1
|
Uçar IA, Kale İ, Yalçınkaya C, Muhcu M. Investigation of serum spexin concentrations in pregnant women diagnosed with hyperemesis gravidarum. J Matern Fetal Neonatal Med 2024; 37:2398686. [PMID: 39239827 DOI: 10.1080/14767058.2024.2398686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE We aimed to investigate the serum concentration of the spexin, which has been shown to have an anorexic effect in animal models, in pregnant women with hyperemesis gravidarum (HG). METHODS This case-control study was conducted with 80 pregnant women who applied to the Umraniye Training and Research Hospital Gynecology and Obstetrics Clinic between April 2022 and September 2022. The HG group consisted of 40 pregnant women who were diagnosed with HG in the first 14 weeks of pregnancy, and the control group consisted of 40 healthy pregnant women matched with the HG group in terms of age, BMI, and gestational week. RESULTS Both groups were similar in terms of demographic characteristics and gestational age at blood sampling for spexin (p > 0.05). While maternal serum spexin concentration was 342.4 pg/ml in the HG group, it was 272.8 pg/ml in the control group (p = 0.003). ROC analysis was performed to determine the value of maternal serum spexin concentration in terms of predicting HG. AUC analysis of maternal serum spexin for HG estimation was 0.693 (p = 0.003, 95% CI =0.577 - 0.809). The optimal cutoff value for maternal serum spexin concentration was determined as 305.90 pg/ml with 65% sensitivity and 65% specificity. CONCLUSIONS High serum spexin concentration is thought to play a role in the etiopathogenesis of HG, and this should be supported by demonstrating changes in serum spexin concentrations in pregnant women with HG whose symptoms alleviated and weight regain started after treatment.
Collapse
Affiliation(s)
- Işıl Ada Uçar
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Kale
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Cem Yalçınkaya
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Murat Muhcu
- Department of Obstetrics and Gynecology, Maternal Fetal Unit, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Turkel I, Ozerklig B, Yazgan B, Ozenc AE, Kubat GB, Simsek G, Atakan MM, Kosar SN. Systemic and tissue-specific spexin response to acute treadmill exercise in rats. Peptides 2024; 180:171281. [PMID: 39111593 DOI: 10.1016/j.peptides.2024.171281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Spexin (SPX) is a 14-amino-acid peptide that plays an important role in the regulation of metabolism and energy homeostasis. It is well known that a variety of bioactive molecules released into the circulation by organs and tissues in response to acute and chronic exercise, known as exerkines, mediate the benefits of exercise by improving metabolic health. However, it is unclear whether acute exercise affects SPX levels in the circulation and peripheral tissues. This study aimed to determine whether acute treadmill exercise induces plasma SPX levels, as well as mRNA expression and immunostaining of SPX in skeletal muscle, adipose tissue, and liver. Male Sprague Dawley rats were divided into sedentary and acute exercise groups. Plasma, soleus (SOL), extensor digitorum longus (EDL), adipose tissue, and liver samples were collected at six time points (0, 1, 3, 6, 12, and 24 h) following 60 min of acute treadmill exercise at a speed of 25 m/min and 0 % grade. Acute exercise increased plasma SPX levels and induced mRNA expression of Spx in the SOL, EDL, and liver. Immunohistochemical analysis demonstrated that acute exercise led to a decrease in SPX immunostaining in the liver. Taken together, these findings suggest that SPX increases in response to acute exercise as a potential exerkine candidate, and the liver may be one of the sources of acute exercise-induced plasma SPX levels in rats. However, a comprehensive analysis is needed to fully elucidate the systemic response of SPX to acute exercise, as well as the tissue from which SPX is secreted.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Ahmet Emrah Ozenc
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey; Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Fang P, She Y, Yu M, Yan J, Yu X, Zhao J, Jin Y, Min W, Shang W, Zhang Z. Novel hypothalamic pathways for metabolic effects of spexin. Pharmacol Res 2024; 208:107399. [PMID: 39245191 DOI: 10.1016/j.phrs.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
One of the main underlying etiologies of type 2 diabetes (T2DM) is insulin resistance, which is most frequently caused by obesity. Notably, the deregulation of adipokine secretion from visceral adiposity has been identified as a crucial characteristic of type 2 diabetes and obesity. Spexin is an adipokine that is released by many different tissues, including white adipocytes and the glandular stomach, and is negatively connected with the state of energy storage. This peptide acts through GALR2/3 receptors to control a wide range of metabolic processes, including inflammation, browning, lipolysis, energy expenditure, and eating behavior. Specifically, spexin can enter the hypothalamus and regulate the hypothalamic melanocortin system, which in turn balances energy expenditure and food intake. This review examines recent advances and the underlying mechanisms of spexin in obesity and T2DM. In particular, we address a range of topics from basic research to clinical findings, such as an analysis of the possible function of spexin in the hypothalamic melanocortin response, which involves reducing energy intake and increasing energy expenditure while also enhancing insulin sensitivity and glucose tolerance. Gaining more insight into the mechanisms that underlie the spexin system's control over energy metabolism and homeostasis may facilitate the development of innovative treatment approaches that focus on combating obesity and diabetes.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Nanjing Pukou People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
4
|
Yilmaz N, Yasi N RZI, Yildiz A. Intracerebroventricular injection of spexin stimulates the hypothalamic-pituitary-testicular axis and increases the secretion of male reproductive hormones in rats. Ann Anat 2024; 255:152300. [PMID: 38971451 DOI: 10.1016/j.aanat.2024.152300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Male reproductive functions are regulated in the hypothalamic-pituitary-gonadal (HPG) axis. Any problem in this axis would lead to the deterioration of reproductive functions. The present study aimed to investigate the effects of intracerebroventricular (icv) Spexin (SPX) infusion on the HPG axis in detail. METHODS 40 Wistar albino rats were divided into four groups: control, sham, SPX 30 nmol and SPX 100 nmol (n=10). 30 nmol/1 µl/hour SPX was administered icv to the rats in the SPX 30 nmol group for 7 days, while rats in the SPX 100 nmol group were administered 100 nmol/1 µl/hour SPX. On the 7th day, the rats were decapitated, blood and tissue samples were collected. Serum LH, FSH and testosterone levels were determined with the ELISA method, GnRH mRNA expression level was determined in hypothalamus with the RT-PCR method. Seminiferous tubule diameter and epithelial thickness were determined with the hematoxylin-eosin staining method. RESULTS SPX infusion was increased GnRH mRNA expression in the hypothalamus tissue independent of the dose (p<0.05). Serum LH, FSH and testosterone levels in the SPX groups were increased when compared to the control and sham groups independent of the dose (p <0.05). Histological analysis revealed that SPX infusion did not lead to any changes in seminiferous epithelial thickness, while the tubule diameter increased in the SPX groups (p<0.05). CONCLUSION The study findings demonstrated that icv SPX infusion stimulated the HPG axis and increased the secretion of male reproductive hormones.
Collapse
Affiliation(s)
- Nesibe Yilmaz
- Karabük University, Faculty of Medicine, Department of Anatomy, Karabük, Turkey.
| | | | - Azibe Yildiz
- İnönü University, Faculty of Medicine, Department of Histology and Embriyology, Malatya, Turkey
| |
Collapse
|
5
|
Zeng B, Shen Q, Wang B, Tang X, Jiang J, Zheng Y, Huang H, Zhuo W, Wang W, Gao Y, Li X, Wang S, Li W, Qian G, Qin J, Hou M, Lv H. Spexin ameliorated obesity-related metabolic disorders through promoting white adipose browning mediated by JAK2-STAT3 pathway. Nutr Metab (Lond) 2024; 21:22. [PMID: 38658956 PMCID: PMC11040786 DOI: 10.1186/s12986-024-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Spexin, a 14 amino acid peptide, has been reported to regulate obesity and its associated complications. However, little is known about the underlying molecular mechanism. Therefore, this study aimed to investigate the effects of spexin on obesity and explore the detailed molecular mechanisms in vivo and in vitro. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity, and mice fed a standard fat diet were used as controls. Then, these mice were treated with SPX or Vehicle by intraperitoneal injection for an additional 12 weeks, respectively. The metabolic profile, fat-browning specific markers and mitochondrial contents were detected. In vitro, 3T3-L1 cells were used to investigate the molecular mechanisms. RESULTS After 12 weeks of treatment, SPX significantly decreased body weight, serum lipid levels, and improved insulin sensitivity in HFD-induced obese mice. Moreover, SPX was found to promote oxygen consumption in HFD mice, and it increased mitochondrial content as well as the expression of brown-specific markers in white adipose tissue (WAT) of HFD mice. These results were consistent with the increase in mitochondrial content and the expression of brown-specific markers in 3T3-L1 mature adipocytes. Of note, the spexin-mediated beneficial pro-browning actions were abolished by the JAK2/STAT3 pathway antagonists in mature 3T3-L1 cells. CONCLUSIONS These data indicate that spexin ameliorates obesity-induced metabolic disorders by improving WAT browning via activation of the JAK2/STAT3 signaling pathway. Therefore, SPX may serve as a new therapeutic candidate for treating obesity.
Collapse
Affiliation(s)
- Bihe Zeng
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
- Department of Pediatrics, Affiliated Huai'an Hospital of Xuzhou Medical University, 223002, Huai'an, China
| | - Qin Shen
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Bo Wang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Xuan Tang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Jiaqi Jiang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Yiming Zheng
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Hongbiao Huang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Wenyu Zhuo
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Wang Wang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Yang Gao
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Xuan Li
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Shuhui Wang
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Wenjie Li
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Guanghui Qian
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Jie Qin
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China
| | - Miao Hou
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China.
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, 215025, Suzhou, China.
| |
Collapse
|
6
|
Konitz C, Schwensfeier L, Predel HG, Brinkmann C. The Influence of Acute and Chronic Exercise on Appetite and Appetite Regulation in Patients with Prediabetes or Type 2 Diabetes Mellitus-A Systematic Review. Nutrients 2024; 16:1126. [PMID: 38674817 PMCID: PMC11054589 DOI: 10.3390/nu16081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
This systematic review aims to analyze the effects of acute and chronic exercise on appetite and appetite regulation in patients with abnormal glycemic control. PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials were searched for eligible studies. The included studies had to report assessments of appetite (primary outcome). Levels of appetite-regulating hormones were analyzed as secondary outcomes (considered, if additionally reported). Seven studies with a total number of 211 patients with prediabetes or type 2 diabetes mellitus (T2DM) met the inclusion criteria. Ratings of hunger, satiety, fullness, prospective food consumption, nausea, and desire to eat, as well as levels of (des-)acylated ghrelin, glucagon-like peptide 1, glucose-dependent insulinotropic peptide, pancreatic polypeptide, peptide tyrosine tyrosine, leptin, and spexin were considered. Following acute exercise, the effects on appetite (measured up to one day post-exercise) varied, while there were either no changes or a decrease in appetite ratings following chronic exercise, both compared to control conditions (without exercise). These results were accompanied by inconsistent changes in appetite-regulating hormone levels. The overall risk of bias was low. The present results provide more evidence for an appetite-reducing rather than an appetite-increasing effect of (chronic) exercise on patients with prediabetes or T2DM. PROSPERO ID: CRD42023459322.
Collapse
Affiliation(s)
- Christoph Konitz
- Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany; (L.S.); (H.-G.P.)
| | - Leon Schwensfeier
- Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany; (L.S.); (H.-G.P.)
| | - Hans-Georg Predel
- Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany; (L.S.); (H.-G.P.)
| | - Christian Brinkmann
- Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany; (L.S.); (H.-G.P.)
- Department of Fitness and Health, IST University of Applied Sciences, 40233 Düsseldorf, Germany
| |
Collapse
|
7
|
Gallagher DM, O'Harte FPM, Irwin N. An update on galanin and spexin and their potential for the treatment of type 2 diabetes and related metabolic disorders. Peptides 2024; 171:171096. [PMID: 37714335 DOI: 10.1016/j.peptides.2023.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides widely expressed in the central nervous system as well as within peripheral tissues in humans and other species. SPX and GAL mediate their biological actions through binding and activation of galanin receptors (GALR), namely GALR1, GALR2 and GLAR3. GAL appears to trigger all three galanin receptors, whereas SPX interacts more specifically with GALR2 and GLAR3. Whilst the biological effects of GAL have been well-described over the years, in-depth knowledge of physiological action profile of SPX is still in its preliminary stages. However, it is recognised that both peptides play a significant role in modulating overall energy homeostasis, suggesting possible therapeutically exploitable benefits in diseases such as obesity and type 2 diabetes mellitus. Accordingly, although both peptides activate GALR's, it appears GAL may be more useful for the treatment of eating disorders such as anorexia and bulimia, whereas SPX may find therapeutic application for obesity and obesity-driven forms of diabetes. This short narrative review aims to provide an up-to-date account of SPX and GAL biology together with putative approaches on exploiting these peptides for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Daniel M Gallagher
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Finbarr P M O'Harte
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
8
|
Yilmaz U, Tanbek K. Spexin may induce mitochondrial biogenesis in white and brown adipocytes via the hypothalamus-pituitary-thyroid (HPT) axis. Physiol Behav 2024; 273:114401. [PMID: 37939828 DOI: 10.1016/j.physbeh.2023.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
AIM The present study aimed to investigate the effect of the intracerebroventricular (icv) administration of spexin on the hypothalamus-pituitary-thyroid (HPT) axis (TRH, TSH, T4 and T3 hormones) and energy expenditure (PGC-1α and UCP1 genes) in white adipose (WAT) and brown adipose tissues (BAT) in rats. Furthermore, the study aimed to determine the effects of spexin on food-water consumption and body weight of rats. MATERIAL AND METHOD The study was conducted with 40 male rats that were divided into 4 groups: Control, Sham, Spexin 30 and Spexin 100 (n = 10). Spexin (1 μl/hour) was administered to rats other than those in the control group for 7 days with osmotic minipumps intracerebroventricularly, artificial cerebrospinal fluid (vehicle) was administered to the Sham group, and 30 nMol and 100 nMol spexin was infused to the Spexin 30 and Spexin 100 groups, respectively. Food-water consumption and body weight of the rats were monitored during the experiments. After the seven-day infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined with ELISA on rat blood samples. Also, TRH gene expression levels from the hypothalamus tissues and PGC-1α and UCP1 expression levels from WAT and BAT were determined by real-time PCR. FINDINGS It was determined that icv spexin infusion reduced daily food consumption and body weight without leading to a significant change in water consumption (p < 0.05). Icv spexin infusion significantly decreased serum TSH, and increased fT4 and fT3 levels when compared to control and sham groups (p < 0.05). Moreover, icv spexin infusion increased the TRH expressions in the hypothalamus tissues and PGC-1α UCP1 in the WAT and BAT (p < 0.05). CONCLUSION Icv Spexin infusion may have effects on food consumption and body weight as well as, thyroid hormones and energy metabolism.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
9
|
Dajnowska A, Osiak-Wicha C, Piech M, Muszyński S, Tomaszewska E, Ropka-Molik K, Krzysiak MK, Arciszewski MB. Immunoexpression of Spexin in Selected Segments of the Bovine ( Bos taurus taurus) Gastrointestinal Tract. Animals (Basel) 2023; 13:3789. [PMID: 38136826 PMCID: PMC10741206 DOI: 10.3390/ani13243789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In the expansive domain of neuropeptide investigation, spexin (SPX) has emerged as a captivating subject, exerting a significant impact on diverse physiological processes. Initially identified in mice, SPX's distribution transcends various organs, suggesting its potential regulatory roles. Despite extensive research in smaller species, a notable gap exists in our comprehension of SPX in larger mammals, particularly ruminants. Our study meticulously explores the immunolocalization of SPX within the gastrointestinal organs of bovines, with a specific focus on the abomasum, jejunum, and colon. Tissue samples from Holstein-Friesian cattle underwent careful processing, and gene mRNA expression levels, particularly GALR2 and SPX, were assessed. Intriguingly, our findings revealed that GALR2 expression was highest in the jejunum, signifying a potentially critical role in this digestive segment. Immunohistochemistry further unveiled distinct patterns of SPX immunoreactivity in each examined region-abomasum, jejunum, and colon-highlighting nuanced, region-specific responses. Notably, the abomasum and jejunum predominantly exhibited positive immunoreactivity in the submucosal plexus, while the colon, in contrast, demonstrated a higher degree of immunoreactivity in myenteric plexus neurons. Our investigation, grounded in the hypothesis of ubiquitous SPX distribution in ruminants, delves deeper into the intricate role of SPX within the enteric nervous system. This study meticulously explores the spatial distribution of SPX within the myenteric and submucosal plexuses, integral components of the enteric nervous system. These findings significantly enhance our understanding of SPX's potential roles in gastrointestinal regulation in bovines, providing a unique perspective on larger mammals and enriching our comprehension of this intriguing neuropeptide's significance in various physiological processes.
Collapse
Affiliation(s)
- Aleksandra Dajnowska
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (A.D.); (C.O.-W.); (M.P.)
| | - Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (A.D.); (C.O.-W.); (M.P.)
| | - Małgorzata Piech
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (A.D.); (C.O.-W.); (M.P.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Michał K. Krzysiak
- Białowieża National Park, Park Pałacowy 11, 17-230 Białowieża, Poland;
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45 E, 15-351 Białystok, Poland
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (A.D.); (C.O.-W.); (M.P.)
| |
Collapse
|
10
|
Kurowska P, Dawid M, Oprocha J, Respekta N, Serra L, Estienne A, Pawlicki P, Kotula-Balak M, Guérif F, Dupont J, Rak A. Spexin role in human granulosa cells physiology and PCOS: expression and negative impact on steroidogenesis and proliferation†. Biol Reprod 2023; 109:705-719. [PMID: 37658762 PMCID: PMC10651070 DOI: 10.1093/biolre/ioad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/18/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
Spexin (SPX) is a novel neuropeptide and adipokine negatively correlated with obesity and insulin resistance. A recent study investigated expression and regulatory function of SPX in the hypothalamus and pituitary; however, the effect on ovarian function is still unknown. The aim of this study was to characterize the expression of SPX and its receptors, galanin receptors 2 and 3 (GALR2/3), in the human ovary and to study its in vitro effect on granulosa cells (GC) function. Follicular fluid (FF) and GC were obtained from normal weight and obese healthy and diagnosed with polycystic ovarian syndrome (PCOS) women. Expression of SPX and GALR2/3 in the ovary was studied by qPCR, western blot, and immunohistochemistry. The level of SPX in FF was assessed by enzyme-linked immunosorbent assay. The in vitro effect of recombinant human SPX on GC proliferation, steroidogenesis, and signaling pathways (MAP3/1, STAT3, AKT, PKA) was analyzed. Moreover, GC proliferation and estradiol (E2) secretion were measured with and without an siRNA against GALR2/3 and pharmacological inhibition of the above kinases. The results showed that both the SPX concentration in FF and its gene expression were decreased in GC of obese and PCOS women, while the protein expression of GALR2/3 was increased. We noted that SPX reduced GC proliferation and steroidogenesis; these effects were mediated by GALR2/3 and kinases MAP3/1, AKT, and STAT3 for proliferation or kinases MAP3/1 and PKA for E2 secretion. The obtained data clearly documented that SPX is a novel regulator of human ovarian physiology and possibly plays a role in PCOS pathogenesis.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Julia Oprocha
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Loïse Serra
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Anthony Estienne
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Fabrice Guérif
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Reproductive Medicine and Biology Department, University Hospital of Tours, Tours, France
| | - Joelle Dupont
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
11
|
Ruiz-Cruz M, Torres-Granados C, Tena-Sempere M, Roa J. Central and peripheral mechanisms involved in the control of GnRH neuronal function by metabolic factors. Curr Opin Pharmacol 2023; 71:102382. [PMID: 37307655 DOI: 10.1016/j.coph.2023.102382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final output pathway for the brain control of reproduction. The activity of this neuronal population, mainly located at the preoptic area of the hypothalamus, is controlled by a plethora of metabolic signals. However, it has been documented that most of these signal impact on GnRH neurons through indirect neuronal circuits, Kiss1, proopiomelanocortin, and neuropeptide Y/agouti-related peptide neurons being some of the most prominent mediators. In this context, compelling evidence has been gathered in recent years on the role of a large range of neuropeptides and energy sensors in the regulation of GnRH neuronal activity through both direct and indirect mechanisms. The present review summarizes some of the most prominent recent advances in our understanding of the peripheral factors and central mechanisms involved in the metabolic control of GnRH neurons.
Collapse
Affiliation(s)
- Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Carmen Torres-Granados
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| |
Collapse
|
12
|
Spexin2 Is a Novel Food Regulator in Gallus gallus. Int J Mol Sci 2023; 24:ijms24054821. [PMID: 36902252 PMCID: PMC10003256 DOI: 10.3390/ijms24054821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Spexin2 (SPX2), a paralog of SPX1, is a newly identified gene in non-mammalian vertebrates. Limited studies in fish have evidenced its important role in food intake and energy balance modulation. However, little is known about its biological functions in birds. Using the chicken (c-) as a model, we cloned the full-length cDNA of SPX2 by using RACE-PCR. It is 1189 base pair (bp) in length and predicted to generate a protein of 75 amino acids that contains a 14 amino acids mature peptide. Tissue distribution analysis showed that cSPX2 transcripts were detected in a wide array of tissues, with abundant expression in the pituitary, testis, and adrenal gland. cSPX2 was also observed to be ubiquitously expressed in chicken brain regions, with the highest expression in the hypothalamus. Its expression was significantly upregulated in the hypothalamus after 24 or 36 h of food deprivation, and the feeding behavior of chicks was obviously suppressed after peripheral injection with cSPX2. Mechanistically, further studies evidenced that cSPX2 acts as a satiety factor via upregulating cocaine and amphetamine regulated transcript (CART) and downregulating agouti-related neuropeptide (AGRP) in hypothalamus. Using a pGL4-SRE-luciferase reporter system, cSPX2 was demonstrated to effectively activate a chicken galanin II type receptor (cGALR2), a cGALR2-like receptor (cGALR2L), and a galanin III type receptor (cGALR3), with the highest binding affinity for cGALR2L. Collectively, we firstly identified that cSPX2 serves as a novel appetite monitor in chicken. Our findings will help clarify the physiological functions of SPX2 in birds as well as its functional evolution in vertebrates.
Collapse
|
13
|
Circulating Levels of Nesfatin-1 and Spexin in Children with Prader-Willi Syndrome during Growth Hormone Treatment and Dietary Intervention. Nutrients 2023; 15:nu15051240. [PMID: 36904239 PMCID: PMC10005720 DOI: 10.3390/nu15051240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Despite observable improvement in the treatment outcomes of patients with Prader-Willi syndrome (PWS), adequate weight control is still a clinical problem. Therefore, the aim of this study was to analyze the profiles of neuroendocrine peptides regulating appetite-mainly nesfatin-1 and spexin-in children with PWS undergoing growth hormone treatment and reduced energy intake. METHODS Twenty-five non-obese children (aged 2-12 years) with PWS and 30 healthy children of the same age following an unrestricted age-appropriate diet were examined. Serum concentrations of nesfatin-1, spexin, leptin, leptin receptor, total adiponectin, high molecular weight adiponectin, proinsulin, insulin-like growth factor-I, and total and functional IGF-binding protein-3 concentrations were determined using immunoenzymatic methods. RESULTS The daily energy intake in children with PWS was lower by about 30% (p < 0.001) compared with the controls. Daily protein intake was similar in both groups, but carbohydrate and fat intakes were significantly lower in the patient group than the controls (p < 0.001). Similar values for nesfatin-1 in the PWS subgroup with BMI Z-score < -0.5 and the control group, while higher values in the PWS subgroup with BMI Z-score ≥ -0.5 (p < 0.001) were found. Spexin concentrations were significantly lower in both subgroups with PWS than the controls (p < 0.001; p = 0.005). Significant differences in the lipid profile between the PWS subgroups and the controls were also observed. Nesfatin-1 and leptin were positively related with BMI (p = 0.018; p = 0.001, respectively) and BMI Z-score (p = 0.031; p = 0.027, respectively) in the whole group with PWS. Both neuropeptides also correlated positively in these patients (p = 0.042). CONCLUSIONS Altered profiles of anorexigenic peptides-especially nesfatin-1 and spexin-in non-obese children with Prader-Willi syndrome during growth hormone treatment and reduced energy intake were found. These differences may play a role in the etiology of metabolic disorders in Prader-Willi syndrome despite the applied therapy.
Collapse
|
14
|
Fang P, Guo W, Ju M, Huang Y, Zeng H, Wang Y, Yu M, Zhang Z. Exercise training rescues adipose tissue spexin expression and secretion in diet-induced obese mice. Physiol Behav 2022; 256:113958. [PMID: 36087747 DOI: 10.1016/j.physbeh.2022.113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Exercise training improves obesity-induced metabolic diseases through regulation of adipokines. Previous studies have shown that adipocyte-spexin participates in metabolic diseases such as obesity and diabetes via the modulation of energy homeostasis and insulin resistance. The objective of this research was to investigate the effects of swimming exercise on the levels of adipocyte-spexin and the underlying mechanisms. The normal chow diet (NC)-fed and high-fat diet (HFD)-fed mice were divided into exercise or sedentary groups. The expression and secretion of spexin in adipose tissue were assessed by quantitative real-time PCR and ELISA. The present findings uncovered the effect of exercise-induced spexin expression in the adipose tissue of obese mice. Besides, chronic exercise-induced upregulation of adipose spexin may be mediated by COUP-TF2 and KLF9. In addition, constant-moderate intensity exercise increased the levels of GLUT4, SIRT1 and PGC-1α in the skeletal muscles of mice. These results suggest that spexin is a potential mediator for exercise to ameliorate obesity-induced insulin resistance, namely, the beneficial effect of exercise on insulin sensitivity is at least partly mediated by spexin. Thus, exercise restores spexin production and release, which increases insulin sensitivity and maintains metabolic balance in the adipose tissues of HFD-induced obese mice.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, China
| | - Wancheng Guo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China
| | - Mengxian Ju
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China
| | - Yujie Huang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China
| | - Hanjin Zeng
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, China
| | - Yajing Wang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China.
| |
Collapse
|
15
|
Meng F, Yu Y, Li J, Han X, Du X, Cao X, Liang Q, Huang A, Kong F, Huang L, Zeng X, Bu G. Characterization of spexin (SPX) in chickens: molecular cloning, functional analysis, tissue expression and its involvement in appetite regulation. Poult Sci 2022; 102:102279. [PMID: 36402041 PMCID: PMC9673105 DOI: 10.1016/j.psj.2022.102279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Spexin (SPX) is a conservative tetradecapeptide which has been proven to participate in multiple physiological processes, including anxiety, feed intake, and energy metabolism in fish and mammals. However, whether SPX exists and functions in birds remain largely unknown. Using chicken (c-) as a model, the full-length cDNA encoding cSPX precursor was cloned, and it was predicted to generate a mature peptide with 14 amino acids conserved across vertebrates. The pGL4-SRE-luciferase reporter system-based functional analysis demonstrated that cSPX was effective in activating chicken galanin type Ⅱ receptor (cGALR2), cGALR2-like receptor (cGALR2L) and galanin type Ⅲ receptor (cGALR3), thus to stimulate intracellular MAPK/ERK signaling pathway. Quantitative real-time PCR revealed that SPX was widely expressed in chicken tissues, especially abundant in the central nervous system, pituitary, testes, and pancreas. Interestingly, it was noted that chicken hypothalamic SPX mRNA could be up-regulated by 24-h and 36-h fasting, heralding its latent capacity in appetite regulation. In accordance with this speculation, peripheral injection of cSPX was proved to be functional in reducing feed intake of 3-wk-old chicks. Furthermore, we found that cSPX could reduce the expression of AgRP and MCH, with a concurrent rise in CART1 mRNA level in the hypothalamic of chicks. Collectively, our findings not only provide the evidences that SPX can act as a satiety factor by orchestrating the expression of key feeding regulators in the chicken hypothalamus but also help to facilitate a better understanding of its functional evolution across vertebrates.
Collapse
|
16
|
Wang M, Zhu Z, Kan Y, Yu M, Guo W, Ju M, Wang J, Yi S, Han S, Shang W, Zhang Z, Zhang L, Fang P. Treatment with spexin mitigates diet-induced hepatic steatosis in vivo and in vitro through activation of galanin receptor 2. Mol Cell Endocrinol 2022; 552:111688. [PMID: 35654225 DOI: 10.1016/j.mce.2022.111688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 01/12/2023]
Abstract
It was reported that spexin as an adipocyte-secreted protein could regulate obesity and insulin resistance. However, the specific metabolic contribution of spexin to fatty liver remains incompletely understood. Herein, we investigated the effects of spexin on hepatosteatosis and explored the underlying molecular mechanisms. HFD-fed mice were injected with spexin and/or GALR2 antagonist M871, while PA-induced HepG2 cells were treated with spexin in the absence or presence of M871 for 12 h, respectively. Gene expression in liver tissues and hepatocytes was assessed by qRT-PCR and western blotting, respectively. The results showed that body weight, visceral fat content, liver lipid droplet formation, hepatic intracellular triglyceride, and serum triglyceride were reduced in spexin-treated mice. Furthermore, spexin increased the expression of hepatic CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK in vivo and in vitro. Additionally, spexin treatment improved glucose tolerance and insulin sensitivity in mice fed the HFD. Interestingly, these spexin-mediated beneficial effects were abolished by the GALR2 antagonist M871 in mice fed HFD and PA-induced HepG2 cells, suggesting that spexin mitigated HFD-induced hepatic steatosis by activating the GALR2, thereby increasing CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK expression. Taken together, these data suggest that spexin ameliorates NAFLD by improving lipolysis and fatty acid oxidation via activation of GALR2 signaling.
Collapse
Affiliation(s)
- Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyue Zhu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wancheng Guo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Mengxian Ju
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Junjun Wang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Shuxin Yi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| |
Collapse
|
17
|
Yu M, Ju M, Fang P, Zhang Z. Emerging central and peripheral actions of spexin in feeding behavior, leptin resistance and obesity. Biochem Pharmacol 2022; 202:115121. [PMID: 35679893 DOI: 10.1016/j.bcp.2022.115121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Consumption of a high calorie diet with irregular eating and sedentary behavior habits is typical of the current suboptimal lifestyle, contributing to the development of metabolic diseases such as obesity and type 2 diabetes mellitus. Most notably, the disorder of adipokine secretion in visceral adiposity is a major contributor to metabolic diseases with advancing age. In this regard, spexin and leptin are established as anorexigenic adipokines that can modulate adipogenesis and glucose metabolism by suppressing food intake or increasing energy expenditure, respectively. Emerging evidence points out that spexin levels are lower in the serum and adipose tissue of patients with obesity and/or insulin resistance, whereas circulating levels of leptin are higher in obesity and comorbidities. In turn, spexin and leptin pharmacologically induce beneficial effects on the brain's modulation of food intake and energy expenditure. On the other hand, endocrine crosstalk via spexin and leptin has also been reported in patients suffering from obesity and diabetes. Spexin plays a crucial role in the regulation of leptin secretion and leptin resistance. It should therefore be taken into account that studying the role of spexin in leptin regulation will help us combat the pathologies of obesity caused by leptin resistance.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Mengxian Ju
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
18
|
Yu M, Wang M, Han S, Han L, Kan Y, Zhao J, Yu X, Yan J, Jin Y, Zhang Z, Shang W, Fang P. Spexin ameliorates skeletal muscle insulin resistance through activation of GAL2 receptor. Eur J Pharmacol 2022; 917:174731. [PMID: 34973950 DOI: 10.1016/j.ejphar.2021.174731] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 01/12/2023]
Abstract
Skeletal muscle is a principal tissue involved in energy expenditure and glucose metabolism. Although the results of our and other studies show that spexin could decrease food intake and obesity, the specific metabolic effect of spexin on glucose metabolism of skeletal muscle is still unclear. The aim of this study is to investigate whether spexin might mitigate obesity-induced insulin resistance in skeletal muscles and to explore its underlying mechanisms. The high fat diet-fed mice were treated with 50 μg/kg/d spexin for 21 consecutive days, and the differentiated myotubes of L6 were treated with spexin (200, 400, 800 nM) in the absence or presence of M871 (800 nM) for 12 h respectively. Besides, the galanin type 2 (GAL2) receptor knockdown myotubes were treated with 800 nM spexin for 12 h in this study. The present findings showed that spexin reversed hyperglycemia and glucose intolerance as well as insulin intolerance and insulin resistance in the mice fed with high fat diet. Furthermore, spexin markedly augmented the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) expression and deacetylation, and further triggered glucose transporter 4 (GLUT4) expression and trafficking in myotubes through p38 mitogen-activated protein kinase (P38MAPK) and protein kinase B (AKT) activation. More importantly, the elevation of glucose consumption related genes by spexin were abolished by GAL2 receptor antagonist or silencing of GAL2 receptor in myotubes. In conclusion, our findings provide a novel insight that spexin can protect against insulin resistance and increase glucose consumption in skeletal muscles mainly through activation of GAL2/GLUT4 signal pathway. Spexin might therefore be a novel therapeutic target for hyperglycemia and insulin resistance in clinic.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Wenbing Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| |
Collapse
|
19
|
Jeong B, Kim KK, Lee TH, Kim HR, Park BS, Park JW, Jeong JK, Seong JY, Lee BJ. Spexin Regulates Hypothalamic Leptin Action on Feeding Behavior. Biomolecules 2022; 12:biom12020236. [PMID: 35204737 PMCID: PMC8961618 DOI: 10.3390/biom12020236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Spexin (SPX) is a recently identified neuropeptide that is believed to play an important role in the regulation of energy homeostasis. Here, we describe a mediating function of SPX in hypothalamic leptin action. Intracerebroventricular (icv) SPX administration induced a decrease in food intake and body weight gain. SPX was found to be expressed in cells expressing leptin receptor ObRb in the mouse hypothalamus. In line with this finding, icv leptin injection increased SPX mRNA in the ObRb-positive cells of the hypothalamus, which was blocked by treatment with a STAT3 inhibitor. Leptin also increased STAT3 binding to the SPX promoter, as measured by chromatin immunoprecipitation assays. In vivo blockade of hypothalamic SPX biosynthesis with an antisense oligodeoxynucleotide (AS ODN) resulted in a diminished leptin effect on food intake and body weight. AS ODN reversed leptin’s effect on the proopiomelanocortin (POMC) mRNA expression and, moreover, decreased leptin-induced STAT3 binding to the POMC promoter sequence. These results suggest that SPX is involved in leptin’s action on POMC gene expression in the hypothalamus and impacts the anorexigenic effects of leptin.
Collapse
Affiliation(s)
- Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Kwang-Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Tae-Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Han-Rae Kim
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 22037, USA; (H.-R.K.); (J.-K.J.)
| | - Byong-Seo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Jeong-Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Jin-Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 22037, USA; (H.-R.K.); (J.-K.J.)
| | - Jae-Young Seong
- Graduate School of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: (J.-Y.S.); (B.-J.L.)
| | - Byung-Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
- Correspondence: (J.-Y.S.); (B.-J.L.)
| |
Collapse
|
20
|
Fang P, Ge R, She Y, Zhao J, Yan J, Yu X, Jin Y, Shang W, Zhang Z. Adipose tissue spexin in physical exercise and age-associated diseases. Ageing Res Rev 2022; 73:101509. [PMID: 34752956 DOI: 10.1016/j.arr.2021.101509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
It is known that a strong association exists between a suboptimal lifestyle (physical inactivity and sedentary behavior and/or high calorie diet) and increased propensity of developing age-associated diseases, such as obesity and T2DM. Physical exercise can alleviate obesity-induced insulin resistance and T2DM, however, the precise mechanism for this outcome is not fully understood. The endocrine disorder of adipose tissue in obesity plays a critical role in the development of insulin resistance. In this regard, spexin has been recently described as an adipokine that plays an important role in the pathophysiology of obesity-induced insulin resistance and T2DM. In obese states, expression of adipose tissue spexin is reduced, inducing the adipose tissue and skeletal muscle more susceptible to insulin resistance. Emerging evidences point out that exercise can increase spexin expression. In return, spexin could exert the exercise-protective roles to ameliorate insulin resistance, suggesting that spexin is a potential mediator for exercise to ameliorate obesity-induced insulin resistance and T2DM, namely, the beneficial effect of exercise on insulin sensitivity is at least partly mediated by spexin. This review summarizes our and others' recent studies regarding the effects of obesity on adipose tissue spexin induction, along with the potential effect of exercise on this response in obese context, and provides a new insight into the multivariate relationship among exercise, spexin and T2DM. It should be therefore taken into account that a combination of spexin and exercise training is an effective therapeutic strategy for age-associated diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China.
| | - Ran Ge
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
21
|
Spexin: Its role, regulation, and therapeutic potential in the hypothalamus. Pharmacol Ther 2021; 233:108033. [PMID: 34763011 DOI: 10.1016/j.pharmthera.2021.108033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Spexin is the most recently discovered member of the galanin/kisspeptin/spexin family of peptides. This 14-amino acid peptide is highly conserved and is implicated in homeostatic functions including, but not limited to, metabolism, energy homeostasis, and reproduction. Spexin is expressed by neurons in the hypothalamus, which coordinate energy homeostasis and reproduction. Critically, levels of spexin appear to be altered in disorders related to energy homeostasis and reproduction, such as obesity, diabetes, and polycystic ovarian syndrome. In this review, we discuss the evidence for the involvement of spexin in the hypothalamic control of energy homeostasis and reproduction. The anorexigenic properties of spexin have been attributed to its effects on the energy-regulating neuropeptide Y/agouti-related peptide neurons and proopiomelanocortin neurons. While the role of spexin in reproduction remains unclear, there is evidence that gonadotropin-releasing hormone expressing neurons may produce and respond to spexin. Furthermore, we discuss the disorders and concomitant treatments, which have been reported to alter spexin expression, as well as the underlying signaling mechanisms that may be involved. Finally, we discuss the biochemical basis of spexin, its interaction with its cognate receptors, and how this information can be adapted to develop therapeutics for disorders related to the alteration of energy homeostasis and reproduction.
Collapse
|