncRNAs. In stage V vs. VI, we identified 1,059 DE mRNAs and 187 DE lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DE mRNAs were enriched in ECM-receptor interaction, oocyte meiosis and steroid hormone biosynthesis pathways. Furthermore, we carried out gene set enrichment analysis (GSEA) to identify potential reproduction related-pathways additionally, such as fatty metabolism and retinol metabolism. Based on enrichment analysis, DE mRNAs with a potential role in reproduction were selected and classified into six categories, including signal transduction, cell growth and death, immune response, metabolism, transport and catabolism, and cell junction. The interactions of DE lncRNAs and mRNAs were predicted according to antisense, cis-, and trans-regulatory mechanisms. We constructed a competing endogenous RNA (ceRNA) network. Several lncRNAs were predicted to regulate genes related to reproduction including cyp17a1, cyp19a1, mmp14, pgr, and hsd17b1. The functional enrichment analysis of these target genes of lncRNAs revealed that they were involved in several signaling pathways, such as the TGF-beta, Wnt signaling, and MAPK signaling pathways and reproduction related-pathways such as the progesterone-mediated oocyte maturation, oocyte meiosis, and GnRH signaling pathway. RT-qPCR analysis showed that two lncRNAs (XR_522278.2 and XR_522171.2) were mainly expressed in the ovary. Dual-fluorescence in situ hybridization experiments showed that both XR_522278.2 and XR_522171.2 colocalized with their target genes cyp17a1 and cyp19a1, respectively, in the follicular cell layer. The results further demonstrated that lncRNAs might be involved in the biological processes by modulating gene expression. Taken together, this study provides lncRNA profiles in the ovary of tongue sole and further insight into the role of lncRNA involvement in regulating reproduction in tongue sole.
Collapse
Affiliation(s)
- Yani Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China.,Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
| | - Daiqiang Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jing Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
| | - Bao Shi
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Carver JJ, He Y, Zhu Y. Delay in primordial germ cell migration in adamts9 knockout zebrafish. Sci Rep 2021; 11:8545. [PMID: 33879810 PMCID: PMC8058341 DOI: 10.1038/s41598-021-88024-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/05/2021] [Indexed: 11/09/2022] Open
Abstract
Adamts9 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 9) is one of a few metalloproteinases structurally conserved from C. elegans to humans and is indispensable in germ cell migration in invertebrates. However, adamts9's roles in germ cell migration in vertebrates has not been examined. In the present study, we found zygotic expression of adamts9 started around the germ ring stage and reached peak levels at 3 days post fertilization (dpf) in zebrafish. The migration of primordial germ cells (PGC) was completed within 24 hours (h) in wildtype siblings, while a delay in PGC migration was found at 15 and 24-h post-fertilization (hpf) in the Adamts9 knockout (KO). However, the delayed PGC migration in Adamts9 KO disappeared at 48 hpf. Our study suggests a conserved function of Adamts9 in germ cell migration among invertebrates and vertebrates. In addition, our results also suggest that Adamts9 is not essential for germ cell migration as reported in C. elegans, possibly due to expansion of Adamts family members and compensatory roles from other metalloproteinases in vertebrates. Further studies are required in order to elucidate the functions and mechanisms of metalloproteinases in germ cell migration and gonad formation in vertebrates.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, Howell Science Complex, East Carolina University, 1000 E. 5th Street, Greenville, NC, 27858, USA
| | - Yuanfa He
- Department of Biology, Howell Science Complex, East Carolina University, 1000 E. 5th Street, Greenville, NC, 27858, USA.,College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yong Zhu
- Department of Biology, Howell Science Complex, East Carolina University, 1000 E. 5th Street, Greenville, NC, 27858, USA.
| |
Collapse
|
25
|
Ogiwara K, Hoyagi M, Takahashi T. A central role for cAMP/EPAC/RAP/PI3K/AKT/CREB signaling in LH-induced follicular Pgr expression at medaka ovulation†. Biol Reprod 2021; 105:413-426. [PMID: 33880506 DOI: 10.1093/biolre/ioab077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
Nuclear progestin receptor (PGR) is a ligand-activated transcription factor that has been identified as a pivotal mediator of many processes associated with ovarian and uterine function, and aberrant control of PGR activity causes infertility and disease including cancer. The essential role of PGR in vertebrate ovulation is well recognized, but the mechanisms by which PGR is rapidly and transiently induced in preovulatory follicles after the ovulatory LH surge are not known in lower vertebrates. To address this issue, we utilized the small freshwater teleost medaka Oryzias latipes, which serves as a good model system for studying vertebrate ovulation. In the in vitro ovulation system using preovulatory follicles dissected from the fish ovaries, we found that inhibitors of EPAC (brefeldin A), RAP (GGTI298), PI3K (Wortmannin), AKT (AKT inhibitor IV), and CREB (KG-501) inhibited LH-induced follicle ovulation, while the PKA inhibitor H-89 had no effect on follicle ovulation. The inhibitors capable of inhibiting follicle ovulation also inhibited follicular expression of Pgr and matrix metalloproteinase-15 (Mmp15), the latter of which was previously shown to not only be a downstream effector of Pgr but also a proteolytic enzyme indispensable for follicle rupture in medaka ovulation. Further detailed analysis revealed for the first time that the cAMP/EPAC/RAP/PI3K/AKT/CREB signaling pathway mediates the LH signal to induce Pgr expression in preovulatory follicles. Our data also showed that phosphorylated Creb1 is a transcription factor essential for pgr expression and that Creb1 phosphorylated by Akt1, rather than PKA, may be preferably used to induce pgr expression.
Collapse
Affiliation(s)
- Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Miyuki Hoyagi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Yin X, Martinez AS, Sepúlveda MS, Christie MR. Rapid genetic adaptation to recently colonized environments is driven by genes underlying life history traits. BMC Genomics 2021; 22:269. [PMID: 33853517 PMCID: PMC8048285 DOI: 10.1186/s12864-021-07553-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Uncovering the mechanisms underlying rapid genetic adaptation can provide insight into adaptive evolution and shed light on conservation, invasive species control, and natural resource management. However, it can be difficult to experimentally explore rapid adaptation due to the challenges associated with propagating and maintaining species in captive environments for long periods of time. By contrast, many introduced species have experienced strong selection when colonizing environments that differ substantially from their native range and thus provide a “natural experiment” for studying rapid genetic adaptation. One such example occurred when sea lamprey (Petromyzon marinus), native to the northern Atlantic, naturally migrated into Lake Champlain and expanded their range into the Great Lakes via man-made shipping canals. Results Utilizing 368,886 genome-wide single nucleotide polymorphisms (SNPs), we calculated genome-wide levels of genetic diversity (i.e., heterozygosity and π) for sea lamprey collected from native (Connecticut River), native but recently colonized (Lake Champlain), and invasive (Lake Michigan) populations, assessed genetic differentiation between all populations, and identified candidate genes that responded to selection imposed by the novel environments. We observed a 14 and 24% reduction in genetic diversity in Lake Michigan and Lake Champlain populations, respectively, compared to individuals from the Connecticut River, suggesting that sea lamprey populations underwent a genetic bottleneck during colonization. Additionally, we identified 121 and 43 outlier genes in comparisons between Lake Michigan and Connecticut River and between Lake Champlain and Connecticut River, respectively. Six outlier genes that contained synonymous SNPs in their coding regions and two genes that contained nonsynonymous SNPs may underlie the rapid evolution of growth (i.e., GHR), reproduction (i.e., PGR, TTC25, STARD10), and bioenergetics (i.e., OXCT1, PYGL, DIN4, SLC25A15). Conclusions By identifying the genomic basis of rapid adaptation to novel environments, we demonstrate that populations of invasive species can be a useful study system for understanding adaptive evolution. Furthermore, the reduction in genome-wide levels of genetic diversity associated with colonization coupled with the identification of outlier genes underlying key life history traits known to have changed in invasive sea lamprey populations (e.g., growth, reproduction) illustrate the utility in applying genomic approaches for the successful management of introduced species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07553-x.
Collapse
Affiliation(s)
- Xiaoshen Yin
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Alexander S Martinez
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA. .,Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA.
| |
Collapse
|
27
|
Liu H, Wang J, Zhang L, Zhang Y, Wu L, Wang L, Dong C, Nie G, Li X. Transcriptome analysis of common carp (Cyprinus carpio) provides insights into the ovarian maturation related genes and pathways in response to LHRH-A and dopamine inhibitors induction. Gen Comp Endocrinol 2021; 301:113668. [PMID: 33221312 DOI: 10.1016/j.ygcen.2020.113668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/15/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
Luteinizing hormone-releasing hormone analog (LHRH-A) and dopamine inhibitors have been widely used to induce oocyte maturation and ovulation in domesticated fishes. Although this approach represents a reliable method for regulating fish reproduction, the underlying molecular mechanisms mediating LH action are largely unexplored. The objective of this study was to determine the transcriptional profile of gene programming in hormone-treated common carp. In the present study, female common carp were intraperitoneally injected with LHRH-A together with dopamine inhibitors, and control fish were injected with saline. Ovarian morphological changes were analysed by both light microscopy and scanning electron microscopy. Furthermore, gene expression profiling of the brain and ovarian tissues was performed by Illumina sequencing. Compared to the control carp, hormone treatment resulted in morphological changes including disappearance of nuclear membrane, breakdown of germinal vesicle (GVBD), and fusion of yolk globules, reflecting that hormones significantly promoted oocyte maturation. In comparison to control, we have identified 867 and 9,053 differentially expressed genes in the hormone-treated female brain and ovary, respectively. In the brain, most of the identified genes were significantly enriched in 18 KEGG pathways. In the ovarian tissue, the identified genes were significantly involved in 9 pathways. In the hormone-treated carp, genes were involved in calcium signalling pathway, cAMP signalling pathway, insulin secretion, and oxidative phosphorylation pathway, which showed obvious associations with ovarian maturation. The present study provides transcriptomic information for hormone-treated carp, which might be useful for studying the endocrine regulation and mechanisms of ovarian maturation in domesticated fishes.
Collapse
Affiliation(s)
- Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Jing Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Chuanju Dong
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
28
|
Wu XJ, Williams MJ, Kew KA, Converse A, Thomas P, Zhu Y. Reduced Vitellogenesis and Female Fertility in Gper Knockout Zebrafish. Front Endocrinol (Lausanne) 2021; 12:637691. [PMID: 33790865 PMCID: PMC8006473 DOI: 10.3389/fendo.2021.637691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
The role G-protein coupled estrogen receptor (GPER) plays in vertebrate reproduction remains controversial. To investigate GPER's reproductive role, we generated a gper zebrafish mutant line (gper-/- ) using TALENs. Gper mutant females exhibited reduced fertility with a 40.85% decrease in embryo production which was associated with a significant decrease in the number of Stage V (730-750 μm) ovulated oocytes. Correspondingly, the number of early vitellogenic follicles (Stage III, 400-450 µm) in gper-/- ovaries was greater than that in wildtypes (wt), suggesting that subsequent follicle development was retarded in the gper-/- fish. Moreover, plasma vitellogenin levels were decreased in gper-/- females, and epidermal growth factor receptor (Egfr) expression was lower in Stage III vitellogenic oocytes than in wt counterparts. However, hepatic nuclear estrogen receptor levels were not altered, and estrogen levels were elevated in ovarian follicles. These results suggest that Gper is involved in the control of ovarian follicle development via regulation of vitellogenesis and Egfr expression in zebrafish.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC, United States
| | | | - Kimberly Ann Kew
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Aubrey Converse
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
- *Correspondence: Yong Zhu, ; Peter Thomas,
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, United States
- *Correspondence: Yong Zhu, ; Peter Thomas,
| |
Collapse
|
29
|
Yao X, Wang Z, Gao X, Li X, Yang H, Ei-Samahy MA, Bao Y, Xiao S, Meng F, Wang F. Unconservative_15_2570409 suppresses progesterone receptor expression in the granulosa cells of Hu sheep. Theriogenology 2020; 157:303-313. [PMID: 32827988 DOI: 10.1016/j.theriogenology.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Female fertility potential depends on the number of mature follicles; however, the underlying molecular mechanisms remain unclear. Based on previously generated miRNA and mRNA sequencing data of healthy ovarian follicles (>5 mm in diameter) isolated from Hu sheep with different prolificacy, we investigated the roles of a novel miRNA (unconservative_15_2570409) and the progesterone receptor (PGR) gene in follicular development. During the periovulatory phase, the expression of unconservative_15_2570409 and PGR was lower and higher, respectively, in the >5 mm follicles of high prolificacy (HP) ewes than in those of low prolificacy (LP) ewes and in the >3 mm follicles than in the smaller follicles of the HP ewes. Subsequently, the granulosa cells (GCs) of Hu sheep were used as an in vitro model. PGR overexpression significantly increased the mRNA expression of steroidogenic acute regulatory protein (StAR), 3-beta-hydroxysteroid dehydrogenase/isomerase (3β-HSD), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1), which promoted the secretion of progesterone (P4) and estradiol (E2). PGR knockdown significantly downregulated the levels of StAR and 3β-HSD mRNA and decreased the production of P4, whereas no effects on CYP19A1 mRNA expression and E2 levels were observed. We also found the negative regulatory effect of unconservative_15_2570409 on the mRNA and protein expression of PGR by targeting the 3'-untranslated region. The regulation of PGR levels resulted in a corresponding change in the ADAMTS1, PPAR-γ, and CTSL gene transcripts, which are important for follicular maturation and ovulation. Additionally, PGR, ADAMTS1, and PPAR-γ were predominantly localized in the GCs. Collectively, our results suggest that by regulating PGR expression and consequently affecting the expression of target genes and steroidogenesis, unconservative_15_2570409 plays a role in follicular development during the periovulatory stage, which provides novel insights into the molecular mechanisms affecting Hu sheep prolificacy.
Collapse
Affiliation(s)
- Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - M A Ei-Samahy
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjin Bao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenhua Xiao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fanxing Meng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
30
|
Garoche C, Aït-Aïssa S, Boulahtouf A, Creusot N, Hinfray N, Bourguet W, Balaguer P, Brion F. Human and Zebrafish Nuclear Progesterone Receptors Are Differently Activated by Manifold Progestins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9510-9518. [PMID: 32650635 DOI: 10.1021/acs.est.0c02056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The environmental risk of natural and synthetic ligands of the nuclear progesterone receptor (nPR) has been pointed out, however there is still a lack of mechanistic information regarding their ability to interact with nuclear PR in aquatic species. To identify possible interspecies differences, we assessed in vitro the ability of manifold progestins to transactivate zebrafish (zf) and human (h) PRs, using two established reporter cell lines, U2OS-zfPR and HELN-hPR, respectively. Reference ligands highlighted some differences between the two receptors. The reference human agonist ligands promegestone and progesterone induced luciferase activity in both cell lines in a concentration-dependent manner, whereas the natural zebrafish progestin 17α,20β-dihydroxy-4-pregnen-3-one activated zfPR but not hPR. The potent human PR antagonist mifepristone (RU486) blocked PR-induced luciferase in both cell models but with different potencies. In addition, a set of 22 synthetic progestins were screened on the two cell lines. Interestingly, all of the tested compounds activated hPR in the HELN-hPR cell line, whereas the majority of them acted as zfPR antagonists in U2OS-zfPR. Such zfPR-specific response was further confirmed in zebrafish liver cells. This study provides novel information regarding the activity of a large set of progestins on human and zebrafish PR and highlights major interspecies differences in their activity, which may result in differential effects of progestins between fish and humans.
Collapse
Affiliation(s)
- Clémentine Garoche
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Écotoxicologie In Vitro et In Vivo, UMR-I 02-SEBIO, Parc ALATA, 60550 Verneuil-en-Halatte, France
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Écotoxicologie In Vitro et In Vivo, UMR-I 02-SEBIO, Parc ALATA, 60550 Verneuil-en-Halatte, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Nicolas Creusot
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Nathalie Hinfray
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Écotoxicologie In Vitro et In Vivo, UMR-I 02-SEBIO, Parc ALATA, 60550 Verneuil-en-Halatte, France
| | - William Bourguet
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Université Montpellier, 34290 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Écotoxicologie In Vitro et In Vivo, UMR-I 02-SEBIO, Parc ALATA, 60550 Verneuil-en-Halatte, France
| |
Collapse
|
31
|
Xiong S, Tian J, Ge S, Li Z, Long Z, Guo W, Huang P, He Y, Xiao T, Gui JF, Mei J. The microRNA-200 cluster on chromosome 23 is required for oocyte maturation and ovulation in zebrafish†. Biol Reprod 2020; 103:769-778. [PMID: 32697314 DOI: 10.1093/biolre/ioaa125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
The reproductive process is usually controlled by the hypothalamic-pituitary-gonad axis in vertebrates, while Kiss/gonadotropin-releasing hormone (GnRH) system in the hypothalamus is required for mammalian reproduction but dispensable for fish reproduction. The regulation of follicle stimulating hormone/luteinizing hormone (LH) expression in fish species is still unknown. Here, we identified miR-200s on chromosome 23 (chr23-miR-200s) as important regulators for female zebrafish reproduction. Knockout of chr23-miR-200s (chr23-miR-200s-KO) resulted in dysregulated expression of luteinizing hormone beta lhb (luteinizing hormone beta) and some hormone genes in the pituitary as revealed by comparative transcriptome profiling, leading to failure of oocyte maturation and ovulation as well as defects in reproductive duct development. Chr23-miR-200s mainly expressed in the pituitary and regulated lhb expression by targeting the transcription repressor wt1a. Injection of human chorionic gonadotropin (hCG) could rescue the defects of oocyte maturation in chr23-miR-200s-KO zebrafish, whereas GnRH or LHRH-A2 could not, suggesting that Chr23-miR-200s regulated lhb expression in a GnRH-independent pathway. It was remarkable that either injection of carp pituitary extraction, or co-injection of hCG with synthetic oxytocin and vasotocin could greatly rescue the defects of both oocyte maturation and ovulation in chr23-miR-200s-KO zebrafish. Altogether, our findings highlight an important function of chr23-miR-200s in controlling oocyte maturation by regulation LH expression, and oxytocin and vasotocin are potentially responsible for the ovulation in fish species.
Collapse
Affiliation(s)
- Shuting Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China
| | - Jinsong Tian
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Si Ge
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhe Long
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Peipei Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yan He
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
An agonist for membrane progestin receptor (mPR) induces oocyte maturation and ovulation in zebrafish in vivo. Biochem Biophys Res Commun 2020; 529:347-352. [PMID: 32703434 DOI: 10.1016/j.bbrc.2020.05.208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
The maturation and ovulation of fish oocytes are well-characterized biological processes induced by progestins via coordination of nongenomic actions and genomic actions. Previously, we established a procedure that enables the induction of oocyte maturation and ovulation in live zebrafish by simple administration of the natural teleost maturation-inducing hormone 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17,20β-DHP) into the surrounding water. By this in vivo assay, the potencies of chemicals in inducing or preventing oocyte maturation and ovulation can be evaluated. The potencies of compounds in inducing ovulation of zebrafish oocytes also can be evaluated in vivo with improved in vitro assays. Here, we attempted to evaluate the effect of Org OD 02-0 (Org OD 02), a selective agonist for membrane progestin receptor (mPR), on fish oocyte maturation and ovulation with in vitro and in vivo assays. As reported previously, Org OD 02 triggered oocyte maturation in vitro. The same Org OD 02 triggered oocyte maturation within several hours in vivo. Surprisingly, Org OD 02 even induced ovulation both in in vivo and in vitro. Eggs from Org OD 02-induced ovulation could be fertilized by artificial insemination. The juveniles developed normally. These results indicated that Org OD 02 triggered physiological ovulation in live zebrafish. In summary, we have demonstrated the effect of Org OD 02 on fish oocyte maturation and ovulation in vitro and in vivo. The results suggested that Org OD 02 acted as an agonist not only of mPR but also of nuclear progesterone receptor (nPR).
Collapse
|
33
|
Wu XJ, Liu DT, Chen S, Hong W, Zhu Y. Impaired oocyte maturation and ovulation in membrane progestin receptor (mPR) knockouts in zebrafish. Mol Cell Endocrinol 2020; 511:110856. [PMID: 32387526 PMCID: PMC7305657 DOI: 10.1016/j.mce.2020.110856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022]
Abstract
Accumulating evidence suggest that membrane progestin receptor α (mPRα) is the membrane receptor mediating nongenomic progestin signaling that induces oocyte maturation in teleost. However, the involvement of other members of mPR family in oocyte maturation is still unclear. In this study, we found impaired oocyte maturation in zebrafish lacking mPRα1, mPRα2, mPRβ, or mPRγ2. In contrast, no difference was observed in oocyte maturation in the single knockout of mPRγ1, mPRδ, or mPRε. To study possible redundant functions of different mPRs in oocyte maturation, we generated a zebrafish line lacking all seven kinds of mPRs (mprs-/-). We found oocyte maturation was further impaired in mprs-/-. In addition, oocyte ovulation delay was observed in mprs-/- females, which was associated with low levels of nuclear progestin receptor (Pgr), a key regulator for ovulation. We also found reduced fertility in mprs-/- female zebrafish. Furthermore, eggs spawned by mprs-/- females were of poor quality.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Dong-Teng Liu
- Department of Biology, East Carolina University, Greenville, NC, USA; College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, PR China
| | - Shixi Chen
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, PR China
| | - Wanshu Hong
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, PR China
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, USA; College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, PR China.
| |
Collapse
|
34
|
Huang J, Zhang TT, Jiang K, Hong WS, Chen SX. GFP expression pattern in pituitary and gonads under the control of nuclear progesterone receptor promoter in transgenic zebrafish. Dev Dyn 2020; 249:1365-1376. [PMID: 32506585 DOI: 10.1002/dvdy.213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The nuclear progesterone receptor (Pgr) is a ligand-dependent transcription factor primarily responsible for mediating progesterone actions relevant for reproduction across vertebrates. Information on the cellular localization of Pgr expression in the reproductive system is required for developing a comprehensive approach to elucidate the role of Pgr in reproduction. RESULTS We generated transgenic zebrafish Tg(pgr:eGFP) that express enhanced green fluorescent protein (eGFP) driven by promoter sequence of pgr gene. The tissue distribution pattern of egfp mRNA is consistent with the pgr mRNA expression in Tg(pgr:eGFP). In the pituitary, GFP signals are found in the proximal pars distalis. In order to better discern the cellular localization of GFP signals in gonads, Tg(pgr:eGFP) line was crossed with Tg(gsdf:nfsB-mCherry) line, specifically expressing nitroreductase-mCherry fusion protein in granulosa and Sertoli cells in ovary and testis, respectively. Imaging of testis tissue showed that GFP expression was confined to Leydig cells. In the ovary, GFP expression colocalized with the mCherry signal in granulosa cells. Intriguingly, we also identified some non-granulosa cells close to where blood vessels branched, expressing stronger GFP signals than granulosa cells. CONCLUSIONS Analyzing Tg(pgr:eGFP) expression in zebrafish provided leads toward new routes to study the role of Pgr in reproduction.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ting Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| |
Collapse
|
35
|
Chatterjee A, Guchhait R, Maity S, Mukherjee D, Pramanick K. Functions of interleukin-6 in ovulation of female climbing perch, Anabas testudineus. Anim Reprod Sci 2020; 219:106528. [PMID: 32828404 DOI: 10.1016/j.anireprosci.2020.106528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
In mammals, interleukin 6 (IL-6) has an important function during ovulation, however, the functions of IL-6 in fish have not been elucidated. In the present study, there was quantification of de novo synthesis of ovarian IL-6 and tumor necrosis factor-alpha (TNFα) in control and hCG-treated fish and results were compared with those from an in vitro study where there was evaluation of the regulatory functions of gonadotropins and TNFα of IL-6 secretions. Relatively greater concentrations of ovarian IL-6 at the post-GVBD (post-germinal vesicle breakdown) stage indicates IL-6 modulates ovulatory processes. The hCG-induced increase in relative abundance of IL-6 (in vitro) mRNA transcript and secretion from the ovary were attenuated when there was administration of the inhibitor of TNFα secreting enzyme, TAPI-I, which indicates TNFα modulates IL-6 secretion. Treatments with IL-6 induced a marked increase in ovulation rate in vitro when there was induction of activating matrix metalloproteinase (MMP). Furthermore, treatment with IL-6 resulted in production of prostaglandin as indicated by the IL-6 induced increase in the abundance of ptgs2 mRNA transcript in the ovary of Anabas testudineus. Furthermore, results indicate the source of IL-6 in the ovary is the granulosa cells with secretion of IL-6 being induced by the additions of hCG and TNFα in the medium. There was also an IL-6-induced increase in abundance of receptors (IL-6 Rα and gp130) to which it binds indicating IL-6 autoregulates this population of receptors. Results from this study, for the first time, elucidate the reproductive functions of IL-6 in a teleost fish.
Collapse
Affiliation(s)
- Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India; P.G. Department of Zoology, Mahishadal Raj College, Purba Medinipur, India
| | - Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
36
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
37
|
Wu XJ, Zhu Y. Downregulation of nuclear progestin receptor (Pgr) and subfertility in double knockouts of progestin receptor membrane component 1 (pgrmc1) and pgrmc2 in zebrafish. Gen Comp Endocrinol 2020; 285:113275. [PMID: 31536721 PMCID: PMC6888933 DOI: 10.1016/j.ygcen.2019.113275] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/01/2019] [Accepted: 09/14/2019] [Indexed: 11/29/2022]
Abstract
The progestin receptor membrane components (Pgrmcs) contain two paralogs, Pgrmc1 and Pgrmc2. Our previous research into single knockout of Pgrmc1 or Pgrmc2 suggests that Pgrmc1 and Pgrmc2 regulate membrane progestin receptor or steroid synthesis and therefore female fertility in zebrafish. Additional roles of Pgrmcs may not be determined in using single Pgrmc knockouts due to compensatory roles between Pgrmc1 and Pgrmc2. To address this question, we crossed single knockout pgrmc1 (pgrmc1-/-) with pgrmc2 (pgrmc2-/-), and generated double knockouts for both pgrmc1 and pgrmc2 (pgrmc1/2-/-) in a vertebrate model, zebrafish. In addition to the delayed oocyte maturation and reduced female fertility, significant reduced ovulation was found in double knockout (pgrmc1/2-/-) in vivo, though not detected in either single knockout of Pgrmc (pgrmc1-/- or pgrmc2-/-). We also found significant down regulation of nuclear progestin receptor (Pgr) protein expression only in pgrmc1/2-/-, which was most likely the cause of reduced ovulation. Lower protein expression of Pgr also resulted in reduced expression of metalloproteinase in pgrmc1/2-/-. With this study, we have provided new evidence for the physiological functions of Pgrmcs in the regulation of female fertility by regulation of ovulation, likely via regulation of Pgr, which affects regulation of metalloproteinase expression and oocyte ovulation.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
38
|
Liu DT, Hong WS, Chen SX, Zhu Y. Upregulation of adamts9 by gonadotropin in preovulatory follicles of zebrafish. Mol Cell Endocrinol 2020; 499:110608. [PMID: 31586455 PMCID: PMC6878983 DOI: 10.1016/j.mce.2019.110608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023]
Abstract
Previously we had identified adamts9 as a downstream target of Pgr, which is essential for ovulation in zebrafish. The primary goal of this study is to determine whether human chorionic gonadotropin (hCG, LH analog) also regulate adamts9 expression prior to ovulation. The expression of adamts9 was induced by hCG in a dose and time dependent manner in zebrafish preovulatory follicles in vitro. Interestingly, the stimulatory effect of hCG on adamts9 expression was not blocked in pgr-/- follicles but blocked in lhcgr-/-. This effect of hCG was via Lhcgr and its associated cAMP and PKC signaling pathways. Reduced fecundity and reduced expression of adamts9 were also found in lhcgr-/- females in vivo. Therefore, we have provided the first evidence of gonadotropin (hCG) regulated adamts9 in zebrafish, which could be important for ovulation.
Collapse
Affiliation(s)
- Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China.
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China; Department of Biology, East Carolina University, 1000 5th Street, Greenville, NC, 27858, USA.
| |
Collapse
|
39
|
Baker SJC, Van Der Kraak G. Investigating the role of prostaglandin receptor isoform EP4b in zebrafish ovulation. Gen Comp Endocrinol 2019; 283:113228. [PMID: 31348957 DOI: 10.1016/j.ygcen.2019.113228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Prostaglandins (PGs) are a class of fatty acid-derived hormones that play an essential role in the regulation of ovulation of teleosts. This study investigated the various isoforms of ovarian PG receptors in the zebrafish ovary and their role in ovulation. Using real time qPCR, six PG receptor isoforms (ptger1a, ptger1b, ptger2a, ptger4a, ptger4b, and ptgfr) were shown to be expressed in the ovary. Only the PG receptor isoform ptger4b was upregulated at the time of ovulation in vivo, or following treatment in vivo with Ovaprim, which contains a gonadotropin releasing hormone analogue and a dopamine receptor antagonist and stimulates ovulation. Treatment of full-grown follicles with the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17,20βP) in vitro also induced expression of EP4b mRNA. Females ovulate in vivo after injection with Ovaprim, or injection with Ovaprim and inhibitors of EP1 (ONO-8130) or EP2 (TG4-155) function; they do not ovulate when injected with Ovaprim and an EP4 inhibitor (GW237368x). These findings suggest that the EP4 receptor, in particular the EP4b isoform, is essential for ovulation.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada.
| |
Collapse
|
40
|
Li J, Niu C, Cheng CHK. Igf3 serves as a mediator of luteinizing hormone in zebrafish ovulation. Biol Reprod 2019; 99:1235-1243. [PMID: 29945206 DOI: 10.1093/biolre/ioy143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/23/2018] [Indexed: 11/12/2022] Open
Abstract
Both oocyte maturation and ovulation is triggered by the luteinizing hormone (LH) surge in vertebrates, but exactly how these processes are regulated by LH remains to be fully elucidated. Previously, we found that Igf3, a fish-specific member of the igf family predominantly expressed in the gonads, could mediate the action of LH on oocyte maturation in zebrafish. Here, we further reveal the importance of Igf3 in mediating the action of LH on ovulation in zebrafish. All the four igf gene family members are expressed in the zebrafish ovary but only the igf3 transcript level is increased in hCG-induced ovulation in vivo. The expression of Igf3 protein in the follicles is also increased during ovulation. The actions of hCG on the expression of ovulatory enzymes and on ovulation itself could be largely mimicked by the recombinant zebrafish Igf3 protein. Intriguingly, the phosphorylation of Igf1r, the receptor for Igf3, could be activated by hCG in the follicular cells during ovulation. And inhibition of Igf3 signaling by Igf1r inhibitors and Igf3 antiserum could significantly attenuate the hCG-induced ovulation. Collectively, all these data support the notion that Igf3 serves as a mediator of LH action in zebrafish ovulation.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Caiyan Niu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
41
|
Lee MH, Wu X, Zhu Y. RNA-binding protein PUM2 regulates mesenchymal stem cell fate via repression of JAK2 and RUNX2 mRNAs. J Cell Physiol 2019; 235:3874-3885. [PMID: 31595981 DOI: 10.1002/jcp.29281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The differentiation of mesenchymal stem cells (MSCs) into unwanted lineages can generate potential problems in clinical trials. Thus, understanding the molecular mechanisms, involved in this process, would help prevent unexpected complications. Regulation of gene expression, at the posttranscriptional level, is a new approach in cell therapies. PUMILIO is a conserved posttranscriptional regulator. However, the underlying mechanisms of PUMILIO, in vertebrate stem cells, remain elusive. Here, we show that depletion of PUMILIO2 (PUM2) blocks MSC adipogenesis and enhances osteogenesis. We also demonstrate that PUM2 works as a negative regulator on the 3'-untranslated regions of JAK2 and RUNX2 via direct binding. CRISPR/Cas9-mediated gene silencing of Pum2 inhibited lipid accumulation and induced excessive bone formation in zebrafish larvae. Our findings reveal novel roles of PUM2 in MSCs and provide potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Department of Internal Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Xinjun Wu
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
42
|
Wu XJ, Williams MJ, Patel PR, Kew KA, Zhu Y. Subfertility and reduced progestin synthesis in Pgrmc2 knockout zebrafish. Gen Comp Endocrinol 2019; 282:113218. [PMID: 31301284 PMCID: PMC6718323 DOI: 10.1016/j.ygcen.2019.113218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 01/22/2023]
Abstract
Progestin receptor membrane component (Pgrmc1 & 2) is a heme-binding protein. Studies on Pgrmc1 have suggested possible roles in heme binding, activation of steroid-synthesizing P450s, along with binding and transferring of membrane proteins. However, the studies of Pgrmc1's paralog, Pgrmc2 are still lacking. In order to determine the physiologic function(s) of Pgrmc2, we generated a zebrafish mutant line (pgrmc2-/-). We found a reduction in both spawning frequency and the number of embryos produced in female pgrmc2-/-. This subfertility is caused by reduced oocyte maturation (germinal vesicle breakdown, GVBD) in pgrmc2-/- in vivo. Nonetheless, oocytes from pgrmc2-/- had similar sensitivity to 17α,20β-dihydroxy-4-pregnen-3-one (DHP, a maturation induced progestin in zebrafish) compared with wildtype (wt) in vitro. Therefore, we hypothesized that oocyte maturation tardiness found in vivo, could be due to lack of progestin in pgrmc2-/-. Interestingly, we found significant reduced expression of hormones, receptors, and steroid synthesizing enzymes including lhcgr, egfra, ar, and esr2, cyp11a1 and hsd3b1. In addition, DHP levels in pgrmc2-/- ovaries showed a significant decrease compared to those in wt. In summary, we have provided a plausible molecular mechanism for the physiological functions of Pgrmc2 in the regulation of female fertility, likely via regulation of receptors and steroids in the ovary, which in turn regulates oocyte maturation in zebrafish.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | - Kimberly Ann Kew
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
43
|
Wu JJ, Zhou YL, Wang ZW, Li GH, Jin FP, Cui LL, Gao HT, Li XP, Zhou L, Gui JF. Comparative Transcriptome Analysis Reveals Differentially Expressed Genes and Signaling Pathways Between Male and Female Red-Tail Catfish (Mystus wyckioides). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:463-474. [PMID: 30941640 DOI: 10.1007/s10126-019-09894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Sexual dimorphism is widespread in fish species. The red-tail catfish (Mystus wyckioides) is a commercially important catfish in the lower reaches of the Lancang River and the Mekong basin, and it shows a growth advantage in males. Here, RNA-seq was for the first time used to explore the gene expression difference between the sexes in the hypothalamus and pituitary of red-tail catfish, respectively. In the hypothalamus, 5732 and 271 unigenes have significantly higher and lower expressions, respectively, in males compared with females. KEGG analysis showed that 212 DEGs were annotated to 216 signaling pathways, and enrichment analysis suggested different levels of cAMP and glutamatergic synapse signaling between male and female hypothalami and some of the DEGs appear involved in gonad development and growth. In the pituitary, we found only 19 differentially expressed unigenes, which were annotated to 32 signaling pathways, most of which play important roles in gonad development.
Collapse
Affiliation(s)
- Jun-Jie Wu
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Guang-Hua Li
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Fang-Peng Jin
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Li-Li Cui
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Hai-Tao Gao
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Xin-Ping Li
- Xishuangbanna Native Fish Research and Breeding Center, Xishuangbanna, 666100, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
44
|
Sakamoto T, Hyodo S, Takagi W. A possible principal function of corticosteroid signaling that is conserved in vertebrate evolution: Lessons from receptor-knockout small fish. J Steroid Biochem Mol Biol 2018; 184:57-61. [PMID: 29481854 DOI: 10.1016/j.jsbmb.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Abstract
Corticosteroid receptors are critical for homeostasis maintenance, but understanding of the principal roles of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) throughout vertebrates is limited. Lines of constitutive GR-knockout zebrafish and MR-knockout medaka have recently been generated as the first adult-viable corticosteroid receptor-knockout animals, in contrast to the lethality of these receptor knockouts in mice. Here, we describe behavioral and physiological modifications following disruption of corticosteroid receptor function in these animal models. We suggest these data point toward a potentially conserved function of corticosteroid receptors in integrating brain-behavior and visual responses in vertebrates. Finally, we discuss how future work in cartilaginous fishes (Chondrichthyes) will further advance understanding of the unity and diversity of corticosteroid receptor function, since distinct orthologs of GR and MR derived from an ancestral corticoid receptor appear in these basal jawed vertebrates.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17, Kashino, Ushimado, Setouchi 701-4303, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
45
|
Crowder CM, Romano SN, Gorelick DA. G Protein-Coupled Estrogen Receptor Is Not Required for Sex Determination or Ovary Function in Zebrafish. Endocrinology 2018; 159:3515-3523. [PMID: 30169775 PMCID: PMC6137278 DOI: 10.1210/en.2018-00685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023]
Abstract
Estrogens regulate vertebrate development and function through binding to nuclear estrogen receptors α and β (ERα and ERβ) and the G protein-coupled estrogen receptor (GPER). Studies in mutant animal models demonstrated that ERα and ERβ are required for normal ovary development and function. However, the degree to which GPER signaling contributes to ovary development and function is less well understood. Previous studies using cultured fish oocytes found that estradiol inhibits oocyte maturation in a GPER-dependent manner, but whether GPER regulates oocyte maturation in vivo is not known. To test the hypothesis that GPER regulates oocyte maturation in vivo, we assayed ovary development and function in gper mutant zebrafish. We found that homozygous mutant gper embryos developed into male and female adults with normal sex ratios. Adult mutant fish exhibited normal secondary sex characteristics and fertility. Additionally, mutant ovaries were histologically normal. We observed no differences in the number of immature versus mature oocytes in mutant versus wild-type ovaries from both young and aged adults. Furthermore, expression of genes associated with sex determination and ovary function was normal in gper mutant ovaries compared with wild type. Our findings suggest that GPER is not required for sex determination, ovary development, or fertility in zebrafish.
Collapse
Affiliation(s)
- Camerron M Crowder
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon N Romano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel A Gorelick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Correspondence: Daniel A. Gorelick, PhD, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Alkek Building, Suite N1317.02, One Baylor Plaza, BCM229, Houston, Texas 77030. E-mail:
| |
Collapse
|
46
|
Fang X, Wu L, Yang L, Song L, Cai J, Luo F, Wei J, Zhou L, Wang D. Nuclear progestin receptor (Pgr) knockouts resulted in subfertility in male tilapia (Oreochromis niloticus). J Steroid Biochem Mol Biol 2018; 182:62-71. [PMID: 29705270 DOI: 10.1016/j.jsbmb.2018.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/30/2018] [Accepted: 04/22/2018] [Indexed: 12/25/2022]
Abstract
It was documented that 17α, 20β-dihydroxy-4-pregnen-3-one (DHP), a fish specific progestin, might play critical roles in spermatogenesis, sperm maturation and spermiation partially through activating nuclear receptor (Pgr). However, no direct evidence is available to demonstrate the functions of DHP in fish spermatogenesis. To further elucidate the roles of DHP in teleosts, we generated a pgr homozygous mutant line in XY Nile tilapia (Oreochromis niloticus). Pgr gene mutation resulted in the development of a smaller, thinner testis and a lower GSI compared with normal testis. Pgr gene knockout led to irregular arrangement of spermatogenic cysts, decline of sperm count and sperm motility. Significant decrease of spermatocytes and spermatozoa was observed, which was further proved by the PCNA and Ph3 staining. Real-time PCR analysis demonstrated that mutation of pgr gene resulted in a significant up-regulation of steroidogenesis-related genes of cyp17a, cyp11b2, StAR, scc, 20β-HSD, and sf1, and down-regulation of fshb, fshr, oct4, sycp3, cdk1, prm, cyclinB1, cyclinB2 and cdc25 genes. Furthermore, both Immunohistochemistry and Western blotting experiments revealed a remarkable increase of Cyp17a1, Cyp17a2 and Cyp11b2 expressions in the pgr-/- testis. EIA measurement showed that an evident increase of 11-KT level was found in the pgr-/- XY fish. There was a significant increase in the mortality of offspring when crossing pgr-/- XY fish with wild type XX fish. Increased TUNEL staining and enhanced apoptosis maker gene (bax) expressions were also observed. Taken together, our data suggested that DHP-activated physiology via pgr is crucial for the fertility in the XY tilapia.
Collapse
Affiliation(s)
- Xuelian Fang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang, HeNan, 453007, PR China
| | - Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lingyun Song
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Feng Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
47
|
Aizen J, Pang Y, Harris C, Converse A, Zhu Y, Aguirre MA, Thomas P. Roles of progesterone receptor membrane component 1 and membrane progestin receptor alpha in regulation of zebrafish oocyte maturation. Gen Comp Endocrinol 2018; 263:51-61. [PMID: 29649418 PMCID: PMC6480306 DOI: 10.1016/j.ygcen.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/06/2018] [Accepted: 04/07/2018] [Indexed: 01/15/2023]
Abstract
Although previous studies suggest membrane progesterone receptor alpha (mPRα/Paqr7) mediates 17, 20β-dihydroxy-4-pregnen-3-one (DHP) induction of oocyte maturation (OM) in zebrafish, critical information needed to establish mPRα as the receptor mediating OM is lacking. The relative potencies of progestins and specific mPRα agonists in inducing OM matched their relative binding affinities for zebrafish mPRα, supporting its role in OM. Microinjection of pertussis toxin blocked DHP induction of OM and the progestin-induced decrease in cyclic AMP levels, suggesting mPRα activates an inhibitory G protein (Gi). Microinjection of morpholino antisense oligonucleotides to zebrafish pgrmc1 blocked induction of OM by DHP which was accompanied by decreased levels of Pgrmc1 and mPRα on the oocyte plasma membranes. Similarly, treatment of denuded oocytes with a PGRMC1 inhibitor, AG205, blocked the gonadotropin-induced increase in plasma membrane mPRα levels and attenuated DHP induction of OM. Co-incubation with two inhibitors of epidermal growth factor Erbb2, ErbB2 inhibitor II and AG 879, prevented induction of OM by DHP, indicating the likely involvement of Erbb2 in mPRα-mediated signaling. Treatment with AG205 reversed the inhibitory effects of the Erbb2 inhibitors on OM and also inhibited insulin-like growth factor-1 induction of OM. Close associations between Pgrmc1 and mPRα, and between Pgrmc1 and Erbb2 were detected in zebrafish oocytes with in situ proximity ligation assays. The results suggest progestin induction of OM in zebrafish is mediated through an mPRα/Gi/Erbb2 signaling pathway that requires Pgrmc1 for expression of mPRα on oocyte membranes and that Pgrmc1 also is required for induction of OM through Erbb2.
Collapse
Affiliation(s)
- Joseph Aizen
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Yefei Pang
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Caleb Harris
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Aubrey Converse
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Yong Zhu
- East Carolina University, Department of Biology, Greenville, NC 27858, USA
| | - Meagan A Aguirre
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
48
|
Klangnurak W, Fukuyo T, Rezanujjaman MD, Seki M, Sugano S, Suzuki Y, Tokumoto T. Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish. PLoS One 2018; 13:e0196544. [PMID: 29715317 PMCID: PMC5929532 DOI: 10.1371/journal.pone.0196544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/14/2018] [Indexed: 01/24/2023] Open
Abstract
We previously reported the microarray-based selection of three ovulation-related genes in zebrafish. We used a different selection method in this study, RNA sequencing analysis. An additional eight up-regulated candidates were found as specifically up-regulated genes in ovulation-induced samples. Changes in gene expression were confirmed by qPCR analysis. Furthermore, up-regulation prior to ovulation during natural spawning was verified in samples from natural pairing. Gene knock-out zebrafish strains of one of the candidates, the starmaker gene (stm), were established by CRISPR genome editing techniques. Unexpectedly, homozygous mutants were fertile and could spawn eggs. However, a high percentage of unfertilized eggs and abnormal embryos were produced from these homozygous females. The results suggest that the stm gene is necessary for fertilization. In this study, we selected additional ovulation-inducing candidate genes, and a novel function of the stm gene was investigated.
Collapse
Affiliation(s)
- Wanlada Klangnurak
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Taketo Fukuyo
- Department of Biological Science, Faculty of Science, National University Corporation Shizuoka University, Shizuoka, Japan
| | - M. D. Rezanujjaman
- Biological Science Course, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Biological Science, Faculty of Science, National University Corporation Shizuoka University, Shizuoka, Japan
- Biological Science Course, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
49
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
50
|
Takahashi T, Hagiwara A, Ogiwara K. Prostaglandins in teleost ovulation: A review of the roles with a view to comparison with prostaglandins in mammalian ovulation. Mol Cell Endocrinol 2018; 461:236-247. [PMID: 28919301 DOI: 10.1016/j.mce.2017.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Prostaglandins are well known to be central regulators of vertebrate ovulation. Studies addressing the role of prostaglandins in mammalian ovulation have established that they are involved in the processes of oocyte maturation and cumulus oocyte complex expansion. In contrast, despite the first indication of the role of prostaglandins in teleost ovulation appearing 40 years ago, the mechanistic background of their role has long been unknown. However, studies conducted on medaka over the past decade have provided valuable information. Emerging evidence indicates an indispensable role of prostaglandin E2 and its receptor subtype Ptger4b in the process of follicle rupture. In this review, we summarize studies addressing the role of prostaglandins in teleost ovulation and describe recent advances. To help understand differences from and similarities to ovulation in mammalian species, the findings on the roles of prostaglandins in mammalian ovulation are discussed in parallel.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Akane Hagiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|