1
|
Borges DF, Soares JI, Silva H, Felgueiras J, Batista C, Ferreira S, Rocha NB, Leal A. A custom-built single-channel in-ear electroencephalography sensor for sleep phase detection: an interdependent solution for at-home sleep studies. J Sleep Res 2024:e14368. [PMID: 39363577 DOI: 10.1111/jsr.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Sleep is vital for health. It has regenerative and protective functions. Its disruption reduces the quality of life and increases susceptibility to disease. During sleep, there is a cyclicity of distinct phases that are studied for clinical purposes using polysomnography (PSG), a costly and technically demanding method that compromises the quality of natural sleep. The search for simpler devices for recording biological signals at home addresses some of these issues. We have reworked a single-channel in-ear electroencephalography (EEG) sensor grounded to a commercially available memory foam earplug with conductive tape. A total of 14 healthy volunteers underwent a full night of simultaneous PSG, in-ear EEG and actigraphy recordings. We analysed the performance of the methods in terms of sleep metrics and staging. In another group of 14 patients evaluated for sleep-related pathologies, PSG and in-ear EEG were recorded simultaneously, the latter in two different configurations (with and without a contralateral reference on the scalp). In both groups, the in-ear EEG sensor showed a strong correlation, agreement and reliability with the 'gold standard' of PSG and thus supported accurate sleep classification, which is not feasible with actigraphy. Single-channel in-ear EEG offers compelling prospects for simplifying sleep parameterisation in both healthy individuals and clinical patients and paves the way for reliable assessments in a broader range of clinical situations, namely by integrating Level 3 polysomnography devices. In addition, addressing the recognised overestimation of the apnea-hypopnea index, due to the lack of an EEG signal, and the sparse information on sleep metrics could prove fundamental for optimised clinical decision making.
Collapse
Affiliation(s)
- Daniel Filipe Borges
- Center for Translational Health and Medical Biotechnology Research (TBIO) | Health Research and Innovation (RISE-Health), E2S, Polytechnic University of Porto, Porto, Portugal
- Department of Neurophysiology, E2S, Polytechnic University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joana Isabel Soares
- Polytechnic University of Coimbra, Coimbra, Portugal
- H&TRC - Health and Technology Research Center, Coimbra Health School, Polytechnic University of Coimbra, Coimbra, Portugal
| | - Heloísa Silva
- Department of Neurology, Unidade Local de Saúde de Matosinhos, Hospital Pedro Hispano, Matosinhos, Portugal
| | - João Felgueiras
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Neurology, Unidade Local de Saúde de Matosinhos, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Carla Batista
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Neurology, Unidade Local de Saúde de Matosinhos, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Simão Ferreira
- Center for Translational Health and Medical Biotechnology Research (TBIO) | Health Research and Innovation (RISE-Health), E2S, Polytechnic University of Porto, Porto, Portugal
| | - Nuno Barbosa Rocha
- Center for Translational Health and Medical Biotechnology Research (TBIO) | Health Research and Innovation (RISE-Health), E2S, Polytechnic University of Porto, Porto, Portugal
| | - Alberto Leal
- Department of Neurophysiology, Unidade Local de Saúde de S. José, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal
- Evolutionary Systems and Biomedical Engineering Lab (LaSEEB), Institute for Systems and Robotics (ISR) - Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Onuma S, Kawai M. Circadian Regulatory Networks of Glucose Homeostasis and Its Disruption as a Potential Cause of Undernutrition. Endocrinology 2024; 165:bqae126. [PMID: 39276035 DOI: 10.1210/endocr/bqae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
The circadian clock system, an evolutionarily conserved mechanism, orchestrates diurnal rhythms in biological activities such as behavior and metabolism, aligning them with the earth's 24-hour light/dark cycle. This synchronization enables organisms to anticipate and adapt to predictable environmental changes, including nutrient availability. However, modern lifestyles characterized by irregular eating and sleeping habits disrupt this synchrony, leading to metabolic disorders such as obesity and metabolic syndrome, evidenced by higher obesity rates among shift workers. Conversely, circadian disturbances are also associated with reduced nutrient absorption and an increased risk of malnutrition in populations such as the critically ill or the elderly. The precise mechanisms of these disturbances in leading to either overnutrition or undernutrition is complex and not yet fully understood. Glucose, a crucial energy source, is closely linked to obesity when consumed excessively and to weight loss when intake is reduced, which suggests that circadian regulation of glucose metabolism is a key factor connecting circadian disturbances with nutritional outcomes. In this review, we describe how the biological clock in various tissues regulates glucose metabolism, with a primary focus on studies utilizing animal models. Additionally, we highlight current clinical evidence supporting the association between circadian disturbance and glucose metabolism, arguing that such disruption could predominantly contribute to undernutrition due to impaired efficient utilization of nutrients.
Collapse
Affiliation(s)
- Shinsuke Onuma
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Molecular Genetics and Endocrinology, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
| |
Collapse
|
3
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
El-Zahaby SA, Kaur L, Sharma A, Prasad AG, Wani AK, Singh R, Zakaria MY. Lipoplexes' Structure, Preparation, and Role in Managing Different Diseases. AAPS PharmSciTech 2024; 25:131. [PMID: 38849687 DOI: 10.1208/s12249-024-02850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Lipid-based vectors are becoming promising alternatives to traditional therapies over the last 2 decades specially for managing life-threatening diseases like cancer. Cationic lipids are the most prevalent non-viral vectors utilized in gene delivery. The increasing number of clinical trials about lipoplex-based gene therapy demonstrates their potential as well-established technology that can provide robust gene transfection. In this regard, this review will summarize this important point. These vectors however have a modest transfection efficiency. This limitation can be partly addressed by using functional lipids that provide a plethora of options for investigating nucleic acid-lipid interactions as well as in vitro and in vivo nucleic acid delivery for biomedical applications. Despite their lower gene transfer efficiency, lipid-based vectors such as lipoplexes have several advantages over viral ones: they are less toxic and immunogenic, can be targeted, and are simple to produce on a large scale. Researchers are actively investigating the parameters that are essential for an effective lipoplex delivery method. These include factors that influence the structure, stability, internalization, and transfection of the lipoplex. Thorough understanding of the design principles will enable synthesis of customized lipoplex formulations for life-saving therapy.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Lovepreet Kaur
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612, South Sinai, Egypt
| |
Collapse
|
5
|
Tsang AH, Rosa-Neto JC. Editorial: Circadian rhythm in cellular endocrinology. Front Endocrinol (Lausanne) 2024; 15:1429793. [PMID: 38863937 PMCID: PMC11165192 DOI: 10.3389/fendo.2024.1429793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Affiliation(s)
- Anthony H. Tsang
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Immunometabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
6
|
Pourali G, Ahmadzade AM, Arastonejad M, Pourali R, Kazemi D, Ghasemirad H, Khazaei M, Fiuji H, Nassiri M, Hassanian SM, Ferns GA, Avan A. The circadian clock as a potential biomarker and therapeutic target in pancreatic cancer. Mol Cell Biochem 2024; 479:1243-1255. [PMID: 37405534 DOI: 10.1007/s11010-023-04790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer (PC) has a very high mortality rate globally. Despite ongoing efforts, its prognosis has not improved significantly over the last two decades. Thus, further approaches for optimizing treatment are required. Various biological processes oscillate in a circadian rhythm and are regulated by an endogenous clock. The machinery controlling the circadian cycle is tightly coupled with the cell cycle and can interact with tumor suppressor genes/oncogenes; and can therefore potentially influence cancer progression. Understanding the detailed interactions may lead to the discovery of prognostic and diagnostic biomarkers and new potential targets for treatment. Here, we explain how the circadian system relates to the cell cycle, cancer, and tumor suppressor genes/oncogenes. Furthermore, we propose that circadian clock genes may be potential biomarkers for some cancers and review the current advances in the treatment of PC by targeting the circadian clock. Despite efforts to diagnose pancreatic cancer early, it still remains a cancer with poor prognosis and high mortality rates. While studies have shown the role of molecular clock disruption in tumor initiation, development, and therapy resistance, the role of circadian genes in pancreatic cancer pathogenesis is not yet fully understood and further studies are required to better understand the potential of circadian genes as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Mahmoud Ahmadzade
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Hamidreza Ghasemirad
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, 37 Kent Street, QLD, 4102, Australia.
| |
Collapse
|
7
|
Lai H, Xiang X, Long X, Chen Z, Liu Y, Huang X. Multi-omics and single-cell sequencing analyses reveal the potential significance of circadian pathways in cancer therapy. Expert Rev Mol Diagn 2024; 24:107-121. [PMID: 38288973 DOI: 10.1080/14737159.2023.2296668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/24/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Circadian rhythm disturbance is an independent risk factor for cancer. However, few studies have been reported on circadian rhythm related genes (CRGs) in cancer, so it is important to further explore the impact of CRGs in pan-cancer. RESEARCH DESIGN AND METHODS The Cancer Genome Atlas database was used to collect cancer-related data such as copy number variation, single nucleotide variants, methylation, and survival differences. Immunohistochemistry (IHC) was used to verify the expression of circadian rhythm hub genes. The circadian pathway scores (CRS) were calculated using single-sample gene enrichment analysis. TIMER and GEPIA databases were used for immune-cell integration and assessment. Single-cell sequencing data was used to evaluate the abundance of CRS in tumor microenvironment cells. RESULTS In this study, we found that the expression of circadian pathway varies between tumors. CSNK1E was significantly up-regulated in most tumors and CRY2 was significantly down-regulated in most tumors. The protein interaction network suggested CRY2 as the core gene and IHC verified its significant low expression in KIRC. In addition, CRGs were found to be protective factors in most tumors and have the potential to act as specific immune markers in different tumors. CRS was significantly lower in abundance in most tumors. CRS was significantly associated with overall survival in tumor patients and associated with the expression of many immune cells in the tumor immune microenvironment. CRS is significantly associated with tumor mutational burden and microsatellite instability scores in most tumors and may serve as a potential immunotherapeutic marker. CONCLUSIONS The circadian rhythm pathway may be a breakthrough point in regulating the tumor microenvironment meanwhile a suitable immunotherapy method in the future.
Collapse
Affiliation(s)
- Hao Lai
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoyun Xiang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xingqing Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zuyuan Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Yanling Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| |
Collapse
|
8
|
He SK, Wang JH, Li T, Yin S, Cui JW, Xiao YF, Tang Y, Wang J, Bai YJ. Sleep and circadian rhythm disturbance in kidney stone disease: a narrative review. Front Endocrinol (Lausanne) 2023; 14:1293685. [PMID: 38089624 PMCID: PMC10711275 DOI: 10.3389/fendo.2023.1293685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The circadian rhythm generated by circadian clock genes functions as an internal timing system. Since the circadian rhythm controls abundant physiological processes, the circadian rhythm evolved in organisms is salient for adaptation to environmental change. A disturbed circadian rhythm is a trigger for numerous pathological events. Recently, accumulated data have indicated that kidney stone disease (KSD) is related to circadian rhythm disturbance. However, the mechanism between them has not been fully elucidated. In this narrative review, we summarized existing evidence to illustrate the possible association between circadian rhythm disturbance and KSD based on the epidemiological studies and risk factors that are linked to circadian rhythm disturbance and discuss some chronotherapies for KSD. In summary, KSD is associated with systemic disorders. Metabolic syndrome, inflammatory bowel disease, and microbiome dysbiosis are the major risk factors supported by sufficient data to cause KSD in patients with circadian rhythm disturbance, while others including hypertension, vitamin D deficiency, parathyroid gland dysfunction, and renal tubular damage/dysfunction need further investigation. Then, some chronotherapies for KSD were confirmed to be effective, but the molecular mechanism is still unclear.
Collapse
Affiliation(s)
- Si-Ke He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian-Wei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fei Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Jin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Hansson Mild K, Mattsson MO, Jeschke P, Israel M, Ivanova M, Shalamanova T. Occupational Exposure to Electromagnetic Fields-Different from General Public Exposure and Laboratory Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6552. [PMID: 37623138 PMCID: PMC10454245 DOI: 10.3390/ijerph20166552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
The designs of in vivo, in vitro and in silico studies do not adequately reflect the characteristics of long-term occupational EMF exposure; the higher exposure levels permitted for employees are nevertheless extrapolated on this basis. Epidemiological studies consider occupational exposure only in a very general way, if at all. There is a lack of detailed descriptive data on long-term occupational exposure over the duration of the working life. Most studies reflect exposure characteristics of the general population, exposures which are long-term, but at a comparably low level. Occupational exposure is often intermittent with high peak power followed by periods with no exposure. Furthermore, the EU EMF-Directive 2013/35/EU states a demand for occupational health surveillance, the outcome of which would be of great help to epidemiologists studying the health effects of EMF exposure. This paper thus aims to outline and specify differences between public and occupational exposure and to increase the understanding of specific aspects of occupational exposure which are important for long-term health considerations. This could lead to a future protection concept against possible hazards based on adequate descriptions of long-term exposures and also include supplementary descriptive features such as a "reset time" of biological systems and accurate dose quantities.
Collapse
Affiliation(s)
- Kjell Hansson Mild
- Department of Radiation Sciences, Radiation Physics, Umeå University, 90187 Umeå, Sweden;
| | - Mats-Olof Mattsson
- SciProof International AB, 83158 Östersund, Sweden
- Institute of Advanced Studies, Strömstad Academy, 45280 Strömstad, Sweden
| | - Peter Jeschke
- Federal Institute for Occupational Safety and Health, 44194 Dortmund, Germany;
| | - Michel Israel
- National Centre of Public Health and Analyses, 1431 Sofia, Bulgaria; (M.I.); (M.I.); (T.S.)
| | - Mihaela Ivanova
- National Centre of Public Health and Analyses, 1431 Sofia, Bulgaria; (M.I.); (M.I.); (T.S.)
| | - Tsvetelina Shalamanova
- National Centre of Public Health and Analyses, 1431 Sofia, Bulgaria; (M.I.); (M.I.); (T.S.)
| |
Collapse
|
10
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
11
|
Waddell H, Stevenson TJ, Mole DJ. The role of the circadian rhythms in critical illness with a focus on acute pancreatitis. Heliyon 2023; 9:e15335. [PMID: 37089281 PMCID: PMC10119767 DOI: 10.1016/j.heliyon.2023.e15335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Circadian rhythms are responsible for governing various physiological processes, including hormone secretion, immune responses, metabolism, and the sleep/wake cycle. In critical illnesses such as acute pancreatitis (AP), circadian rhythms can become dysregulated due to disease. Evidence suggests that time of onset of disease, coupled with peripheral inflammation brought about by AP will impact on the circadian rhythms generated in the central pacemaker and peripheral tissues. Cells of the innate and adaptive immune system are governed by circadian rhythms and the diurnal pattern of expression can be disrupted during disease. Peak circadian immune cell release and gene expression can coincide with AP onset, that may increase pancreatic injury, tissue damage and the potential for systemic inflammation and multiple organ failure to develop. Here, we provide an overview of the role of circadian rhythms in AP and the underpinning inflammatory mechanisms to contextualise ongoing research into the chronobiology and chronotherapeutics of AP.
Collapse
Affiliation(s)
- Heather Waddell
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Tyler J. Stevenson
- Institute of Biodiversity and Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Damian J. Mole
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Clinical Surgery, School of Clinical Sciences and Community Health, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
12
|
Tiwari A, Rathor P, Trivedi PK, Ch R. Multi-Omics Reveal Interplay between Circadian Dysfunction and Type2 Diabetes. BIOLOGY 2023; 12:301. [PMID: 36829576 PMCID: PMC9953493 DOI: 10.3390/biology12020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Type 2 diabetes is one of the leading threats to human health in the 21st century. It is a metabolic disorder characterized by a dysregulated glucose metabolism resulting from impaired insulin secretion or insulin resistance. More recently, accumulated epidemiological and animal model studies have confirmed that circadian dysfunction caused by shift work, late meal timing, and sleep loss leads to type 2 diabetes. Circadian rhythms, 24-h endogenous biological oscillations, are a fundamental feature of nearly all organisms and control many physiological and cellular functions. In mammals, light synchronizes brain clocks and feeding is a main stimulus that synchronizes the peripheral clocks in metabolic tissues, such as liver, pancreas, muscles, and adipose tissues. Circadian arrhythmia causes the loss of synchrony of the clocks of these metabolic tissues and leads to an impaired pancreas β-cell metabolism coupled with altered insulin secretion. In addition to these, gut microbes and circadian rhythms are intertwined via metabolic regulation. Omics approaches play a significant role in unraveling how a disrupted circadian metabolism causes type 2 diabetes. In the present review, we emphasize the discoveries of several genes, proteins, and metabolites that contribute to the emergence of type 2 diabetes mellitus (T2D). The implications of these discoveries for comprehending the circadian clock network in T2D may lead to new therapeutic solutions.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Priya Rathor
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Prabodh Kumar Trivedi
- Department of Biotechnology, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
| | - Ratnasekhar Ch
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|