1
|
Yao Z, Liang S, Chen J, Zhang H, Chen W, Li H. Dietary Lactate Intake and Physical Exercise Synergistically Reverse Brown Adipose Tissue Whitening to Ameliorate Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39486070 DOI: 10.1021/acs.jafc.4c06899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Physical exercise represents an effective strategy for combating obesity via brown adipose tissue (BAT) activation, but the mechanism remains unclear. In this study, we demonstrated that the cooperation between lactate and adrenoceptor signaling regulated BAT activity during exercise. The lactate receptor GPR81 was highly expressed in the BAT of lean mice, whereas its expression was markedly decreased in obese mice. Notably, the level of GPR81 in BAT could be upregulated by exercise. The blockade of lactate production or GPR81 significantly impaired exercise-induced BAT activation. In addition, dietary lactate intake enhanced the efficacy of physical exercise in alleviating BAT whitening in obese mice, as evidenced by the improved mitochondrial ultrastructure, reduced lipid droplets, increased UCP1 expression, and elevated mitochondrial DNA content. Further data indicated that norepinephrine triggered UCP1 activation through both the cAMP/PKA and Ca2+/CaMK pathways during exercise, while lactate mediated this process via the GPR81-Ca2+/CaMK cascade. Our findings unveil a novel mechanism in the regulation of BAT function by physical exercise, providing a promising lifestyle intervention to improve metabolic health.
Collapse
Affiliation(s)
- Zhijie Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuxiao Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Zhao B, Jiang R, Gong M, He X, Kong J, Liu Z, Gu J. Experimental Study on Penetration of Smaller Inferior Vena Cava after Conical Filter Placement: Results in a Swine Model. Ann Vasc Surg 2024; 110:432-438. [PMID: 39424176 DOI: 10.1016/j.avsg.2024.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Inferior vena cava (IVC) penetration is a prevalent complication following the placement of conical filters. However, there is a paucity of studies examining the penetration in smaller IVC. The objective of this study was to assess the time of penetration, the incidence of serious complications associated with penetration, and the process of IVC wall repair in the smaller IVC following the placement of a conical filter. METHODS Twenty pigs were randomly assigned to 2 groups and received either Celect or Denali filters. Weekly follow-up imaging using computed tomography venography (CTV) of the IVC was conducted to monitor the position of the IVC filter struts until at least 1 strut was observed to be penetrating the vessel wall. At necropsy, a comprehensive gross and histological examination was performed on the IVC and adjacent anatomical structures in all animals. RESULTS The puncture and cavography procedures were successfully conducted on all animals, and no significant differences were found in the mean diameter of the IVC between the Celect and Denali groups (15.89 ± 1.27 mm vs. 16.39 ± 1.39 mm, P > 0.05). All filters were implanted without complications. CTV detected IVC penetration within 9 weeks, which was confirmed during necropsy. The Celect group had a significantly earlier time of IVC penetration compared to the Denali group (2.43 ± 0.52 weeks vs. 6.81 ± 1.32 weeks, P < 0.001). No evidence of filter tilt, fracture, migration, caval thromboses, retroperitoneal bleeding, wall hematoma, tearing of the IVC wall, or peripheral tissue and organ damage was observed during the CTV and subsequent necropsy. Additionally, histological analysis showed that the Celect group had a lower percentage area of collagen fiber compared to the Denali group (33.92% vs. 49.04%, P < 0.001). The fiber proliferation was positively correlated linearly with the indwelling time of filter (r = 0.97, P < 0.001). CONCLUSIONS Penetration can occur within a relatively brief period following the placement of the conical filter into the smaller IVC. Nevertheless, no short-term severe complications were observed in connection with the penetration. The proliferation of fibers in the IVC wall exhibited a positive linear correlation with the duration of filter indwelling.
Collapse
Affiliation(s)
- Boxiang Zhao
- Department of Interventional and Vascular Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Jiang
- Department of Interventional and Vascular Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Maofeng Gong
- Department of Interventional and Vascular Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xu He
- Department of Interventional and Vascular Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jie Kong
- Department of Interventional and Vascular Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhengli Liu
- Department of Interventional and Vascular Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jianping Gu
- Department of Interventional and Vascular Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Lee J, Yang J, Kim J, Jang Y, Lee J, Han D, Kim H, Jeong BC, Seong JK. Effects of Environmental Noise Stress on Mouse Metabolism. Int J Mol Sci 2024; 25:10985. [PMID: 39456767 PMCID: PMC11507537 DOI: 10.3390/ijms252010985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental noise is associated with various health outcomes. However, the mechanisms through which these outcomes influence behavior and metabolism remain unclear. This study investigated how environmental noise affects the liver, adipose tissue, and brain metabolic functions, leading to behavioral and body weight changes. Mice were divided into a noise group exposed to construction noise and an unexposed (control) group. Behavior and body weight changes were monitored over 50 days. Early changes in response to noise exposure were assessed by measuring plasma cortisol and glial fibrillary acidic protein expression in brain tissues on days 1, 15, and 30. Chronic responses, including changes in lipoprotein and fat metabolism and neurotransmitters, were investigated by analyzing serum lipoprotein levels and body fat mass and evaluating liver, fat, and brain tissue after 50 days. The noise group showed higher locomotor activity and reduced anxiety in the open-field and Y-maze tests. Noise exposure caused an initial weight loss; however, chronic noise increased fat mass and induced adipocyte hypertrophy. Our findings underscore the role of environmental noise-induced stress in augmenting locomotor activity and reducing anxiety in mice through neurotransmitter modulation while increasing the risk of obesity by decreasing HDL cholesterol levels and promoting adipocyte hypertrophy.
Collapse
Affiliation(s)
- Jungmin Lee
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Jehoon Yang
- Curogen Technology, Suwon 16419, Republic of Korea;
| | - Jeyun Kim
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Yoonjung Jang
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
- College of Veterinary Medicine, Chungbuk National University, Cheong-ju 28644, Republic of Korea
| | - Jisun Lee
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Daehyun Han
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Hunnyun Kim
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
| | - Byong Chang Jeong
- Preclinical Resource Center, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.K.); (Y.J.); (J.L.); (D.H.); (H.K.)
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioinformatics, and BIO-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Yu J, Gao M, Wang L, Guo X, Liu X, Sheng M, Cheng S, Guo Y, Wang J, Zhao C, Guo W, Zhang Z, Liu Y, Hu C, Ma X, Xie C, Zhang Q, Xu L. An insoluble cellulose nanofiber with robust expansion capacity protects against obesity. Int J Biol Macromol 2024; 277:134401. [PMID: 39097049 DOI: 10.1016/j.ijbiomac.2024.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
An imbalance between energy intake and energy expenditure predisposes obesity and its related metabolic diseases. Soluble dietary fiber has been shown to improve metabolic homeostasis mainly via microbiota reshaping. However, the application and metabolic effects of insoluble fiber are less understood. Herein, we employed nanotechnology to design citric acid-crosslinked carboxymethyl cellulose nanofibers (CL-CNF) with a robust capacity of expansion upon swelling. Supplementation with CL-CNF reduced food intake and delayed digestion rate in mice by occupying stomach. Besides, CL-CNF treatment mitigated diet-induced obesity and insulin resistance in mice with enhanced energy expenditure, as well as ameliorated inflammation in adipose tissue, intestine and liver and reduced hepatic steatosis, without any discernible signs of toxicity. Additionally, CL-CNF supplementation resulted in enrichment of probiotics such as Bifidobacterium and decreased in the relative abundances of deleterious microbiota expressing bile salt hydrolase, which led to increased levels of conjugated bile acids and inhibited intestinal FXR signaling to stimulate the release of GLP-1. Taken together, our findings demonstrate that CL-CNF administration protects mice from diet-induced obesity and metabolic dysfunction by reducing food intake, enhancing energy expenditure and remodeling gut microbiota, making it a potential therapeutic strategy against metabolic diseases.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaodi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shimiao Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yingying Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Doğru D, Özdemir GD, Özdemir MA, Ercan UK, Topaloğlu Avşar N, Güren O. An automated in vitro wound healing microscopy image analysis approach utilizing U-net-based deep learning methodology. BMC Med Imaging 2024; 24:158. [PMID: 38914942 PMCID: PMC11197287 DOI: 10.1186/s12880-024-01332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The assessment of in vitro wound healing images is critical for determining the efficacy of the therapy-of-interest that may influence the wound healing process. Existing methods suffer significant limitations, such as user dependency, time-consuming nature, and lack of sensitivity, thus paving the way for automated analysis approaches. METHODS Hereby, three structurally different variations of U-net architectures based on convolutional neural networks (CNN) were implemented for the segmentation of in vitro wound healing microscopy images. The developed models were fed using two independent datasets after applying a novel augmentation method aimed at the more sensitive analysis of edges after the preprocessing. Then, predicted masks were utilized for the accurate calculation of wound areas. Eventually, the therapy efficacy-indicator wound areas were thoroughly compared with current well-known tools such as ImageJ and TScratch. RESULTS The average dice similarity coefficient (DSC) scores were obtained as 0.958 ∼ 0.968 for U-net-based deep learning models. The averaged absolute percentage errors (PE) of predicted wound areas to ground truth were 6.41%, 3.70%, and 3.73%, respectively for U-net, U-net++, and Attention U-net, while ImageJ and TScratch had considerable averaged error rates of 22.59% and 33.88%, respectively. CONCLUSIONS Comparative analyses revealed that the developed models outperformed the conventional approaches in terms of analysis time and segmentation sensitivity. The developed models also hold great promise for the prediction of the in vitro wound area, regardless of the therapy-of-interest, cell line, magnification of the microscope, or other application-dependent parameters.
Collapse
Affiliation(s)
- Dilan Doğru
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey
| | - Gizem D Özdemir
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Mehmet A Özdemir
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Izmir, Turkey.
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey.
| | - Utku K Ercan
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Nermin Topaloğlu Avşar
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Onan Güren
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey.
| |
Collapse
|
6
|
Wang W, Deng J, Yin C, Wang F, Zhang C, Yu C, Gong S, Zhan X, Chen S, Shen D. Study of association between corneal shape parameters and axial length elongation during orthokeratology using image-pro plus software. BMC Ophthalmol 2024; 24:163. [PMID: 38609888 PMCID: PMC11010382 DOI: 10.1186/s12886-024-03398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The aim was to validate the correlation between corneal shape parameters and axial length growth (ALG) during orthokeratology using Image-Pro Plus (IPP) 6.0 software. METHODS This retrospective study used medical records of myopic children aged 8-13 years (n = 104) undergoing orthokeratology. Their corneal topography and axial length were measured at baseline and subsequent follow-ups after lens wear. Corneal shape parameters, including the treatment zone (TZ) area, TZ diameter, TZ fractal dimension, TZ radius ratio, eccentric distance, pupil area, and pupillary peripheral steepened zone(PSZ) area, were measured using IPP software. The impact of corneal shape parameters at 3 months post-orthokeratology visit on 1.5-year ALG was evaluated using multivariate linear regression analysis. RESULTS ALG exhibited significant associations with age, TZ area, TZ diameter, TZ fractal dimension, and eccentric distance on univariate linear regression analysis. Multivariate regression analysis identified age, TZ area, and eccentric distance as significantly correlated with ALG (all P < 0.01), with eccentric distance showing the strongest correlation (β = -0.370). The regressive equation was y = 1.870 - 0.235a + 0.276b - 0.370c, where y represents ALG, a represents age, b represents TZ area, and c represents eccentric distance; R2 = 0.27). No significant relationships were observed between the TZ radius ratio, pupillary PSZ area, and ALG. CONCLUSIONS IPP software proves effective in capturing precise corneal shape parameters after orthokeratology. Eccentric distance, rather than age or the TZ area, significantly influences ALG retardation.
Collapse
Affiliation(s)
- W Wang
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China.
| | - J Deng
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yin
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| | - F Wang
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| | - C Zhang
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| | - C Yu
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| | - S Gong
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| | - X Zhan
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| | - S Chen
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| | - D Shen
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| |
Collapse
|
7
|
Meng M, Cao Y, Qiu J, Shan G, Wang Y, Zheng Y, Guo M, Yu J, Ma Y, Xie C, Hu C, Xu L, Mueller E, Ma X. Zinc finger protein ZNF638 regulates triglyceride metabolism via ANGPTL8 in an estrogen dependent manner. Metabolism 2024; 152:155784. [PMID: 38211696 DOI: 10.1016/j.metabol.2024.155784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND AND AIM Triglyceride (TG) levels are closely related to obesity, fatty liver and cardiovascular diseases, while the regulatory factors and mechanism for triglyceride homeostasis are still largely unknown. Zinc Finger Protein 638 (ZNF638) is a newly discovered member of zinc finger protein family for adipocyte function in vitro. The aim of the present work was to investigate the role of ZNF638 in regulating triglyceride metabolism in mice. METHODS We generated ZNF638 adipose tissue specific knockout mice (ZNF638 FKO) by cross-breeding ZNF638 flox to Adiponectin-Cre mice and achieved adipose tissue ZNF638 overexpression via adenoviral mediated ZNF638 delivery in inguinal adipose tissue (iWAT) to examined the role and mechanisms of ZNF638 in fat biology and whole-body TG homeostasis. RESULTS Although ZNF638 FKO mice showed similar body weights, body composition, glucose metabolism and serum parameters compared to wild-type mice under chow diet, serum TG levels in ZNF638 FKO mice were increased dramatically after refeeding compared to wild-type mice, accompanied with decreased endothelial lipoprotein lipase (LPL) activity and increased lipid absorption of the small intestine. Conversely, ZNF638 overexpression in iWAT reduced serum TG levels while enhanced LPL activity after refeeding in female C57BL/6J mice and obese ob/ob mice. Specifically, only female mice exhibited altered TG metabolism upon ZNF638 expression changes in fat. Mechanistically, RNA-sequencing analysis revealed that the TG regulator angiopoietin-like protein 8 (Angptl8) was highly expressed in iWAT of female ZNF638 FKO mice. Neutralizing circulating ANGPTL8 in female ZNF638 FKO mice abolished refeeding-induced TG elevation. Furthermore, we demonstrated that ZNF638 functions as a transcriptional repressor by recruiting HDAC1 for histone deacetylation and broad lipid metabolic gene suppression, including Angptl8 transcription inhibition. Moreover, we showed that the sexual dimorphism is possibly due to estrogen dependent regulation on ZNF638-ANGPTL8 axis. CONCLUSION We revealed a role of ZNF638 in the regulation of triglyceride metabolism by affecting Angptl8 transcriptional level in adipose tissue with sexual dimorphism.
Collapse
Affiliation(s)
- Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Guangyu Shan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yingwen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China
| | - Yuandi Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Elisabetta Mueller
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine New York University, Grossman School of Medicine, New York, NY, USA
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
| |
Collapse
|
8
|
Liao X, Cai D, Liu J, Hu H, You R, Pan Z, Chen S, Xu K, Dai W, Zhang S, Lin X, Huang H. Deletion of Mettl3 in mesenchymal stem cells promotes acute myeloid leukemia resistance to chemotherapy. Cell Death Dis 2023; 14:796. [PMID: 38052820 PMCID: PMC10698052 DOI: 10.1038/s41419-023-06325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Acute myeloid leukemia (AML) cell survival and chemoresistance are influenced by the existence of bone marrow mesenchymal stem cells (BMMSCs); however, the pathways by which BMMSCs contribute to these processes remain unclear. We earlier revealed that methyltransferase-like 3 (METTL3) expression is significantly reduced in AML BMMSCs and that METTL3 mediates BMMSC adipogenesis to promote chemoresistance in human AML cell lines in vitro. In this investigation, we evaluated the METTL3 function in vivo. Mice exhibiting a conditional removal of Mettl3 in BMMSCs were developed by mating Prrx1-CreERT2;Mettl3fl/+ mice with Mettl3fl/fl mice using the CRISPR-Cas9 system. The Mettl3 deletion increased bone marrow adiposity, enhanced disease progression in the transplantation-induced MLL-AF9 AML mouse model, and chemoresistance to cytarabine. The removal of Mettl3 in BMMSCs resulted in a significant increase in BMMSC adipogenesis. This effect was attributed to the downregulation of AKT1 expression, an AKT serine/threonine kinase 1, in an m6A-dependent manner. The development of chemoresistance in AML is linked to the promoted adipogenesis of BMMSCs. We conclude that METTL3 expression in BMMSCs has a critical function in limiting AML progression and chemoresistance, providing a basis for the progression of therapeutic approaches for AML.
Collapse
Affiliation(s)
- Xinai Liao
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Danni Cai
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Haoran Hu
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Ruolan You
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Zhipeng Pan
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Shucheng Chen
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Kaiming Xu
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Wei Dai
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Shuxia Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, 350122, Fuzhou, Fujian, China.
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Guo M, Zhang J, Ma Y, Zhu Z, Zuo H, Yao J, Wu X, Wang D, Yu J, Meng M, Liu C, Zhang Y, Chen J, Lu J, Ding S, Hu C, Ma X, Xu L. AAV-Mediated nuclear localized PGC1α4 delivery in muscle ameliorates sarcopenia and aging-associated metabolic dysfunctions. Aging Cell 2023; 22:e13961. [PMID: 37584432 PMCID: PMC10577532 DOI: 10.1111/acel.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Sarcopenia is characterized of muscle mass loss and functional decline in elder individuals which severely affects human physical activity, metabolic homeostasis, and life quality. Physical exercise is considered effective in combating muscle atrophy and sarcopenia, yet it is not feasible to elders with limited mobility. PGC-1α4, a short isoform of PGC-1α, is strongly induced in muscle under resistance training, and promotes muscle hypertrophy. In the present study, we showed that the transcriptional levels and nuclear localization of PGC1α4 was reduced during aging, accompanied with muscle dystrophic morphology, and gene programs. We thus designed NLS-PGC1α4 and ectopically express it in myotubes to enhance PGC1α4 levels and maintain its location in nucleus. Indeed, NLS-PGC1α4 overexpression increased muscle sizes in myotubes. In addition, by utilizing AAV-NLS-PGC1α4 delivery into gastrocnemius muscle, we found that it could improve sarcopenia with grip strength, muscle weights, fiber size and molecular phenotypes, and alleviate age-associated adiposity, insulin resistance and hepatic steatosis, accompanied with altered gene signatures. Mechanistically, we demonstrated that NLS-PGC-1α4 improved insulin signaling and enhanced glucose uptake in skeletal muscle. Besides, via RNA-seq analysis, we identified myokines IGF1 and METRNL as potential targets of NLS-PGC-1α4 that possibly mediate the improvement of muscle and adipose tissue functionality and systemic energy metabolism in aged mice. Moreover, we found a negative correlation between PGC1α4 and age in human skeletal muscle. Together, our results revealed that NLS-PGC1α4 overexpression improves muscle physiology and systematic energy homeostasis during aging and suggested it as a potent therapeutic strategy against sarcopenia and aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Ying Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Zhenzhong Zhu
- Department of OrthopedicsSixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Caizhi Liu
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jiangrong Chen
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and HealthEast China Normal UniversityShanghaiChina
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and HealthEast China Normal UniversityShanghaiChina
| | - Cheng Hu
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghaiChina
- Chongqing Key Laboratory of Precision OpticsChongqing Institute of East China Normal UniversityChongqingChina
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| |
Collapse
|
10
|
Lakthan T, Limpachayaporn P, Rayanil KO, Charoenpanich P, Phuangbubpha P, Charoenpanich A. Lupenone-Rich Fraction Derived from Cissus quadrangularis L. Suppresses Lipid Accumulation in 3T3-L1 Adipocytes. Life (Basel) 2023; 13:1724. [PMID: 37629581 PMCID: PMC10455188 DOI: 10.3390/life13081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Cissus quadrangularis L. (CQ) has potential as a therapeutic for managing obesity and balancing metabolic activity, but the main bioactive compound and regulatory mechanism remain unknown. Herein, the CQ hexane extract was fractionated into 30 fractions (CQ-H) using flash column chromatography and analyzed using thin-layer chromatography. The direct antiadipogenesis effect of CQ-H fractions was tested on 3T3-L1 preadipocytes. Lupenone-rich fractions 2H and 3H were identified as containing potent antiadipogenesis agents that reduced differentiated cell numbers and intracellular lipid droplet size. Although the overall mitochondrial density remained unchanged, differentiated cells exhibited a higher mitochondrial density than that in non-differentiated cells. Additionally, 2H increased mitochondrial activity in both cell types as shown by their differentiation and lipid formation stages. Lupenone was isolated from 2H (Lu-CQ) and shown to dose-dependently inhibit adipogenesis, with 2H being more potent than Lu-CQ. Lu-CQ and 2H downregulated the expression of Pparg2 mRNA and upregulated that of glucose transporter genes, Slc2a1 and Slc2a4. Lu-CQ and 2H induced increased glucose uptake by 3T3-L1 cells. These findings suggest that lupenone-rich fractions in CQ contribute to balancing metabolic activity and reducing adipose tissue formation. Further exploration of CQ and its components may prompt innovative strategies for managing obesity and metabolic disorders.
Collapse
Affiliation(s)
- Thitiporn Lakthan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (T.L.); (P.P.)
| | - Panupun Limpachayaporn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (P.L.); (K.-o.R.)
| | - Kanok-on Rayanil
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (P.L.); (K.-o.R.)
| | - Pornsri Charoenpanich
- Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Pornwipa Phuangbubpha
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (T.L.); (P.P.)
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand; (T.L.); (P.P.)
| |
Collapse
|
11
|
Guo M, Yao J, Li J, Zhang J, Wang D, Zuo H, Zhang Y, Xu B, Zhong Y, Shen F, Lu J, Ding S, Hu C, Xu L, Xiao J, Ma X. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction. J Cachexia Sarcopenia Muscle 2023; 14:391-405. [PMID: 36510115 PMCID: PMC9891925 DOI: 10.1002/jcsm.13141] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Age-associated sarcopenia is characterized of progressed loss of skeletal muscle power, mass, and function, which affects human physical activity and life quality. Besides, accompanied with sarcopenia, aged population also faces a series of metabolic dysfunctions. Irisin, the cleaved form of fibronectin type III domain-containing protein 5 (FNDC5), is a myokine induced by exercise and has been shown to exert multiple beneficial effects on health. The goal of the study is to investigate the alterations of Fndc5/irisin in skeletal muscles during ageing and whether irisin administration could ameliorate age-associated sarcopenia and metabolic dysfunction. METHODS The mRNA and protein levels of FNDC5/irisin in skeletal muscle and serum from 2- and 24-month-old mice or human subjects were analysed using qRT-PCR and western blot. FNDC5/irisin knockout mice were generated to investigate the consequences of FNDC5/irisin deletion on skeletal muscle mass, as well as morphological and molecular changes in muscle during ageing via histological and molecular analysis. To identify the therapeutic effects of chronic irisin treatment in mice during ageing, in vivo intraperitoneal administration of 2 mg/kg recombinant irisin was performed three times per week in ageing mice (14-month-old) for 4 months or in aged mice (22-month-old) for 1 month to systematically investigate irisin's effects on age-associated sarcopenia and metabolic performances, including grip strength, body weights, body composition, insulin sensitivity, energy expenditure, serum parameters and phenotypical and molecular changes in fat and liver. RESULTS We showed that the expression levels of irisin, as well as its precursor Fndc5, were reduced at mRNA and protein expression levels in muscle during ageing. In addition, via phenotypic analysis of FNDC5/irisin knockout mice, we found that FNDC5/irisin deficiency in aged mice exhibited aggravated muscle atrophy including smaller grip strength (-3.23%, P < 0.05), muscle weights (quadriceps femoris [QU]: -20.05%; gastrocnemius [GAS]: -17.91%; tibialis anterior [TA]: -19.51%, all P < 0.05), fibre size (QU: P < 0.01) and worse molecular phenotypes compared with wild-type mice. We then delivered recombinant irisin protein intraperitoneally into ageing or aged mice and found that it could improve sarcopenia with grip strength (+18.42%, P < 0.01 or +13.88%, P < 0.01), muscle weights (QU: +9.02%, P < 0.01 or +16.39%, P < 0.05), fibre size (QU: both P < 0.05) and molecular phenotypes and alleviated age-associated fat tissues expansion, insulin resistance and hepatic steatosis (all P < 0.05), accompanied with altered gene signatures. CONCLUSIONS Together, this study revealed the importance of irisin in the maintenance of muscle physiology and systematic energy homeostasis during ageing and suggested a potent therapeutic strategy against age-associated metabolic diseases via irisin administration.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bo Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yinzhao Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China.,Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China.,Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| |
Collapse
|
12
|
Wang Q, Ye W, Tao Y, Li Y, Lu S, Xu P, Qiang J. Transport Stress Induces Oxidative Stress and Immune Response in Juvenile Largemouth Bass ( Micropterus salmoides): Analysis of Oxidative and Immunological Parameters and the Gut Microbiome. Antioxidants (Basel) 2023; 12:antiox12010157. [PMID: 36671019 PMCID: PMC9854791 DOI: 10.3390/antiox12010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Transport is essential in cross-regional culturing of juvenile fish. Largemouth bass (Micropterus salmoides) often exhibit decreased vitality and are susceptible to disease after transportation. To study the effects of transport stress on juvenile largemouth bass, juveniles (average length: 8.42 ± 0.44 cm, average weight 10.26 ± 0.32 g) were subjected to a 12 h simulated transport, then subsequently, allowed to recover for 5 d. Liver and intestinal tissues were collected at 0, 6 and 12 h after transport stress and after 5 d of recovery. Oxidative and immunological parameters and the gut microbiome were analyzed. Hepatocytic vacuolization and shortened intestinal villi in the bass indicated liver and intestinal damage due to transport stress. Superoxide dismutase, lysozyme and complement C3 activities were significantly increased during transport stress (p < 0.05), indicating that transport stress resulted in oxidative stress and altered innate immune responses in the bass. With the transport stress, the malondialdehyde content first increased, then significantly decreased (p < 0.05) and showed an increasing trend in the recovery group. 16S rDNA analysis revealed that transport stress strongly affected the gut microbial compositions, mainly among Proteobacteria, Firmicutes, Cyanobacteria and Spirochaetes. The Proteobacteria abundance increased significantly after transport. The Kyoto Encyclopedia of Genes and Genomes functional analysis revealed that most gut microbes played roles in membrane transport, cell replication and repair. Correlation analyses demonstrated that the dominant genera varied significantly and participated in the measured physiological parameter changes. With 5 days of recovery after 12 h of transport stress, the physiological parameters and gut microbiome differed significantly between the experimental and control groups. These results provide a reference and basis for studying transport-stress-induced oxidative and immune mechanisms in juvenile largemouth bass to help optimize juvenile largemouth bass transportation.
Collapse
Affiliation(s)
- Qingchun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wei Ye
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: (Y.L.); (J.Q.)
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: (Y.L.); (J.Q.)
| |
Collapse
|
13
|
Han Y, Park HJ, Hong MK, Shin MR, Roh SS, Kwon EY. Artemisiae argyi Water Extract Alleviates Obesity-Induced Metabolic Disorder. Curr Issues Mol Biol 2022; 44:6158-6171. [PMID: 36547081 PMCID: PMC9776687 DOI: 10.3390/cimb44120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Artemisiae argyi is a well-known traditional herbal medicine used in East Asia. Although the antibacterial and anti-inflammatory effects of A. argyi have been reported, its efficacy in improving obesity has not been yet evaluated. In this study, mice were fed a normal diet (AIN-93), a high-fat diet (HFD, 60% of kcal from fat), and an HFD with 0.1% of A. argyi water extract for 16 weeks. The body weight and body fat in A. argyi-fed mice significantly decreased via upregulation of the mRNA expression of fatty acid oxidation-related genes, with a simultaneous decrease in plasma lipid content and leptin levels. A. argyi water extract also ameliorated hepatic steatosis by restricting lipogenesis via lowering the activities of fatty acid synthase and phosphatidic acid phosphatase. Consistently, hepatic histological analysis indicated that A. argyi water extract decreased hepatic lipid accumulation in accordance with the hepatic H, E and Oil Red O-stained area. Additionally, A. argyi ameliorated the impaired glucose homeostasis by increasing the mRNA expression of AMP-activated kinase and glycolysis-related genes. In conclusion, our results indicate that A. argyi can be used to treat obesity-related metabolic conditions.
Collapse
Affiliation(s)
- Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Raydel Research Institute, 76, Dongnae-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Hae-Jin Park
- Bio Convergence Testing Center, Daegu Haany University, 1 Haanydaero, Gyeongsan-si 38610, Republic of Korea
| | - Min-Kyeong Hong
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
| | - Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, 64 Gil, 136, sinsincheondo-ro, Suseong-gu, Daegu 42158, Republic of Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, 64 Gil, 136, sinsincheondo-ro, Suseong-gu, Daegu 42158, Republic of Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Sieckmann K, Winnerling N, Huebecker M, Leyendecker P, Ribeiro D, Gnad T, Pfeifer A, Wachten D, Hansen JN. AdipoQ - a simple, open-source software to quantify adipocyte morphology and function in tissues and in vitro. Mol Biol Cell 2022; 33:br22. [PMID: 35947507 DOI: 10.1091/mbc.e21-11-0592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The different adipose tissues can be distinguished according to their function. For example, white adipose tissue (WAT) stores energy in form of lipids, whereas brown adipose tissue (BAT) dissipates energy in the form of heat. These functional differences are represented in the respective adipocyte morphology: whereas white adipocytes contain large, unilocular lipid droplets, brown adipocytes contain smaller, multilocular lipid droplets. However, an automated, image-analysis pipeline to comprehensively analyze adipocytes in vitro in cell culture as well as ex vivo in tissue sections is missing. We here present AdipoQ, an open-source software implemented as ImageJ plugins that allows to analyze adipocytes in tissue sections and in vitro after histological and/or immunofluorescent labelling. AdipoQ is compatible with different imaging modalities and staining methods, allows batch processing of large datasets and simple post-hoc analysis, provides a broad band of parameters, and allows combining multiple fluorescent read-outs. Thereby, AdipoQ is of immediate use not only for basic research but also for clinical diagnosis.
Collapse
Affiliation(s)
- Katharina Sieckmann
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Nora Winnerling
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Mylene Huebecker
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Philipp Leyendecker
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Dalila Ribeiro
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
15
|
Oliveira FCB, Bauer EJ, Ribeiro CM, Pereira SA, Beserra BTS, Wajner SM, Maia AL, Neves FAR, Coelho MS, Amato AA. Liraglutide Activates Type 2 Deiodinase and Enhances β3-Adrenergic-Induced Thermogenesis in Mouse Adipose Tissue. Front Endocrinol (Lausanne) 2022; 12:803363. [PMID: 35069450 PMCID: PMC8771968 DOI: 10.3389/fendo.2021.803363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Aims Liraglutide is a long-acting glucagon-like peptide 1 (GLP-1) receptor agonist used as an anti-hyperglycemic agent in type 2 diabetes treatment and recently approved for obesity management. Weight loss is attributed to appetite suppression, but therapy may also increase energy expenditure. To further investigate the effect of GLP-1 signaling in thermogenic fat, we assessed adipose tissue oxygen consumption and type 2 deiodinase (D2) activity in mice treated with liraglutide, both basally and after β3-adrenergic treatment. Methods Male C57BL/6J mice were randomly assigned to receive liraglutide (400 μg/kg, n=12) or vehicle (n=12). After 16 days, mice in each group were co-treated with the selective β3-adrenergic agonist CL316,243 (1 mg/kg, n=6) or vehicle (n=6) for 5 days. Adipose tissue depots were assessed for gene and protein expression, oxygen consumption, and D2 activity. Results Liraglutide increased interscapular brown adipose tissue (iBAT) oxygen consumption and enhanced β3-adrenergic-induced oxygen consumption in iBAT and inguinal white adipose tissue (ingWAT). These effects were accompanied by upregulation of UCP-1 protein levels in iBAT and ingWAT. Notably, liraglutide increased D2 activity without significantly upregulating its mRNA levels in iBAT and exhibited additive effects to β3-adrenergic stimulation in inducing D2 activity in ingWAT. Conclusions Liraglutide exhibits additive effects to those of β3-adrenergic stimulation in thermogenic fat and increases D2 activity in BAT, implying that it may activate this adipose tissue depot by increasing intracellular thyroid activation, adding to the currently known mechanisms of GLP-1A-induced weight loss.
Collapse
Affiliation(s)
- Fernanda C. B. Oliveira
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Eduarda J. Bauer
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Carolina M. Ribeiro
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Sidney A. Pereira
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruna T. S. Beserra
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Simone M. Wajner
- Endocrine Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana L. Maia
- Endocrine Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco A. R. Neves
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Michella S. Coelho
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Angelica A. Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|