1
|
Sharma B, Dhiman C, Hasan GM, Shamsi A, Hassan MI. Pharmacological Features and Therapeutic Implications of Plumbagin in Cancer and Metabolic Disorders: A Narrative Review. Nutrients 2024; 16:3033. [PMID: 39275349 PMCID: PMC11397539 DOI: 10.3390/nu16173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Plumbagin (PLB) is a naphthoquinone extracted from Plumbago indica. In recent times, there has been a growing body of evidence suggesting the potential importance of naphthoquinones, both natural and artificial, in the pharmacological world. Numerous studies have indicated that PLB plays a vital role in combating cancers and other disorders. There is substantial evidence indicating that PLB may have a significant role in the treatment of breast cancer, brain tumours, lung cancer, hepatocellular carcinoma, and other conditions. Moreover, its potent anti-oxidant and anti-inflammatory properties offer promising avenues for the treatment of neurodegenerative and cardiovascular diseases. A number of studies have identified various pathways that may be responsible for the therapeutic efficacy of PLB. These include cell cycle regulation, apoptotic pathways, ROS induction pathways, inflammatory pathways, and signal transduction pathways such as PI3K/AKT/mTOR, STAT3/PLK1/AKT, and others. This review aims to provide a comprehensive analysis of the diverse pharmacological roles of PLB, examining the mechanisms through which it operates and exploring its potential applications in various medical conditions. In addition, we have conducted a review of the various formulations that have been reported in the literature with the objective of enhancing the efficacy of the compound. However, the majority of the reviewed data are based on in vitro and in vivo studies. To gain a comprehensive understanding of the safety and efficacy of PLB in humans and to ascertain its potential integration into therapeutic regimens for cancer and chronic diseases, rigorous clinical trials are essential. Finally, by synthesizing current research and identifying gaps in knowledge, this review seeks to enhance our understanding of PLB and its therapeutic prospects, paving the way for future studies and clinical applications.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Chitra Dhiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md Imtiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
2
|
Cong F, Gu L, Lin J, Liu G, Wang Q, Zhang L, Chi M, Xu Q, Zhao G, Li C. Plumbagin inhibits fungal growth, HMGB1/LOX-1 pathway and inflammatory factors in A. fumigatus keratitis. Front Microbiol 2024; 15:1383509. [PMID: 38655086 PMCID: PMC11035880 DOI: 10.3389/fmicb.2024.1383509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
To investigate the anti-inflammatory and antifungal effects of plumbagin (PL) in Aspergillus fumigatus (A. fumigatus) keratitis, the minimum inhibitory concentration (MIC), time-killing curve, spore adhesion, crystal violet staining, calcium fluoride white staining, and Propidium Iodide (PI) staining were employed to assess the antifungal activity of PL in vitro against A. fumigatus. The cytotoxicity of PL was assessed using the Cell Counting Kit-8 (CCK8). The impact of PL on the expression of HMGB1, LOX-1, TNF-α, IL-1β, IL-6, IL-10 and ROS in A. fumigatus keratitis was investigated using RT-PCR, ELISA, Western blot, and Reactive oxygen species (ROS) assay. The therapeutic efficacy of PL against A. fumigatus keratitis was assessed through clinical scoring, plate counting, Immunofluorescence and Hematoxylin-Eosin (HE) staining. Finally, we found that PL inhibited the growth, spore adhesion, and biofilm formation of A. fumigatus and disrupted the integrity of its cell membrane and cell wall. PL decreased IL-6, TNF-α, and IL-1β levels while increasing IL-10 expression in fungi-infected mice corneas and peritoneal macrophages. Additionally, PL significantly attenuated the HMGB1/LOX-1 pathway while reversing the promoting effect of Boxb (an HMGB1 agonist) on HMGB1/LOX-1. Moreover, PL decreased the level of ROS. In vivo, clinical scores, neutrophil recruitment, and fungal burden were all significantly reduced in infected corneas treated with PL. In summary, the inflammatory process can be inhibited by PL through the regulation of the HMGB-1/LOX-1 pathway. Simultaneously, PL can exert antifungal effects by limiting fungal spore adhesion and biofilm formation, as well as causing destruction of cell membranes and walls.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Liu J, Meng Y, Li B, Wang P, Wan X, Huang W, Li R. Ferroptosis-related biotargets and network mechanisms of fucoidan against colorectal cancer: An integrated bioinformatic and experimental approach. Int J Biol Macromol 2022; 222:1522-1530. [DOI: 10.1016/j.ijbiomac.2022.09.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
4
|
Liang J, Zheng M, Xu W, Chen Y, Tang P, Wu G, Zou P, Li H, Chen L. Acriflavine and proflavine hemisulfate as potential antivirals by targeting M pro. Bioorg Chem 2022; 129:106185. [PMID: 36240541 PMCID: PMC9540699 DOI: 10.1016/j.bioorg.2022.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
Abstract
The evolving SARS-CoV-2 epidemic buffets the world, and the concerted efforts are needed to explore effective drugs. Mpro is an intriguing antiviral target for interfering with viral RNA replication and transcription. In order to get potential anti-SARS-CoV-2 agents, we established an enzymatic assay using a fluorogenic substrate to screen the inhibitors of Mpro. Fortunately, Acriflavine (ACF) and Proflavine Hemisulfate (PRF) with the same acridine scaffold were picked out for their good inhibitory activity against Mpro with IC50 of 5.60 ± 0.29 μM and 2.07 ± 0.01 μM, respectively. Further evaluation of MST assay and enzymatic kinetics experiment in vitro showed that they had a certain affinity to SARS-CoV-2 Mpro and were both non-competitive inhibitors. In addition, they inhibited about 90 % HCoV-OC43 replication in BHK-21 cells at 1 μM. Both compounds showed nano-molar activities against SARS-CoV-2 virus, which were superior to GC376 for anti-HCoV-43, and equivalent to the standard molecule remdesivir. Our study demonstrated that ACF and PRF were inhibitors of Mpro, and ACF has been previously reported as a PLpro inhibitor. Taken together, ACF and PRF might be dual-targeted inhibitors to provide protection against infections of coronaviruses.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengzhu Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yongkang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Piyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guoyi Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China,Corresponding authors at: Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China (H. Li and L. Chen)
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China,Corresponding authors at: Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China (H. Li and L. Chen)
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China,Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China,School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Corresponding authors at: Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China (H. Li and L. Chen)
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors at: Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China (H. Li and L. Chen)
| |
Collapse
|
5
|
Liang X, Pan Q, Liao Y, Nie L, Yang L, Liu F, Su M. In silico analysis and experimental validation to exhibit anti-nasopharyngeal carcinoma effects of plumbagin, an anti-cancer compound. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5460-5467. [PMID: 35355274 DOI: 10.1002/jsfa.11900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is publicly known as a malignant tumor. Our previous study reported that plumbagin exhibits potent anti-cancer actions. Nevertheless, more mechanical details of plumbagin against NPC remain unknown. The present study aimed to unmask the core targets/genes and anti-NPC mechanisms involved in the signaling pathways of plumbagin prior to biochemical validation. METHODS A network pharmacology approach was employed to respective identification of mutual and core targets/genes in plumbagin and/treating NPC. Molecular docking determination was used to identify core target proteins for biochemical validation using human and cell line samples. RESULTS In total, 60 anti-NPC genes of plumbagin were screened out, and then nine core target genes of plumbagin against NPC were identified accordingly. The enrichment findings revealed detailed biological functions and pharmacological pathways of plumbagin against NPC. Moreover, in silico analysis using molecular docking had determined the core targets for further experimental validation, comprising protein kinase B (AKT1) and sarcoma gene (SRC). In human sample validation, clinical NPC sections showed increased positive expression of AKT1 and SRC. Additionally, plumbagin-treated NPC cells resulted in inactivated protein expression of AKT1 and SRC. CONCLUSION The re-identified core targets/genes in the molecular docking report may function as plumbagin-related pharmacological targets for treating NPC via experimental validation. Furthermore, additional anti-NPC molecular mechanisms of plumbagin action were disclosed on the basis of enrichment findings. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Liang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Qijin Pan
- Department of Oncology, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Yimei Liao
- Department of Pharmacy, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Litao Nie
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Lu Yang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Fangxian Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Min Su
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| |
Collapse
|
6
|
N1-Methyladenosine-Related lncRNAs Are Potential Biomarkers for Predicting Prognosis and Immune Response in Uterine Corpus Endometrial Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2754836. [PMID: 35965688 PMCID: PMC9372539 DOI: 10.1155/2022/2754836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is a malignant disease that, at present, has no well-characterised prognostic biomarker. In this study, two clusters were identified based on 28 N1-methyladenosine- (m1A-) related long noncoding RNAs (lncRNAs), of which cluster 1 was related to immune pathways according to the results of an enrichment analysis. We further observed better prognosis in patients with higher levels of immune cell infiltration, tumor mutation burden, microsatellite instability, and immune checkpoint gene expression. In addition, through Cox regression analysis and least absolute shrinkage and selection operator regression analysis, 10 m1A-related lncRNAs (mRLs) were employed to build a prognosis model. We found that people in higher risk categories had a poorer survival probability than those in lower risk. Low-risk samples were enriched with immune-related pathways, while the high-risk group was similar to the definition of the “immune desert” phenotype, which was associated with decreased immune infiltration, T cell failure, and decreased tumor mutation burden, while also being insensitive to immunotherapy and chemotherapy. This mRL-based model has the ability to accurately predict the prognosis of UCEC patients, and the mRLs could become promising therapeutic targets in enhancing the response of immunotherapy.
Collapse
|
7
|
Chen Y. Identification and Validation of Cuproptosis-Related Prognostic Signature and Associated Regulatory Axis in Uterine Corpus Endometrial Carcinoma. Front Genet 2022; 13:912037. [PMID: 35937995 PMCID: PMC9353190 DOI: 10.3389/fgene.2022.912037] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/13/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Uterine corpus endometrial carcinoma (UCEC) is a common gynecological malignancy globally with high recurrence and mortality rates. Cuproptosis is a new type of programmed cell death involved in tumor cell proliferation and growth, angiogenesis, and metastasis.Methods: The difference in cuproptosis-related genes (CRGs) between UCEC tissues and normal tissues deposited in The Cancer Genome Atlas database was calculated using the “limma” R package. LASSO Cox regression analysis was conducted to construct a prognostic cuproptosis–related signature. Kaplan–Meier analysis was conducted to compare the survival of UCEC patients. A ceRNA network was constructed to identify the lncRNA–miRNA–mRNA regulatory axis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to verify CRG expression in UCEC.Results: The expression of FDX1, LIAS, DLAT, and CDKN2A were upregulated, whereas the expression of LIPT1, DLD, PDHB, MTF1, and GLS were downregulated in UCEC versus normal tissues. The genetic mutation landscape of CRGs in UCEC was also summarized. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these CRGs were enriched in the tricarboxylic acid (TCA) cycle, glycolysis, and HIF-1 signaling pathway. LASSO Cox regression analysis was performed and identified a cuproptosis-related prognostic signature including these three prognostic biomarkers (CDKN2A, GLS, and LIPT1). UCEC patients with high risk scores had a poor prognosis with an area under the curve of 0.782 and 0.764 on 3- and 5-year receiver operating characteristic curves. Further analysis demonstrated a significant correlation between CDKN2A and pTNM stage, tumor grade, immune cell infiltration, drug sensitivity, tumor mutational burden (TMB) score, and microsatellite instable (MSI) score. The data validation of qRT-PCR further demonstrated the upregulation of CDKN2A and the downregulation of LIPT1 and GLS in UCEC versus normal tissues. The ceRNA network also identified lncRNA XIST/miR-125a-5p/CDKN2A regulatory axis for UCEC.Conclusion: The current study identified a cuproptosis-related prognostic signature including these three prognostic biomarkers (CDKN2A, GLS, and LIPT1) for UCEC. The ceRNA network also identified that lncRNA XIST/miR-125a-5p/CDKN2A regulatory axis may be involved in the progression of UCEC. Further in vivo and in vitro studies should be conducted to verify these results.
Collapse
|
8
|
Qin Q, Qin L, Xie R, Peng S, Guo C, Yang B. Insight Into Biological Targets and Molecular Mechanisms in the Treatment of Arsenic-Related Dermatitis With Vitamin A via Integrated in silico Approach. Front Nutr 2022; 9:847320. [PMID: 35685889 PMCID: PMC9171494 DOI: 10.3389/fnut.2022.847320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to arsenic (As), an inorganic poison, may lead to skin lesions, including dermatitis. Vitamin A (VA), a fat-soluble vitamin essential for mucous membrane integrity, plays a key role in skin protection. Although the beneficial actions of VA are known, the anti-As-related dermatitis effects of VA action remain unclear. Hence, in this study, we aimed to interpret and identify the core target genes and therapeutic mechanisms of VA action in the treatment of As-related dermatitis through integrated in silico approaches of network pharmacology and molecular docking. We integrated the key VA-biological target-signaling pathway-As-related dermatitis networks for identifying core drug targets and interaction pathways associated with VA action. The network pharmacology data indicated that VA may possess potential activity for treating As-related dermatitis through the effective regulation of core target genes. An enrichment analysis in biological processes further revealed multiple immunoregulation-associated functions, including interferon-gamma production and negative regulation of T-cell activation and production of molecular mediator of immune response. An enrichment analysis in molecular pathways mainly uncovered multiple biological signaling, including natural killer cell mediated cytotoxicity, autophagy, apoptosis, necroptosis, platelet activation involved in cell fate, and immunity regulations. Molecular docking study was used to identify docked well core target proteins with VA, including Jun, tumor protein p53 (TP53), mitogen-activated protein kinase-3 (MAPK3), MAPK1, and MAPK14. In conclusion, the potential use of VA may suppress the inflammatory stress and enhance the immunity against As-related dermatitis. In the future, VA might be useful in the treatment of dermatitis associated with As through multi-targets and multi-pathways in clinical practice.
Collapse
Affiliation(s)
- Qiuhai Qin
- Department of Surgery, The People’s Hospital of Gangbei District, Guigang, China
| | - Lixiu Qin
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ruitang Xie
- Department of Surgery, The People’s Hospital of Gangbei District, Guigang, China
| | - Shuihua Peng
- Department of Pharmacy, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Chao Guo
- Department of Pharmacy, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
- *Correspondence: Chao Guo,
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, China
- Bin Yang,
| |
Collapse
|
9
|
Xu H, Qin L, Nie L, Li L, Guo P, Chen Y, Huang C, Su M, Yang B. Biotargets for mediation of arsenic–induced coronary heart disease by calycosin. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2053947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hongyuan Xu
- Cardiology Department, Guigang City People’s Hospital The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR People’s Republic of China
| | - Lixiu Qin
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, PR People’s Republic of China
| | - Litao Nie
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR People’s Republic of China
| | - Lin Li
- Cardiology Department, Guigang City People’s Hospital The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR People’s Republic of China
| | - Peng Guo
- Cardiology Department, Guigang City People’s Hospital The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR People’s Republic of China
| | - Yizhao Chen
- Cardiology Department, Guigang City People’s Hospital The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR People’s Republic of China
| | - Chuang Huang
- Cardiology Department, Guigang City People’s Hospital The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR People’s Republic of China
| | - Min Su
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR People’s Republic of China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, PR People’s Republic of China
| |
Collapse
|
10
|
Li Y, Chen Y, Wei M, Wei C. Preclinical In Silico Evidence Indicates the Pharmacological Targets and Mechanisms of Mogroside V in Patients With Ovarian Cancer and Coronavirus Disease 2019. Front Endocrinol (Lausanne) 2022; 13:845404. [PMID: 35464051 PMCID: PMC9019927 DOI: 10.3389/fendo.2022.845404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The borderless transmission of coronavirus remains uncontrolled globally. The uncharted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant reduces the therapeutic efficacy of vaccines against coronavirus disease 2019 (COVID-19). Clinical observations suggest that tumour cases are highly infected with coronavirus, possibly due to immunologic injury, causing a higher COVID-19-related death toll. Presently, screening of candidate medication against coronavirus is in progress. Mogroside V, a bioactive ingredient of Siraitia grosvenorii, has been reported in China to have lung-protective and anticancer effects. The current study used network pharmacology and molecular docking to unlock the potential drug targets and remedial mechanisms of mogroside V against patients with ovarian cancer with COVID-19. We identified 24 related targets of mogroside V in patients with ovarian cancer and COVID-19 and characterised another 10 core targets of mogroside V against COVID-19 ovarian cancer, including Jun, IL2, HSP90AA1, AR, PRKCB, VEGFA, TLR9, TLR7, STAT3, and PRKCA. The core targets' biological processes and signalling pathways were revealed by enrichment analysis. Molecular docking suggested favourable docking between core target protein and mogroside V, including vascular endothelial growth factor A (VEGFA). These findings indicated that mogroside V might be a potential therapeutic agent in the mitigation of COVID-19 ovarian cancer.
Collapse
Affiliation(s)
- Yongming Li
- Department of Gynecology, Guigang Maternal and Child Health Care Hospital, Guigang, China
| | - Yudong Chen
- Department of Gynecology, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Mulan Wei
- Department of Gynecology, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Chaohe Wei
- Department of Pharmacy, Guigang City People’s Hospital, the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
- *Correspondence: Chaohe Wei,
| |
Collapse
|
11
|
Ye Y, Huang Z, Chen M, Mo Y, Mo Z. Luteolin Potentially Treating Prostate Cancer and COVID-19 Analyzed by the Bioinformatics Approach: Clinical Findings and Drug Targets. Front Endocrinol (Lausanne) 2021; 12:802447. [PMID: 35178029 PMCID: PMC8844187 DOI: 10.3389/fendo.2021.802447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a serious epidemic, characterized by potential mutation and can bring about poor vaccine efficiency. It is evidenced that patients with malignancies, including prostate cancer (PC), may be highly vulnerable to the SARS-CoV-2 infection. Currently, there are no existing drugs that can cure PC and COVID-19. Luteolin can potentially be employed for COVID-19 treatment and serve as a potent anticancer agent. Our present study was conducted to discover the possible drug target and curative mechanism of luteolin to serve as treatment for PC and COVID-19. The differential gene expression of PC cases was determined via RNA sequencing. The application of network pharmacology and molecular docking aimed to exhibit the drug targets and pharmacological mechanisms of luteolin. In this study, we found the top 20 up- and downregulated gene expressions in PC patients. Enrichment data demonstrated anti-inflammatory effects, where improvement of metabolism and enhancement of immunity were the main functions and mechanism of luteolin in treating PC and COVID-19, characterized by associated signaling pathways. Additional core drug targets, including MPO and FOS genes, were computationally identified accordingly. In conclusion, luteolin may be a promising treatment for PC and COVID-19 based on bioinformatics findings, prior to future clinical validation and application.
Collapse
Affiliation(s)
- Yu Ye
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziyan Huang
- Health Management Department, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Manying Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongfeng Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Zengnan Mo,
| |
Collapse
|