1
|
Mei Y, Li W, Wang B, Chen Z, Wu X, Lin Y, Wang M. Gut microbiota: an emerging target connecting polycystic ovarian syndrome and insulin resistance. Front Cell Infect Microbiol 2025; 15:1508893. [PMID: 40134784 PMCID: PMC11933006 DOI: 10.3389/fcimb.2025.1508893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a highly heterogeneous metabolic disorder, with oligomenorrhea and hirsutism as patients' primary complaints. Hyperinsulinemia is a crucial pathophysiological mechanism in the development of PCOS, with 50-70% of patients exhibiting insulin resistance (IR). This condition not only exacerbates ovulatory dysfunction but also leads to various adverse metabolic outcomes, such as dyslipidemia and diabetes, and increases the risk of cardiovascular events both before and after menopause. Gut microbiota is a microbial community within the host that possesses significant metabolic potential and is shaped by external environmental factors, the neuro-immune network, and metabolism. Recent studies have shown that gut microbiota dysbiosis is closely related to the development and progression of PCOS. Despite the growing recognition of the potential role of gut microbiota in the pathogenesis and treatment of PCOS, its clinical application remains in its infancy. Currently, most clinical guidelines and expert consensus still emphasize traditional therapeutic approaches, such as hormonal treatments, lifestyle modifications, and insulin sensitizers. However, accumulating evidence suggests that gut microbiota may influence the metabolic and reproductive health of PCOS patients through various mechanisms. Therefore, understanding the role of gut microbiota between PCOS and IR is essential. This review describes the changes in the gut microbiota of IR-PCOS patients, examines the potential mechanisms by which the gut microbiota contributes to IR in PCOS patients, and updates the evidence supporting the gut microbiota as a potential metabolic regulatory target in IR-PCOS. In summary, gut microbiota dysbiosis may be involved in the development and progression of IR in PCOS patients, and improving gut microbiota may offer metabolic stability benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Deng H, Chen Y, Xing J, Zhang N, Xu L. Systematic low-grade chronic inflammation and intrinsic mechanisms in polycystic ovary syndrome. Front Immunol 2024; 15:1470283. [PMID: 39749338 PMCID: PMC11693511 DOI: 10.3389/fimmu.2024.1470283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting 6-20% of women of childbearing age worldwide. Immune cell imbalance and dysregulation of inflammatory factors can lead to systematic low-grade chronic inflammation (SLCI), which plays a pivotal role in the pathogenesis of PCOS. A significant higher infiltration of immune cells such as macrophages and lymphocytes and pro-inflammatory factors IL-6 and TNF-α has been detected in PCOS organ systems, impacting not only the female reproductive system but also other organs such as the cardiovascular, intestine, liver, thyroid, brain and other organs. Obesity, insulin resistance (IR), steroid hormones imbalance and intestinal microecological imbalance, deficiencies in vitamin D and selenium, as well as hyperhomocysteinemia (HHcy) can induce systematic imbalance between pro-inflammatory and anti-inflammatory cells and molecules. The pro-inflammatory cells and cytokines also interact with obesity, steroid hormones imbalance and IR, leading to increased metabolic imbalance and reproductive-endocrine dysfunction in PCOS patients. This review aims to summarize the dysregulation of immune response in PCOS organ system and the intrinsic mechanisms affecting SLCI in PCOS to provide new insights for the systemic inflammatory treatment of PCOS in the future.
Collapse
Affiliation(s)
- Hongxia Deng
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Chen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jilong Xing
- Division of Renal and Endocrinology, Qin Huang Hospital, Xi’an, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Liu ZQ, Yan CZ, Zhong SM, Chong CJ, Wu YQ, Liu JY, Huang CX, Wang KY, Li HW, Song JL. Dietary Antrodia cinnamomea Polysaccharide Intervention Modulates Clinical Symptoms by Regulating Ovarian Metabolites and Restructuring the Intestinal Microbiota in Rats with Letrozole-Induced PCOS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27884-27901. [PMID: 39632724 DOI: 10.1021/acs.jafc.4c06855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder. This study investigated the mitigating effects of the Antrodia cinnamomea polysaccharide (ACP) on a letrozole-induced PCOS rat model. Results demonstrated that ACP reduced obesity and ameliorated dyslipidemia in PCOS rats. Moreover, ACP restored estrous cycle regularity, suppressed polycystic ovarian changes, and regulated serum levels of sex hormones, SOD, and MDA. Furthermore, ACP increased the α-diversity and modulated the abundance of phyla (Bacteroidetes, Firmicutes, and Verrucomicrobia) and genera (Lactobacillus, Helicobacter, Akkermansia, Oscillospira, Coprococcus, Roseburia, Blautia, and Allobaculum) in the gut microbiota. ACP also restored compromised intestinal barriers by upregulating the expression of ZO1, Occludin, Claudin1, and Claudin7 in the colon. ACP mitigated ovarian fibrosis by preventing activation of the NLRP3 inflammasome, decreasing the expression of fibrotic markers (TGF-β1, collagen-I, α-SMA, and CTGF), and regulating four ovarian fibrosis-associated metabolomics pathways. Generally, dietary ACP effectively ameliorated clinical symptoms and inhibited ovarian fibrosis in PCOS rats.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541004, China
| | - Chuan-Zhi Yan
- Department of Pharmacology, School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541004, China
| | - Shu-Mei Zhong
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Chao-Jie Chong
- Department of Pharmacology, School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541004, China
| | - Ya-Qi Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541004, China
| | - Jun-Yang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Chun-Xiang Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Ke-Ying Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541100, China
| | - He-Wei Li
- Department of Infectious Diseases, School of Clinical Medicine, Guilin Medical University, Guilin 541004, China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541100, China
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541100, China
- Department of Clinical Nutrition and Obstetrics, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China
| |
Collapse
|
4
|
Yang Q, Wan Q, Wang Z. Curcumin mitigates polycystic ovary syndrome in mice by suppressing TLR4/MyD88/NF-κB signaling pathway activation and reducing intestinal mucosal permeability. Sci Rep 2024; 14:29848. [PMID: 39617843 PMCID: PMC11609283 DOI: 10.1038/s41598-024-81034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder closely associated with chronic inflammation. Curcumin, a polyphenolic lipophilic compound, has been shown to improve the intestinal mucosal barrier and reduce low-grade systemic inflammation. This study aimed to assess the effects of curcumin on attenuation of PCOS in a mouse model and to explore the underlying mechanisms involved. C57BL/6J mice were divided into 4 groups (n = 15 per group): CON: control group, CON/CUR: CON with curcumin group, MOD: model group, MOD/CUR: MOD with curcumin group. The MOD and MOD/CUR groups were injected with dehydroepiandrosterone (DHEA) (6 mg/100 g BW) dissolved in soybean oil to induce a PCOS-like state. After curcumin intervention (200 mg/kg) for 45 days, the mice were euthanized for analysis of various physiological and biochemical parameters. In MOD/CUR group, significant decreases in body weight (BW) (p = 0.0254), testosterone (T) levels (p = 0.0052), luteinizing hormone (LH) levels (p = 0.0438), and the LH/follicle-stimulating hormone (FSH) (p = 0.0271) levels were observed, while estradiol (E2) (p = 0.0415) level and insulin sensitivity (p = 0.0441) were increased. Histological examination (HE) staining of ovarian and colon tissues showed that curcumin ameliorated both PCOS-associated morphological changes and colon tissue pathology. Western blot and immunohistochemistry analyses of colon tissues revealed increased levels of tight junction proteins, ZO-1 (Western blot, p = 0.0360; immunohistochemistry, p = 0.0273) and occluding (Western blot, p = 0.0189; immunohistochemistry, p = 0.0224) in the MOD/CUR group. Additionally, inflammatory indicators from plasma and ovary, including IL-17 A (plasma, p = 0.0120; ovary, p = 0.0414), IL-6 (plasma, p = 0.0344; ovary, p = 0.0379), TNF-α (plasma, p = 0.0078; ovary, p = 0.0488), and lipopolysaccharides (LPS) (plasma, p = 0.0144), were decreased, while IL-10 (plasma, p = 0.0270; ovary, p = 0.0267) was increased in MOD/CUR group. The levels of NF-κB p65 (p = 0.0229), TLR-4 (p = 0.0462) and MyD88 (p = 0.0152) in ovarian tissues were significantly increased in MOD/CUR group. Our results revealed that curcumin alleviates PCOS by inhibiting TLR4/MyD88/NF-κB signaling pathway activation and reducing intestinal mucosal permeability. These findings suggest that curcumin may provide a potential clinical approach for managing PCOS.
Collapse
Affiliation(s)
- Qin Yang
- Department of Endocrinology, The people's Hospital of Leshan, Leshan, 614000, Sichuan, China
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Taiping Street 25, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Taiping Street 25, Jiangyang District, Luzhou, 646000, Sichuan, China.
| | - Zhen Wang
- Department of Gastroenterology, The people's Hospital of Leshan, NO.238 Baita Street, Shizhong District, Leshan, 614000, Sichuan, China.
| |
Collapse
|
5
|
Kong FS, Huang P, Chen JH, Ma Y. The Novel Insight of Gut Microbiota from Mouse Model to Clinical Patients and the Role of NF-κB Pathway in Polycystic Ovary Syndrome. Reprod Sci 2024; 31:3323-3333. [PMID: 38653859 DOI: 10.1007/s43032-024-01562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Polycystic Ovary Syndrome (PCOS) is a metabolic disorder characterized by hyperandrogenism and related symptoms in women of reproductive age. Emerging evidence suggests that chronic low-grade inflammation plays a significant role in the development of PCOS. The gut microbiota, a complex bacterial ecosystem, has been extensively studied for various diseases, including PCOS, while the underlying mechanisms are not fully understood. This review comprehensively summarizes the changes in gut microbiota and metabolites observed in PCOS and their potential association with the condition. Additionally, we discuss the role of abnormal nuclear factor κB signaling in the pathogenesis of PCOS. These findings offer valuable insights into the mechanisms of PCOS and may pave the way for the development of control and therapeutic strategies for this condition in clinical practice. By bridging the gap between mouse models and clinical patients, this review contributes to a better understanding of the interplay between gut microbiota and inflammation in PCOS, thus paving new ways for future investigations and interventions.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Panwang Huang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
6
|
Li X, Yi Y, Ren Y, Zhang Y, Wang CC, Liu C, Liu S, Zhan X, Yu X, Liang R. Zishen Qingre Lishi Huayu Recipe May Ameliorate the Symptoms of PCOS Model Rats via Alleviating Systemic and Ovarian Inflammation. Am J Reprod Immunol 2024; 92:e13918. [PMID: 39158962 DOI: 10.1111/aji.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Zishen Qingre Lishi Huayu recipe (ZQLHR) has shown significant therapeutic effects in treating sex hormone levels and follicular developmental disorders in patients with polycystic ovary syndrome (PCOS). However, little is known about the potential mechanisms of its treatment. METHODS Dehydroepiandrosterone and a high-fat diet induced the PCOS model rat. The serum of rats was collected to detect the levels of sex hormones and inflammatory cytokines by enzyme-linked immunosorbent assay, and the ovaries were collected for ovarian histopathology and qPCR assay to detect the levels of inflammatory cytokines in ovarian tissues. Granulosa cells (GCs) were collected for western blot assay to detect of IL-1β, IL-6R, and LOX protein expression levels. RESULTS ZQLHR could reduce body weight, regulate estrous cycles, and improve serum sex hormone levels, follicular development, and insulin resistance (IR) in PCOS model rats. In addition, ZQLHR treatment improved the levels of inflammatory cytokines in serum and ovary, and regulated the protein expression of IL-6R, IL-1β, and LOX in GCs of PCOS model rats. The results showed that the HOMA-IR index increased with the increasing levels of IL-6, IL-1β, and CRP, and decreased with the increased IL-10. CONCLUSION This study reveals that the treatment of endocrine disorders and ovulation disorders in PCOS with ZQLHR may be closely related to the improvement of systemic and ovarian inflammation in PCOS patients, as well as the inhibition of IL-6R, IL-1β, and LOX expression in GCs, which reemphasizes the role of reducing chronic inflammatory states in the treatment of PCOS. Moreover, this study reemphasizes the correlation between multiple inflammatory mediators and IR.
Collapse
Affiliation(s)
- Xin Li
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yao Yi
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yunying Ren
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yixuan Zhang
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chi Chiu Wang
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, HongKong, China
| | - Chengyi Liu
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuzhen Liu
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaoxuan Zhan
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xingxing Yu
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ruining Liang
- Institute of Obstetrics and Gynecology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Reproductive Medicine, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
7
|
Li J, Cui Z, Wei M, Almutairi MH, Yan P. Omics analysis of the effect of cold normal saline stress through gastric gavage on LPS induced mice. Front Microbiol 2023; 14:1256748. [PMID: 38163070 PMCID: PMC10755949 DOI: 10.3389/fmicb.2023.1256748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cold stress is a significant environmental stimulus that negatively affects the health, production, and welfare of animals and birds. However, the specific effects of cold stimulation combined with lipopolysaccharide (LPS) on the mouse intestine remain poorly understood. Therefore, we designed this research to explore the effect of cold stimulation + LPS on mice intestine via microbiome and microbiota sequencing. Forty-eight mice were randomly divided into four experimental groups (n = 12): Control (CC), LPS-induced (CL), cold normal saline-induced (MC) and LPS + cold normal saline-induced (ML). Our results showed body weight was similar among different groups of mice. However, the body weight of mice in groups CC and CL were slightly higher compared to those in groups MC and ML. The results of gene expressions reflected that CL and ML exposure caused gut injury and barrier dysfunction, as evident by decreased ZO-1, OCCLUDIN (P < 0.01), and CASPASE-1 (P < 0.01) expression in the intestine of mice. Moreover, we found that cold stress induced oxidative stress in LPS-challenged mice by increasing malondialdehyde (MDA) accumulation and decreasing the antioxidant capacity [glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total and antioxidant capacity (T-AOC)]. The cold stress promoted inflammatory response by increased IL-1β in mice treated with cold normal saline + LPS. Whereas, microbiome sequencing revealed differential abundance in four phyla and 24 genera among the mouse groups. Metabolism analysis demonstrated the presence of 4,320 metabolites in mice, with 43 up-regulated and 19 down-regulated in CC vs. MC animals, as well as 1,046 up-regulated and 428 down-regulated in ML vs. CL animals. It is Concluded that cold stress enhances intestinal damage by disrupting the balance of gut microbiota and metabolites, while our findings contribute in improving management practices of livestock in during cold seasons.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Li K, Jiang Y, Wang N, Lai L, Xu S, Xia T, Yue X, Xin H. Traditional Chinese Medicine in Osteoporosis Intervention and the Related Regulatory Mechanism of Gut Microbiome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1957-1981. [PMID: 37884447 DOI: 10.1142/s0192415x23500866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The gut microbiome (GM) has become a crucial factor that can affect the progression of osteoporosis. A number of studies have demonstrated the impact of Traditional Chinese Medicine (TCM) on GM and bone metabolism. In this review, we summarize the potential mechanisms of the relationship between osteoporosis and GM disorder and introduce several natural Chinese medicines that exert anti-osteoporosis effects by modulating the GM. It is underlined that, through the provision of the microbial associated molecular pattern (MAMP), the GM causes inflammatory reactions and alterations in the Treg-Th17 balance and ultimately leads to changes in bone mass. Serotonin and many hormones, especially estrogen, may play a crucial role in the interaction of the GM with bone metabolism. Additionally, the GM may affect the absorption of specific nutrients in the intestine, particularly minerals like calcium, magnesium, and phosphorus. Several natural Chinese herbs, such as Sambucus Williamsii, Achyranthes bidentata Blume, Pleurotus ostreatus and Ganoderma lucidum mushrooms, Pueraria Lobata, and Agaricus blazei Murill have exhibited anti-osteoporosis effects through regulating the distribution and metabolism of the GM. These herbs may increase the abundance of Firmicutes, decrease the abundance of Bacteroides, promote the GM to produce more SCFAs, modulate the immune response caused by harmful bacteria, and increase the proportion of Treg-Th17 to indirectly affect bone metabolism. Moreover, gut-derived 5-HT is an important target for TCM to prevent osteoporosis via the gut-bone axis. Puerarin could prevent osteoporosis by improving intestinal mucosal integrity and decrease systemic inflammation caused by estrogen deficiency.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, P. R. China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| |
Collapse
|
9
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Xu Y, Cao Z, Chen T, Ren J. Trends in metabolic dysfunction in polycystic ovary syndrome: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1245719. [PMID: 37701893 PMCID: PMC10494444 DOI: 10.3389/fendo.2023.1245719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a very common chronic disease and causes reproductive disorders in women of childbearing age worldwide. The cause of metabolic dysfunction in PCOS is unknown, and there is a lack of systematic bibliometric analysis for this disease. This study included 3,972 articles on metabolic dysfunction in PCOS published from 2012 to 2021. We applied the VOSviewer and the CiteSpace scientometric analysis software to analyze the data regarding the publication of the articles, countries, authors, institutions, scientific categories, cited journals, and keywords. Through this analysis, we determined the research efforts and their developing trends and anticipated the progress in understanding PCOS-related metabolic dysfunction.
Collapse
Affiliation(s)
- Yan Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiqun Cao
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian Ren
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Luo M, Chen Y, Pan X, Chen H, Fan L, Wen Y. E. coli Nissle 1917 ameliorates mitochondrial injury of granulosa cells in polycystic ovary syndrome through promoting gut immune factor IL-22 via gut microbiota and microbial metabolism. Front Immunol 2023; 14:1137089. [PMID: 37275915 PMCID: PMC10235540 DOI: 10.3389/fimmu.2023.1137089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Objective Gut microbiota and its metabolites have regulatory effects on PCOS related ovarian dysfunction and insulin resistance. Escherichia coli Nissle 1917 (EcN) is a genetically controlled probiotic with an excellent human safety record for improving gut microbiome metabolic disorders and immune system disorders. Here we focused to explore the application and effect of probiotic EcN on the gut microbiota-metabolism-IL-22-mitochondrial damage axis in PCOS. Methods PCOS mice were constructed with dehydroepiandrosterone (DHEA) and treated with EcN, FMT or IL-22 inhibitors. Clinically control and PCOS subjects were included for further analysis. Serum and follicular fluid supernatant levels of sex hormones, insulin, glucose, cholesterol, and inflammatory factors were detected by ELISA and biochemical reagents. The pathological changes of ovarian tissues were observed by HE staining. The JC-1 level and COX4 gene expression in granulosa cells was detected by ELISA and RT-qPCR. The expressions of progesterone receptor A (PR-A), LC3II/I, Beclin1, p62 and CytC were detected by western blot. The number of autophagosomes in granulosa cells was observed by electron microscopy. 16S rRNA and LC-MS/MS were used to analyze the changes of gut microbiota and metabolism. Results EcN promoted the recovery of sex hormone levels and ovarian tissue morphology, promoted the expression of IL-22, COX4 and PR-A in granulosa cells, and inhibited mitophagy in PCOS mice. EcN decreased the number of gut microbiota, and significantly increased the abundance of Adlercreutzia, Allobaculum, Escherichia-Shigella and Ileibacterium in PCOS mice. EcN improved metabolic disorders in PCOS mice by improving Amino sugar and nucleotide sugar metabolism pathways. IL-22 was positively associated with Ileibacterium, Adlercreutzia and Progesterone, negatively associated with RF39, Luteinizing hormone, Testosterone, N-Acetylglucosamin, L-Fucose and N-Acetylmannosamin. FMT reconfirmed that EcN ameliorated mitochondrial damage in granulosa cells of PCOS mice by gut microbiota, but this process was blocked by IL-22 inhibitor. Clinical trials have further demonstrated reduced IL-22 levels and mitochondrial damage in granulosa cells in PCOS patients. Conclusion EcN improved IL-22 level and mitochondrial damage of granulosa cells in PCOS mice by promoting the recovery of sex hormone levels and ovarian tissue morphology, inhibiting the amount of gut microbiota, and promoting amino sugar and nucleotide sugar metabolism.
Collapse
|
12
|
Chen H, Deng C, Meng Z, Meng S. Effects of TCM on polycystic ovary syndrome and its cellular endocrine mechanism. Front Endocrinol (Lausanne) 2023; 14:956772. [PMID: 37260441 PMCID: PMC10228207 DOI: 10.3389/fendo.2023.956772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/03/2023] [Indexed: 06/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disease characterized by menstrual disorders, infertility, and obesity, often accompanied by insulin resistance and metabolic disorders. The pathogenesis of PCOS is relatively complex and has a certain relationship with endocrine disorders. The increase of androgen and luteinizing hormone (LH) is the main cause of a series of symptoms. Traditional Chinese medicine (TCM) has obvious advantages and significant curative effects in the treatment of this disease. It can effectively reduce the insulin level of PCOS patients, regulate lipid metabolism, and increase ovulation rate and pregnancy rate and has fewer side effects. This article reviews the efficacy and safety of Chinese herbs and other TCM (such as acupuncture) in the treatment of PCOS and its complications in recent years, as well as the effect and mechanism on cellular endocrine, in order to provide a new clinical idea for the treatment of PCOS.
Collapse
Affiliation(s)
- Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol 2023; 14:1169232. [PMID: 37215125 PMCID: PMC10196194 DOI: 10.3389/fimmu.2023.1169232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive endocrine disorder affecting women, which can lead to infertility. Infertility, obesity, hirsutism, acne, and irregular menstruation are just a few of the issues that PCOS can be linked to. PCOS has a complicated pathophysiology and a range of clinical symptoms. Chronic low-grade inflammation is one of the features of PCOS. The inflammatory environment involves immune and metabolic disturbances. Numerous organ systems across the body, in addition to the female reproductive system, have been affected by the pathogenic role of immunological dysregulation in PCOS in recent years. Insulin resistance and hyperandrogenism are associated with immune cell dysfunction and cytokine imbalance. More importantly, obesity is also involved in immune dysfunction in PCOS, leading to an inflammatory environment in women with PCOS. Hormone, obesity, and metabolic interactions contribute to the pathogenesis of PCOS. Hormone imbalance may also contribute to the development of autoimmune diseases. The aim of this review is to summarize the pathophysiological role of immune dysregulation in various organ systems of PCOS patients and provide new ideas for systemic treatment of PCOS in the future.
Collapse
Affiliation(s)
- Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
14
|
Su YN, Wang MJ, Yang JP, Wu XL, Xia M, Bao MH, Ding YB, Feng Q, Fu LJ. Effects of Yulin Tong Bu formula on modulating gut microbiota and fecal metabolite interactions in mice with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1122709. [PMID: 36814581 PMCID: PMC9939769 DOI: 10.3389/fendo.2023.1122709] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenism, ovarian dysfunction and polycystic ovarian morphology. Gut microbiota dysbiosis and metabolite are associated with PCOS clinical parameters. Yulin Tong Bu formula (YLTB), a traditional Chinese medicine formula, has been recently indicated to be capable of ameliorating polycystic ovary symptoms and correcting abnormal glucose metabolism. However, the therapeutic mechanism of YLTB on PCOS has not been fully elucidated. METHODS A pseudo sterile mouse model was established during this four-day acclimatization phase by giving the animals an antibiotic cocktail to remove the gut microbiota. Here, the therapeutic effects of YLTB on PCOS were investigated using dehydroepiandrosterone plus high-fat diet-induced PCOS mice model. Female prepuberal mice were randomly divided into three groups; namely, the control group, PCOS group and YLTB (38.68 g·kg-1·day-1) group. To test whether this effect is associated with the gut microbiota, we performed 16S rRNA sequencing studies to analyze the fecal microbiota of mice. The relationships among metabolites, gut microbiota, and PCOS phenotypes were further explored by using Spearman correlation analysis. Then, the effect of metabolite ferulic acid was then validated in PCOS mice. RESULTS Our results showed that YLTB treatment ameliorated PCOS features (ovarian dysfunction, delayed glucose clearance, decreased insulin sensitivity, deregulation of glucolipid metabolism and hormones, etc.) and significantly attenuated PCOS gut microbiota dysbiosis. Spearman correlation analysis showed that metabolites such as ferulic acid and folic acid are negatively correlated with PCOS clinical parameters. The effect of ferulic acid was similar to that of YLTB. In addition, the bacterial species such as Bacteroides dorei and Bacteroides fragilis were found to be positively related to PCOS clinical parameters, using the association study analysis. CONCLUSION These results suggest that YLTB treatment systematically regulates the interaction between the gut microbiota and the associated metabolites to ameliorate PCOS, providing a solid theoretical basis for further validation of YLTB effect on human PCOS trials.
Collapse
Affiliation(s)
- Ya-Nan Su
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mei-Jiao Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jun-Pu Yang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiang-Lu Wu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Min Xia
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Mei-Hua Bao
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Qian Feng
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| | - Li-Juan Fu
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| |
Collapse
|