1
|
Ming Y, He X, Zhao Z, Meng X, Zhu Y, Tan H, Yang G, Hu Y, Zheng L. Nanocarrier-Assisted Delivery of Berberine Promotes Diabetic Alveolar Bone Regeneration by Scavenging ROS and Improving Mitochondrial Dysfunction. Int J Nanomedicine 2024; 19:10263-10282. [PMID: 39399826 PMCID: PMC11471107 DOI: 10.2147/ijn.s475320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose Oxidative stress and mitochondrial dysfunction are potential contributors to the compromised tissue regeneration capacity of alveolar bone in diabetic patients. Berberine, an active plant alkaloid, exhibits multiple pharmacological effects including antioxidation, blood glucose- and blood lipid-lowering properties. However, it remains uncertain whether berberine can improve impaired osteogenesis in type 2 diabetes mellitus (T2DM), and its poor solubility and oral bioavailability also constrain its applications in bone regeneration. Thus, our study aimed to probe the effects of berberine on bone marrow stem cells (BMSCs) in a diabetic microenvironment, with a greater emphasis on developing a suitable nano-delivery system for berberine and assessing its capability to repair diabetic alveolar bone defects. Methods Firstly, BMSCs were exposed to berberine within a high glucose and palmitate (HG+PA) environment. Reactive oxygen species levels, mitochondrial membrane potential, ATP generation, cell apoptosis, and osteogenic potential were subsequently assessed. Next, we explored the regulatory mechanism of autophagy flux in the positive effects of berberine. Furthermore, a nanocarrier based on emulsion electrospinning for sustained local delivery of berberine (Ber@SF/PCL) was established. We assessed its capacity to enhance bone healing in the alveolar bone defect of T2DM rats through micro-computed tomography and histology analysis. Results Berberine treatment could inhibit reactive oxygen species overproduction, mitochondrial dysfunction, apoptosis, and improve osteogenesis differentiation by restoring autophagy flux under HG+PA conditions. Notably, Ber@SF/PCL electrospun nanofibrous membrane with excellent physicochemical properties and good biological safety had the potential to promote alveolar bone remodeling in T2DM rats. Conclusion Our study shed new lights into the protective role of berberine on BMSCs under T2DM microenvironment. Furthermore, berberine-loaded composite electrospun membrane may serve as a promising approach for regenerating alveolar bone in diabetic patients.
Collapse
Affiliation(s)
- Ye Ming
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xinyi He
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Zhenxing Zhao
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xuehuan Meng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Ye Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Hao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Guoyin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Sangalli L, Banday F, Sullivan A, Anjum K. Systemic Factors Affecting Prognosis and Outcomes in Periodontal Disease. Dent Clin North Am 2024; 68:571-602. [PMID: 39244245 DOI: 10.1016/j.cden.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
This review delves into the effects of autoimmune conditions like rheumatoid arthritis, inflammatory disorders such as irritable bowel syndrome, cardiovascular disease, diabetes, infectious ailments like human immunodeficiency virus, and their medications on periodontal therapy outcomes. It also explores the influence of hormones. Understanding these systemic factors is crucial for optimizing periodontal health and treatment efficacy. The review underscores the necessity of considering these variables in periodontal care. Other vital systemic factors are addressed elsewhere in this special edition.
Collapse
Affiliation(s)
- Linda Sangalli
- College of Dental Medicine, Midwestern University, 555 31st, Downers Grove, IL, USA
| | - Fatma Banday
- Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA
| | - Andrew Sullivan
- Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA
| | - Kainat Anjum
- Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA.
| |
Collapse
|
3
|
Leelasukseree R, Chouyratchakarn W, Phutiyothin C, Pikwong F, Srisopar O, Baipaywad P, Udomsom S, Mongkolpathumrat P, Supanchart C, Kumphune S. Recombinant human secretory leukocyte protease inhibitor (rhSLPI) coated titanium enhanced human osteoblast adhesion and differentiation. Sci Rep 2023; 13:23013. [PMID: 38155270 PMCID: PMC10754898 DOI: 10.1038/s41598-023-50565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Osseointegration is vital to success in orthopedic and dental reconstructions with implanted materials. The bone matrix or cells-particularly osteoblasts-are required to achieve functional contact on the implant surface. Osteoblast induction is therefore essential for osteogenesis to occur. Enhancement of osteoblast adhesion, proliferation, and differentiation, particularly by implant surface modifications, have been found challenging to develop. Secretory Leukocyte Protease Inhibitor (SLPI), a cation ionic protein with anti-inflammatory and anti-bacterial activities, showed activation in osteoblast proliferation and differentiation. However, the effects of coating recombinant human (rh) SLPI on a titanium alloy surface on human osteoblast adhesion, proliferation, and differentiation has never been investigated. In this study, titanium alloys (Ti-6Al-4V) were coated with rhSLPI, while human osteoblast adhesion, proliferation, differentiation, actin cytoskeletal organization, and gene expressions involved in cell adhesion and differentiation were investigated. The results indicate that coating titanium with 10-100 µg/ml rhSLPI enhanced the physical properties of the Ti surface and enhanced human osteoblast (hFOB 1.19) cell adhesion, activated actin dynamic, enhanced adhesive forces, upregulated integrins α1, α2, and α5, enhanced cell proliferation, mineralization, alkaline phosphatase activity, and upregulated ALP, OCN, and Runx2. This is the first study to demonstrate that coating SLPI on titanium surfaces enhances osseointegration and could be a candidate molecule for surface modification in medical implants.
Collapse
Affiliation(s)
- Radchanon Leelasukseree
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Faprathan Pikwong
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Onnicha Srisopar
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Phornsawat Baipaywad
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Suruk Udomsom
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand
| | - Podsawee Mongkolpathumrat
- Cardio-Thoracic Technology Program, Chulabhorn International College of Medicine (CICM), Cooperative Learning Center, Thammasat University (Rangsit Center), Piyachart 2, 99 Moo 18 Klong Luang, Rangsit, Pathumthani, 12120, Thailand
| | - Chayarop Supanchart
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand.
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Mathangi R, Shyamsundar V, Meenakshi A, Aravindha Babu N, Vashum Y, Shila S. Influence of type 2 diabetes on immunohistochemical detection of TRAF6, cFos and NFATC1 in the gingiva in cases of chronic periodontitis. Biotech Histochem 2023; 98:492-500. [PMID: 37486267 DOI: 10.1080/10520295.2023.2236543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Type 2 diabetes (T2D) and chronic periodontitis (CP) are common diseases worldwide. Although T2D increases the severity of CP and alveolar bone loss, the mechanism of this is not well understood. We investigated using immunohistochemistry the expression of three osteoclast proteins, TRAF6, cFos and NFATc1, in gingival tissues. Gingival tissues were obtained from three groups: HC group, healthy controls; CP group, patients with CP; T2D + CP group, patients with both T2D and CP. Strong immunostaining for TRAF6, cFos and NFATc1 was observed in the gingival epithelium as well as in inflammatory cells in the CP and T2D + CP groups. Immunostaining was most intense in the T2D + CP group. We found strong up-regulation of TRAF6, cFos and NFATC1 in gingiva tissue of subjects with both T2D and CP, which corroborates our hypothesis that T2D potentiates osteoclastogenesis in CP.
Collapse
Affiliation(s)
- R Mathangi
- Research and Development Centre, Bharathiar University, Coimbatore, India
- Department of Biochemistry, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, India
| | - Vidyarani Shyamsundar
- Department of Oral Pathology and Microbiology, Centre of Oral Cancer Prevention and Research, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, India
| | - A Meenakshi
- Department of Periodontics, Sri Venkateshwara Dental College and Hospital, Chennai, India
| | - N Aravindha Babu
- Department of Oral Pathology and Microbiology, Centre of Oral Cancer Prevention and Research, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, India
| | - Yaongamphi Vashum
- Department of Biochemistry, Armed Forces Medical College, Pune, India
| | - S Shila
- VRR Institute of Biomedical Science, Affiliated to University of Madras, Chennai, India
| |
Collapse
|
5
|
Bergamo ET, Witek L, Ramalho I, Lopes ACO, Vivekanand Nayak V, Bonfante EA, Tovar N, Torroni A, Coelho PG. Bone healing around implants placed in subjects with metabolically compromised systemic conditions. J Biomed Mater Res B Appl Biomater 2023; 111:1664-1671. [PMID: 37184298 PMCID: PMC10330391 DOI: 10.1002/jbm.b.35264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
The aim of this study was to evaluate the bone healing of tight-fit implants placed in the maxilla and mandible of subjects compromised with metabolic syndrome (MS) and type-2 Diabetes Mellitus (T2DM). Eighteen Göttingen minipigs were randomly distributed into three groups: (i) control (normal diet), (ii) MS (cafeteria diet for obesity induction), (iii) T2DM (cafeteria diet for obesity induction + Streptozotocin for T2DM induction). Maxillary and mandibular premolars and molar were extracted. After 8 weeks of healing, implants with progressive small buttress threads were placed, and allowed to integrate for 6 weeks after which the implant/bone blocks were retrieved for histological processing. Qualitative and quantitative histomorphometric analyses (percentage of bone-to-implant contact, %BIC, and bone area fraction occupancy within implant threads, %BAFO) were performed. The bone healing process around the implant occurred predominantly through interfacial remodeling with subsequent bone apposition. Data as a function of systemic condition yielded significantly higher %BIC and %BAFO values for healthy and MS relative to T2DM. Data as a function of maxilla and mandible did not yield significant differences for either %BIC and %BAFO. When considering both factors, healthy and MS subjects had %BIC and %BAFO trend towards higher values in the mandible relative to maxilla, whereas T2DM yielded higher %BIC and %BAFO in the maxilla relative to mandible. All systemic conditions presented comparable levels of %BIC and %BAFO in the maxilla; healthy and MS presented significantly higher %BIC and %BAFO relative to T2DM in the mandible. T2DM presented lower amounts of bone formation around implants relative to MS and healthy. Implants placed in the maxilla and in the mandible showed comparable amounts of bone in proximity to implants.
Collapse
Affiliation(s)
- Edmara T.P. Bergamo
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY USA
| | - Ilana Ramalho
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Adolfo CO Lopes
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, Brooklyn, NY USA
| | - Estevam A Bonfante
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Nick Tovar
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Oral and Maxillofacial Surgery, NYU Langone Medical Center and Bellevue, Hospital Center, New York, NY USA
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, Grossman School of Medicine, New York University, New York, NY USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Liu X, Dai B, Chuai Y, Hu M, Zhang H. Associations between vitamin D levels and periodontal attachment loss. Clin Oral Investig 2023; 27:4727-4733. [PMID: 37291391 DOI: 10.1007/s00784-023-05100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Periodontitis is accompanied by attachment loss and alveolar bone resorption. Vitamin D (VD) deficiency was closely associated with bone loss or osteoporosis. The study aims to investigate the potential relationship between different VD levels and severe periodontal attachment loss in American adults. METHODS A cross-sectional analysis was conducted including 5749 participants in the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2014. The association of periodontal attachment loss progression with total VD, vitamin D3 (VD3), and vitamin D2 (VD2) levels was assessed using multivariable linear regression models, hierarchical regression, fitted smoothing curves, and generalized additive models. RESULTS Based on the indicators of 5749 subjects, we found that severe attachment loss tended to occur in the elderly or males and was accompanied by less total VD levels, or VD3 levels, as well as a lower poverty-income ratio (PIR). Total VD (below the inflection point: 111 nmol/L) or VD3 were negatively associated with the progression of attachment loss in each multivariable regression model. In threshold analysis, VD3 is linearly correlated with the progression of attachment loss (β = - 0.0183, 95% CI: - 0.0230 to - 0.0136). The relationship between VD2 and attachment loss progression was an S-shaped curve (inflection point: 5.07 nmol/L). CONCLUSION Increasing total VD (below 111 nmol/L) and VD3 levels may be beneficial to periodontal health. VD2 levels above 5.07 nmol/L were a risk factor for severe periodontitis. CLINICAL RELEVANCE The present study reports that different vitamin D levels may serve as different associations with periodontal attachment loss progression.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Bichong Dai
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Yuanyuan Chuai
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Menglin Hu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China.
- Department of Dental Implantology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Fu Y, Jing Z, Chen T, Xu X, Wang X, Ren M, Wu Y, Wu T, Li Y, Zhang H, Ji P, Yang S. Nanotube patterning reduces macrophage inflammatory response via nuclear mechanotransduction. J Nanobiotechnology 2023; 21:229. [PMID: 37468894 DOI: 10.1186/s12951-023-01912-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 07/21/2023] Open
Abstract
The inflammatory immune environment surrounding titanium bone implants determines the formation of osseointegration, and nanopatterning on implant surfaces modulates the immune microenvironment in the implant region. Among many related mechanisms, the mechanism by which nanopatterning controls macrophage inflammatory response still needs to be elucidated. In this paper, we found that inhibition of the nuclear envelope protein lamin A/C by titania nanotubes (TNTs) reduced the macrophage inflammatory response. Knockdown of lamin A/C reduced macrophage inflammatory marker expression, while overexpression of lamin A/C significantly elevated inflammatory marker expression. We further found that suppression of lamin A/C by TNTs limited actin polymerization, thereby reducing the nuclear translocation of the actin-dependent transcriptional cofactor MRTF-A, which subsequently reduced the inflammatory response. In addition, emerin, which is a key link between lamin A/C and actin, was delocalized from the nucleus in response to mechanical stimulation by TNTs, resulting in reduced actin organization. Under inflammatory conditions, TNTs exerted favourable osteoimmunomodulatory effects on the osteogenic differentiation of mouse bone marrow-derived stem cells (mBMSCs) in vitro and osseointegration in vivo. This study shows and confirms for the first time that lamin A/C-mediated nuclear mechanotransduction controls macrophage inflammatory response, and this study provides a theoretical basis for the future design of immunomodulatory nanomorphologies on the surface of metallic bone implants.
Collapse
Affiliation(s)
- Yiru Fu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Xinxin Xu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Xu Wang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Yanqiu Wu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Tianli Wu
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, 426# Songshi-bei Road, Yubei District, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
8
|
Zheng Y, Deng J, Wang G, Zhang X, Wang L, Ma X, Dai Y, E L, Liu X, Zhang R, Zhang Y, Liu H. P53 negatively regulates the osteogenic differentiation in jaw bone marrow MSCs derived from diabetic osteoporosis. Heliyon 2023; 9:e15188. [PMID: 37096002 PMCID: PMC10121411 DOI: 10.1016/j.heliyon.2023.e15188] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Patients with diabetic osteoporosis (DOP) often suffer from poor osseointegration of artificial implants, which is a challenge that affects implant outcomes. The osteogenic differentiation ability of human jaw bone marrow mesenchymal stem cells (JBMMSCs) is the key to implant osseointegration. Studies have shown that the microenvironment of hyperglycemia affects the osteogenic differentiation of mesenchymal stem cells (MSC), but the mechanism is still unclear. Therefore, the aim of this study was to isolate and culture JBMMSCs from surgically derived bone fragments from DOP patients and control patients to investigate the differences in their osteogenic differentiation ability and to elucidate its mechanisms. The results showed that the osteogenic ability of hJBMMSCs was significantly decreased in the DOP environment. Mechanism study showed that the expression of senescence marker gene P53 was significantly increased in DOP hJBMMSCs compared to control hJBMMSCs according to RNA-sequencing result. Further, DOP hJBMMSCs were found to display significant senescence using β-galactosidase staining, mitochondrial membrane potential and ROS assay, qRT-PCR and WB analysis. Overexpression of P53 in hJBMMSCs, knockdown of P53 in DOP hJBMMSCs, and knockdown followed by overexpression of P53 significantly affected the osteogenic differentiation ability of hJBMMSCs. These results suggest that MSC senescence is an important reason for decreasing osteogenic capacity in DOP patients. P53 is a key target in regulating hJBMMSCs aging, and knocking down P53 can effectively restore the osteogenic differentiation ability of DOP hJBMMSCs and promote osteosynthesis in DOP dental implants. It provided a new idea to elucidate the pathogenesis and treatment of diabetic bone metabolic diseases.
Collapse
Affiliation(s)
- Ying Zheng
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Junhao Deng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Gang Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaru Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
| | - Lin Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaocao Ma
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yawen Dai
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lingling E
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiangwei Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Rong Zhang
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100085, China
- Corresponding author.
| | - Hongchen Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Corresponding author. Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
9
|
Monje A, Kan JY, Borgnakke W. Impact of local predisposing/precipitating factors and systemic drivers on peri‐implant diseases. Clin Implant Dent Relat Res 2022. [PMID: 36533411 DOI: 10.1111/cid.13155] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Strong evidence suggests the infectious nature of peri-implant diseases occurring in susceptible hosts. Epidemiological reports, though, indicate that peri-implantitis is a site-specific entity. Hence, the significance of local factors that may predispose/precipitate plaque accumulation and the impact of systemic drivers that alter the immune response are relevant in the prevention and management of peri-implant disorders. PURPOSE The purpose of the present review is to shed light on the significance of local and systemic factors on peri-implant diseases, making special emphasis on the associations with peri-implantitis. METHODS The biologic plausibility and supporting evidence aiming at providing a concluding remark were explored in the recent scientific literature for local predisposing/precipitating factors and systemic drivers related to peri-implant diseases. RESULTS Local predisposing factors such as soft tissue characteristics, implant position and prosthetic design proved being strongly associated with the occurrence of peri-implant diseases. Hard tissue characteristics, however, failed to demonstrate having a direct association with peri-implant diseases. Robust data points toward the strong link between residual sub-mucosal cement and peri-implant diseases, while limited data suggests the impact of residual sub-mucosal floss and peri-implantitis. Systemic drivers/habits such as hyperglycemia and smoking showed a strong negative impact on peri-implantitis. However, there is insufficient evidence to claim for any link between metabolic syndrome, atherosclerotic cardiovascular disease, and obesity and peri-implant diseases. CONCLUSION Local predisposing/precipitating factors and systemic drivers may increase the risk of peri-implant diseases. Therefore, comprehensive anamnesis of the patients, educational/motivational programs and exhaustive prosthetically-driven treatment planning must be fostered aiming at reducing the rate of biological complications in implant dentistry.
Collapse
Affiliation(s)
- Alberto Monje
- Department of Periodontology and Oral Medicine University of Michigan Ann Arbor Michigan USA
- Department of Periodontology Universitat Internacional de Catalunya Barcelona Spain
- Department of Periodontology, ZMK University of Bern Bern CH Switzerland
| | - Joseph Y. Kan
- Department of Implantology Loma Linda University Loma Linda California USA
| | - Wenche Borgnakke
- Department of Periodontology and Oral Medicine University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
10
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Dong K, Zhou WJ, Liu ZH. Metformin enhances the osteogenic activity of rat bone marrow mesenchymal stem cells by inhibiting oxidative stress induced by diabetes mellitus: an in vitro and in vivo study. J Periodontal Implant Sci 2022; 53:54-68. [PMID: 36468474 PMCID: PMC9943706 DOI: 10.5051/jpis.2106240312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of this study was to determine whether metformin (MF) could alleviate the expresssion of reactive oxygen species (ROS) and improve the osteogenic ability of bone marrow mesenchymal stem cells derived from diabetic rats (drBMSCs) in vitro, and to evaluate the effect of MF on the ectopic osteogenesis of drBMSCs in a nude mouse model in vivo. METHODS BMSCs were extracted from normal and diabetic rats. In vitro, a cell viability assay (Cell Counting Kit-8), tests of alkaline phosphatase (ALP) activity, and western blot analysis were first used to determine the cell proliferation and osteogenic differentiation of drBMSCs that were subjected to treatment with different concentrations of MF (0, 50, 100, 200, 500 μM). The cells were then divided into 5 groups: (1) normal rat BMSCs (the BMSCs derived from normal rats group), (2) the drBMSCs group, (3) the drBMSCs + Mito-TEMPO (10 μM, ROS scavenger) group, (4) the drBMSCs + MF (200 μM) group, and (5) the drBMSCs + MF (200 μM) + H2O2 (50 μM, ROS activator) group. Intracellular ROS detection, a senescence-associated β-galactosidase assay, ALP staining, alizarin red staining, western blotting, and immunofluorescence assays were performed to determine the effects of MF on oxidative stress and osteogenic differentiation in drBMSCs. In vivo, the effect of MF on the ectopic osteogenesis of drBMSCs was evaluated in a nude mouse model. RESULTS MF effectively reduced ROS levels in drBMSCs. The cell proliferation, ALP activity, mineral deposition, and osteogenic-related protein expression of drBMSCs were demonstrably higher in the MF-treated group than in the non-MF-treated group. H2O2 inhibited the effects of MF. In addition, ectopic osteogenesis was significantly increased in drBMSCs treated with MF. CONCLUSIONS MF promoted the proliferation and osteogenic differentiation of drBMSCs by inhibiting the oxidative stress induced by diabetes and enhenced the ectopic bone formation of drBMSCs in nude mice.
Collapse
Affiliation(s)
- Kai Dong
- School and Hospital of Stomatology, Shandong University, Jinan, China.,Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China
| | - Wen-Juan Zhou
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China
| | - Zhong-Hao Liu
- School and Hospital of Stomatology, Shandong University, Jinan, China.,Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China.
| |
Collapse
|
12
|
Zhou M, Xu X, Li J, Zhou J, He Y, Chen Z, Liu S, Chen D, Li H, Li G, Huang J, Yang G, Zhang T, Song J. C-reactive protein perturbs alveolar bone homeostasis: an experimental study of periodontitis and diabetes in the rat. J Clin Periodontol 2022; 49:1052-1066. [PMID: 35634690 DOI: 10.1111/jcpe.13667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
AIMS To explore the role of C-reactive protein (CRP) in periodontitis and diabetes and its mechanism in alveolar bone homeostasis. MATERIALS AND METHODS In vivo, normal and Crp knockout rats were randomly divided into: control, diabetes, periodontitis, and diabetes and periodontitis (DP) groups respectively. The diabetes model was established using a high-fat diet combined with streptozotocin (STZ) injection. The periodontitis model was established by ligature combined with lipopolysaccharide injection. Alveolar bones were analyzed using microCT, histology, and immunohistochemistry. In vitro, human periodontal ligament cells (hPDLCs) were treated with lipopolysaccharide and high glucose. CRP knockdown lentivirus or CRP overexpression adenovirus combined with a PI3K/AKT signaling inhibitor or agonist were used to explore the regulatory mechanism of CRP in osteogenesis and osteoclastogenesis of hPDLCs, as evidenced by ALP staining, WB and qPCR. RESULTS In periodontitis and diabetes, CRP knockout decreased the alveolar bone loss and the expression levels of osteoclastogenic markers, while increasing the expression levels of osteogenic markers. CRP constrained osteogenesis while promoting the osteoclastogenesis of hPDLCs via PI3K/AKT signaling under high glucose and pro-inflammatory conditions. CONCLUSIONS CRP inhibits osteogenesis and promotes osteoclastogenesis via PI3K/AKT signaling under diabetic and pro-inflammatory conditions, thus perturbing alveolar bone homeostasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Xu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yao He
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ziqi Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Duanjing Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Han Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Guangyue Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Ghanem M, Heikal L, Abdel Fattah H, El Ashwah A, Fliefel R. The Effect of Coenzyme Q10/Collagen Hydrogel on Bone Regeneration in Extraction Socket Prior to Implant Placement in Type II Diabetic Patients: A Randomized Controlled Clinical Trial. J Clin Med 2022; 11:jcm11113059. [PMID: 35683447 PMCID: PMC9181497 DOI: 10.3390/jcm11113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The healing of an extraction socket leads to alveolar ridge resorption that can hinder future implant placement and further rehabilitation with special concerns in diabetes mellitus. Coenzyme Q10 (CoQ10) has been developed as a new material for alveolar socket augmentation. The aim of this study was to investigate the effect of CoQ10 hydrogel on bone regeneration after extraction of mandibular teeth in Type II diabetic patients. Methods: This trial was registered under the number NCT05122299 and included eighteen patients. The hydrogel was first prepared and characterized. After tooth extraction, the hydrogel was placed in the extraction sockets. Bone formation was evaluated three months after tooth extraction. Results: The bone density was significantly higher in the CoQ10 group than the other two groups measured on cone beam computed tomography (CBCT). The relative gene expression of Runt-related transcription factor 2 (RUNX2) and Osteopontin (OPN) showed significant increase in the presence of CoQ10. Histomorphometry revealed significantly less fibrous tissue in the CoQ10 group in comparison to the control or collagen group. Conclusion: The local application of CoQ10 after tooth extraction provided a simple, inexpensive, yet effective treatment facilitating bone formation and healing in the extraction sockets of diabetic patients.
Collapse
Affiliation(s)
- Mostafa Ghanem
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt; (M.G.); (A.E.A.)
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Champollion Street, Alexandria 21526, Egypt;
| | - Hagar Abdel Fattah
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt;
| | - Adham El Ashwah
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt; (M.G.); (A.E.A.)
| | - Riham Fliefel
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt; (M.G.); (A.E.A.)
- Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians University (LMU), Fraunhoferstrasse 20, 82152 Planegg-Martinsried, Germany
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilians University, Lindwurmstrasse 2a, 80337 Munich, Germany
- Correspondence: or
| |
Collapse
|
14
|
Dong C, Hu X, Tripathi AS. A brief review of vitamin D as a potential target for the regulation of blood glucose and inflammation in diabetes-associated periodontitis. Mol Cell Biochem 2022; 477:2257-2268. [PMID: 35478388 DOI: 10.1007/s11010-022-04445-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Diabetes is a metabolic disorder associated with various complications, including periodontitis. The risk of periodontitis is increased in patients with diabetes, while vitamin D deficiency is associated with both diabetes and periodontitis. Thus, there is a need to identify the molecular effects of vitamin D on the regulation of inflammation and glucose in diabetes-associated periodontitis. The Web of Science, Scopus, and PubMed databases were searched for studies of the molecular effects of vitamin D. Molecular effects were reportedly mediated by salivary secretions, interactions of advanced glycation end products (AGEs) with receptors of AGEs (RAGEs), cytokines, and oxidative stress pathways linking diabetes with periodontitis. Vitamin D supplementation attenuates inflammation in diabetes-associated periodontitis by reducing the levels of inflammatory cytokines and numbers of immune cells; it also has antibacterial effects. Vitamin D reduces cytokine levels through regulation of the extracellular signal-related kinase 1/2 and Toll-like receptor 1/2 pathways, along with the suppression of interleukin expression. Glucose homeostasis is altered in diabetes either because of reduced insulin production or decreased insulin sensitivity. These vitamin D-related alterations of glucoregulatory factors may contribute to hyperglycaemia; hyperglycaemia may also lead to alterations of glucoregulatory factors. This review discusses the pathways involved in glucose regulation and effects of vitamin D supplementation on glucose regulation. Further studies are needed to characterise the effects of vitamin D on diabetes-associated periodontitis.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Stomatology, The People's Hospital of Beilun District, Ningbo, 315800, China
| | - Xuzhi Hu
- Department of Stomatology, The People's Hospital of Beilun District, Ningbo, 315800, China.
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| |
Collapse
|
15
|
Pereira LJ, Andrade EF, Barroso LC, Lima RRD, Macari S, Paiva SM, Silva TA. Irisin effects on bone: systematic review with meta-analysis of preclinical studies and prospects for oral health. Braz Oral Res 2022; 36:e055. [DOI: 10.1590/1807-3107bor-2022.vol36.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
|
16
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Nicchio IG, Cirelli T, Nepomuceno R, Hidalgo MAR, Rossa C, Cirelli JA, Orrico SRP, Barros SP, Theodoro LH, Scarel-Caminaga RM. Polymorphisms in Genes of Lipid Metabolism Are Associated with Type 2 Diabetes Mellitus and Periodontitis, as Comorbidities, and with the Subjects' Periodontal, Glycemic, and Lipid Profiles. J Diabetes Res 2021; 2021:1049307. [PMID: 34805411 PMCID: PMC8601849 DOI: 10.1155/2021/1049307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and periodontitis (P) commonly occur as comorbidities, but the commonalities in the genetic makeup of affected individuals is largely unknown. Since dyslipidemia is a frequent condition in these individuals, we investigate the association of genomic variations in genes involved in lipid metabolism with periodontal, glycemic, lipid profiles, and the association with periodontitis and T2DM (as comorbidities). METHODS Based on clinical periodontal examination and biochemical evaluation, 893 subjects were divided into T2DM+P (T2DM subjects also affected by periodontitis, n = 205), periodontitis (n = 345), and healthy (n = 343). Fourteen single-nucleotide polymorphisms (SNPs) were investigated: LDLR gene (rs5925 and rs688), APOB (rs676210, rs1042031, and rs693), ABCC8 (rs6544718 and 6544713), LPL (rs28524, rs3735964, and rs1370225), HNF1A (rs2650000), APOE (rs429358 and rs7412), and HNF4A (rs1800961). Multiple linear and logistic regressions (adjusted for covariates) were made for all populations and stratified by sex and smoking habits. RESULTS Individuals carrying APOB-rs1042031-CT (mainly women and never smokers) had a lower risk of developing periodontitis and T2DM (T2DM+P); altogether, this genotype was related with healthier glycemic, lipid, and periodontal parameters. Significant disease-phenotype associations with gene-sex interaction were also found for carriers of APOB-rs1676210-AG, HNF4A-rs1800961-CT, ABCC8-rs6544718-CT, LPL-rs13702-CC, and LPL-rs285-CT. CONCLUSIONS Polymorphisms in lipid metabolism genes are associated with susceptibility to T2DM-periodontitis comorbidities, demonstrating gene-sex interaction. The APOB-rs1042031 was the most relevant gene marker related to glucose and lipid metabolism profiles, as well as with obesity and periodontitis.
Collapse
Affiliation(s)
- Ingra G. Nicchio
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Thamiris Cirelli
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Rafael Nepomuceno
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Marco A. R. Hidalgo
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Carlos Rossa
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Joni A. Cirelli
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Silvana R. P. Orrico
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Advanced Research Center in Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto, SP 15030-070, Brazil
| | - Silvana P. Barros
- Department of Periodontology, University of North Carolina at Chapel Hill-UNC, School of Dentistry, Chapel Hill, NC, USA
| | - Letícia H. Theodoro
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araçatuba, Araçatuba, SP, Brazil
| | - Raquel M. Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| |
Collapse
|
18
|
Wang X, Ning B, Pei X. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2021; 208:112055. [PMID: 34438295 DOI: 10.1016/j.colsurfb.2021.112055] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Implant-associated infections and aseptic loosening are some of the main reasons for implant failure. Therefore, there is an urgent need to improve the osseointegration and antibacterial capabilities of implant materials. In recent years, a large number of breakthroughs in the biological application of tantalum and its derivatives have been achieved. Owing to their corrosion resistance, biocompatibility, osseointegration ability, and antibacterial properties, they have shown considerable potential in orthopedic and dental implant applications. In this review, we provide the latest progress and achievements in the research on osseointegration and antibacterial properties of tantalum as well as its derivatives, and summarize the surface modification methods to enhance their osseointegration and antibacterial properties.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Ning
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
19
|
Qi SS, Shao ML, Sun Z, Chen SM, Hu YJ, Li XS, Chen DJ, Zheng HX, Yue TL. Chondroitin Sulfate Alleviates Diabetic Osteoporosis and Repairs Bone Microstructure via Anti-Oxidation, Anti-Inflammation, and Regulating Bone Metabolism. Front Endocrinol (Lausanne) 2021; 12:759843. [PMID: 34777254 PMCID: PMC8579055 DOI: 10.3389/fendo.2021.759843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic osteoporosis (DOP) belongs to secondary osteoporosis caused by diabetes; it has the characteristics of high morbidity and high disability. In the present study, we constructed a type 1 diabetic rat model and administered chondroitin sulfate (200 mg/kg) for 10 weeks to observe the preventive effect of chondroitin sulfate on the bone loss of diabetic rats. The results showed that chondroitin sulfate can reduce blood glucose and relieve symptoms of diabetic rats; in addition, it can significantly increase the bone mineral density, improve bone microstructure, and reduce bone marrow adipocyte number in diabetic rats; after 10 weeks of chondroitin sulfate administration, the SOD activity level was upregulated, as well as CAT levels, indicating that chondroitin sulfate can alleviate oxidative stress in diabetic rats. Chondroitin sulfate was also found to reduce the level of serum inflammatory cytokines (TNF-α, IL-1, IL-6, and MCP-1) and alleviate the inflammation in diabetic rats; bone metabolism marker detection results showed that chondroitin sulfate can reduce bone turnover in diabetic rats (decreased RANKL, CTX-1, ALP, and TRACP 5b levels were observed after 10 weeks of chondroitin sulfate administration). At the same time, the bone OPG and RUNX 2 expression levels were higher after chondroitin sulfate treatment, the bone RANKL expression was lowered, and the OPG/RANKL ratio was upregulated. All of the above indicated that chondroitin sulfate could prevent STZ-induced DOP and repair bone microstructure; the main mechanism was through anti-oxidation, anti-inflammatory, and regulating bone metabolism. Chondroitin sulfate could be used to develop anti-DOP functional foods and diet interventions for diabetes.
Collapse
Affiliation(s)
- Shan Shan Qi
- College of Food Science and Engineering, Northwest Agriculture and Forestry (A&F) University, Yangling, China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, China
| | - Meng Li Shao
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, China
| | - Ze Sun
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C.I.C., Hanzhong, China
| | - Si Min Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Ying Jun Hu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Xin Sheng Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Shaanxi Key Laboratory of Resource Biology, Hanzhong, China
| | - De Jing Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, China
- *Correspondence: Tian Li Yue, ; Hong Xing Zheng, ; De Jing Chen,
| | - Hong Xing Zheng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, China
- Shaanxi Key Laboratory of Resource Biology, Hanzhong, China
- *Correspondence: Tian Li Yue, ; Hong Xing Zheng, ; De Jing Chen,
| | - Tian Li Yue
- College of Food Science and Engineering, Northwest Agriculture and Forestry (A&F) University, Yangling, China
- College of Food Science and Technology, Northwest University, Xi’an, China
- *Correspondence: Tian Li Yue, ; Hong Xing Zheng, ; De Jing Chen,
| |
Collapse
|
20
|
Ahmad R, Haque M. Oral Health Messiers: Diabetes Mellitus Relevance. Diabetes Metab Syndr Obes 2021; 14:3001-3015. [PMID: 34234496 PMCID: PMC8257029 DOI: 10.2147/dmso.s318972] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
This article aims to narrate the various oral complications in individuals suffering from diabetes mellitus. Google search for "diabetes mellitus and oral complications" was done. The search was also carried out for "diabetes mellitus" and its oral complications individually. Diabetes mellitus is a chronic metabolic disorder that is a global epidemic and a common cause of morbidity and mortality in the world today. Currently, there are about 422 million cases of diabetes mellitus worldwide. Diabetic patients can develop different complications in the body such as retinopathy, neuropathy, nephropathy, cardiovascular disease. Complications in the oral cavity have been observed in individuals suffering from diabetes mellitus. A study noted that more than 90% of diabetic patients suffered from oral complications. Another research has shown a greater prevalence of oral mucosal disorders in patients with diabetes mellitus than non-diabetic population: 45-88% in patients with type 2 diabetes compared to 38.3-45% in non-diabetic subjects and 44.7% in type 1 diabetic individuals compared to 25% in the non-diabetic population. Oral complications in people with diabetes are periodontal disease, dental caries, oral infections, salivary dysfunction, taste dysfunction, delayed wound healing, tongue abnormalities, halitosis, and lichen planus. The high glucose level in saliva, poor neutrophil function, neuropathy, and small vessel damage contribute to oral complications in individuals with uncontrolled diabetes. Good oral health is imperative for healthy living. Oral complications cause deterioration to the quality of life in diabetic patients. Complications like periodontal disease having a bidirectional relationship with diabetes mellitus even contribute to increased blood glucose levels in people with diabetes. This article intends to promote awareness regarding the oral health of diabetics and to stress the importance of maintaining proper oral hygiene, taking preventive measures, early detection, and appropriate management of oral complications of these patients through a multidisciplinary approach.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
- Correspondence: Mainul Haque The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, 57000, Malaysia Email
| |
Collapse
|