1
|
Song K, Liang D, Xiao D, Kang A, Ren Y. Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review). Mol Med Rep 2024; 30:199. [PMID: 39239741 PMCID: PMC11411234 DOI: 10.3892/mmr.2024.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), a significant complication of diabetes mellitus, is marked by myocardial structural and functional alterations due to chronic hyperglycemia. Despite its clinical significance, optimal treatment strategies are still elusive. Bariatric surgery via sleeve gastrectomy and Roux-en-Y gastric bypass have shown promise in treating morbid obesity and associated metabolic disorders including improvements in diabetes mellitus and DCM. The present study reviews the molecular mechanisms by which bariatric surgery improves DCM, offering insights into potential therapeutic targets. Future research should further investigate the mechanistic links between bariatric surgery and DCM, to evaluate the benefits and limitations of these surgical interventions for DCM treatment. The present study aims to provide a foundation for more effective DCM therapies, contributing to the advancement of patient care.
Collapse
Affiliation(s)
- Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dingqi Xiao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
2
|
Capoccia D, Leonetti F, Natali A, Tricò D, Perrini S, Sbraccia P, Guglielmi V. Remission of type 2 diabetes: position statement of the Italian society of diabetes (SID). Acta Diabetol 2024; 61:1309-1326. [PMID: 38942960 PMCID: PMC11486812 DOI: 10.1007/s00592-024-02317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
The primary cause of the pandemic scale of type 2 diabetes (T2D) is the excessive and/or abnormal accumulation of adiposity resulting from a chronic positive energy balance. Any form of weight loss dramatically affects the natural history of T2D, favoring prevention, treatment, and even remission in the case of significant weight loss. However, weight regain, which is often accompanied by the recurrence or worsening of obesity complications such as T2D, is an inevitable biological phenomenon that is an integral part of the pathophysiology of obesity. This can occur not only after weight loss, but also during obesity treatment if it is not effective enough to counteract the physiological responses aimed at restoring adiposity to its pre-weight-loss equilibrium state. Over the past few years, many controlled and randomized studies have suggested a superior efficacy of bariatric surgery compared to conventional therapy in terms of weight loss, glycemic control, and rates of T2D remission. Recently, the therapeutic armamentarium in the field of diabetology has been enriched with new antihyperglycemic drugs with considerable efficacy in reducing body weight, which could play a pathogenetic role in the remission of T2D, not through the classical incretin effect, but by improving adipose tissue functions. All these concepts are discussed in this position statement, which aims to deepen the pathogenetic links between obesity and T2D, shift the paradigm from a "simple" interaction between insulin resistance and insulin deficiency, and evaluate the efficacy of different therapeutic interventions to improve T2D management and induce diabetes remission whenever still possible.
Collapse
Affiliation(s)
- Danila Capoccia
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, Unit of Internal Medicine - Obesity Center, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Guglielmi
- Department of Systems Medicine, Unit of Internal Medicine - Obesity Center, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Shang M, Li Z, Du D, Xu G, Lian D, Liao Z, Wang D, Amin B, Wang Z, Chen W, Zhang N, Wang L. Comparative Study for Safety and Efficacy of OAGB and SADJB-SG: A Retrospective Study. Diabetes Metab Syndr Obes 2024; 17:3499-3508. [PMID: 39319304 PMCID: PMC11420895 DOI: 10.2147/dmso.s484616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose Obesity and related complications are managed by One Anastomosis Gastric Bypass (OAGB) and Single Anastomosis Duodeno-Jejunal Bypass with Sleeve Gastrectomy (SADJB-SG), both of which are adapted from traditional gastric bypass procedures. However, there are no current comparative studies on the safety and efficacy of these two surgical procedures. Patients and Methods Preoperative baseline data of patients who had undergone OAGB and SADJB-SG surgeries from June 2019 to June 2021 were retrospectively analyzed at our bariatric facility. Postoperative data, including weight changes, improvement in type 2 diabetes (T2DM), and complication rates were collected over 2 years. This was followed by a comprehensive evaluation of the safety and efficacy of the two surgical procedures. Results A total of 63 patients completed the follow-up in this study. At the 24-month follow-up, excess weight loss percentage (EWL%) for the OAGB and SADJB-SG was 73.970±5.005 and 75.652±7.953, respectively (P-value = 0.310); total weight loss percentage (TWL%) was 24.006±8.231 and 23.171±6.600, respectively (P-value = 0.665). The diabetes remission rates for the two groups were 71.429% and 69.048%, respectively (P-value = 0.846). The cost for OAGB was 55088.208±1508.220 yuan, which was significantly lower than the 57538.195±1374.994 yuan for SADJB-SG (P-value< 0.001). Conclusion The two surgical procedures are reliable in terms of safety and efficacy, and each has distinct advantages. While OAGB has reduced operational expenses, SADJB-SG offers a broader range of applicability.
Collapse
Affiliation(s)
- Mingyue Shang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Zhehong Li
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Dexiao Du
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Guangzhong Xu
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Dongbo Lian
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Zhaohui Liao
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Dezhong Wang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Zheng Wang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Weijian Chen
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, People's Republic of China
| |
Collapse
|
4
|
Xie W, Sharma A, Kaushik H, Sharma L, Nistha, Anwer MK, Sachdeva M, Elossaily GM, Zhang Y, Pillappan R, Kaur M, Behl T, Shen B, Singla RK. Shaping the future of gastrointestinal cancers through metabolic interactions with host gut microbiota. Heliyon 2024; 10:e35336. [PMID: 39170494 PMCID: PMC11336605 DOI: 10.1016/j.heliyon.2024.e35336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Gastrointestinal (GI) cancers represent a significant global health challenge, driving relentless efforts to identify innovative diagnostic and therapeutic approaches. Recent strides in microbiome research have unveiled a previously underestimated dimension of cancer progression that revolves around the intricate metabolic interplay between GI cancers and the host's gut microbiota. This review aims to provide a comprehensive overview of these emerging metabolic interactions and their potential to catalyze a paradigm shift in precision diagnosis and therapeutic breakthroughs in GI cancers. The article underscores the groundbreaking impact of microbiome research on oncology by delving into the symbiotic connection between host metabolism and the gut microbiota. It offers valuable insights into tailoring treatment strategies to individual patients, thus moving beyond the traditional one-size-fits-all approach. This review also sheds light on novel diagnostic methodologies that could transform the early detection of GI cancers, potentially leading to more favorable patient outcomes. In conclusion, exploring the metabolic interactions between host gut microbiota and GI cancers showcases a promising frontier in the ongoing battle against these formidable diseases. By comprehending and harnessing the microbiome's influence, the future of precision diagnosis and therapeutic innovation for GI cancers appears more optimistic, opening doors to tailored treatments and enhanced diagnostic precision.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Hitesh Kaushik
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Nistha
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Yingbo Zhang
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Ramkumar Pillappan
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangaluru, Karnataka, India
| | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, lovely Professional University, Phagwara, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Bairong Shen
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
| |
Collapse
|
5
|
Moize V, Laferrère B, Shapses S. Nutritional Challenges and Treatment After Bariatric Surgery. Annu Rev Nutr 2024; 44:289-312. [PMID: 38768613 DOI: 10.1146/annurev-nutr-061121-101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bariatric surgery is an important weight loss tool in individuals with severe obesity. It is currently the most effective long-term weight loss treatment that lowers obesity-related comorbidities. It also has significant physiological and nutritional consequences that can result in gastrointestinal complications and micronutrient deficiencies. After gastric bypass, clinical events that negatively affect nutritional status include malabsorption, dumping syndrome, kidney stones, altered intestinal bile acid availability, bowel obstruction, ulcers, gastroesophageal reflux, and bacterial overgrowth. Risk factors for poor nutritional status and excessive loss of lean body mass and bone include reduced dietary quality and inadequate intake, altered nutrient absorption, and poor patient compliance with nutrient supplementation. There are unique concerns in adolescents, older individuals, and individuals who become pregnant postoperatively. With careful management, health-care professionals can assist with long-term weight loss success and minimize the risk of acute and long-term nutrition complications after bariatric surgery.
Collapse
Affiliation(s)
- Violeta Moize
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Obesity Unit, Hospital Clinic Barcelona and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Blandine Laferrère
- Nutrition and Obesity Research Center, Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sue Shapses
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Nutritional Sciences and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA;
| |
Collapse
|
6
|
Wang R, Mijiti S, Xu Q, Liu Y, Deng C, Huang J, Yasheng A, Tian Y, Cao Y, Su Y. The Potential Mechanism of Remission in Type 2 Diabetes Mellitus After Vertical Sleeve Gastrectomy. Obes Surg 2024; 34:3071-3083. [PMID: 38951388 DOI: 10.1007/s11695-024-07378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
In recent years, there has been a gradual increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM), with bariatric surgery remaining the most effective treatment strategy for these conditions. Vertical sleeve gastrectomy (VSG) has emerged as the most popular surgical procedure for bariatric/metabolic surgeries, effectively promoting weight loss and improving or curing T2DM. The alterations in the gastrointestinal tract following VSG may improve insulin secretion and resistance by increasing incretin secretion (especially GLP-1), modifying the gut microbiota composition, and through mechanisms dependent on weight loss. This review focuses on the potential mechanisms through which the enhanced action of incretin and metabolic changes in the digestive system after VSG may contribute to the remission of T2DM.
Collapse
Affiliation(s)
- Rongfei Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Salamu Mijiti
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Qilin Xu
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yile Liu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Chaolun Deng
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Jiangtao Huang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Abudoukeyimu Yasheng
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yunping Tian
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yanlong Cao
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
7
|
Li G, Xu X, Chai L, Guo Q, Wu W. Increase in bile acids after sleeve gastrectomy improves metabolism by activating GPBAR1 to increase cAMP in mice with nonalcoholic fatty liver disease. Immun Inflamm Dis 2024; 12:e1149. [PMID: 39031498 PMCID: PMC11259005 DOI: 10.1002/iid3.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Bile acids (BAs) concentration can affect metabolic improvement caused by bariatric surgery and BA concentrations increase in patients after sleeve gastrectomy (SG). Here, how BAs after SG affect metabolism in nonalcoholic fatty liver disease (NAFLD) was studied. METHODS Mice were given high-fat diet (HFD) to induce NAFLD and received SG surgery. Hepatic and fecal BA concentrations in mice were detected by liquid chromatography-tandem mass spectrometry method. BA-related genes were detected by quantitative real-time polymerase chain reaction. G protein BA receptor 1 (GPBAR1) expression was identified using western blot analysis. NAFLD mice after SG received GPBAR1 inhibitor Triamterene. The weight of mice and mice liver was detected. Mouse liver tissue was observed by hematoxylin-eosin and Oil Red O staining. Triglyceride (TG), nonesterified fatty acid (NEFA), and cyclic adenosine monophosphate (cAMP) levels in mouse liver tissue were analyzed by metabolic assay and enzyme-linked immune sorbent assay. RESULTS SG boosted increase in hepatic total/conjugated BAs and related genes and GPBAR1 expression, and attenuated increase in fecal total BAs/muricholic acid in HFD-induced mice and increased fecal taurine-BAs in HFD-induced mice. Triamterene (72 mg/kg) reversed the inhibitory role of SG in HFD-induced increase of body weight, lipid accumulation, inflammatory cell infiltration, and increase of hepatic weight and TG/NEFA content, and counteracted the positive role of SG in HFD-induced increase of hepatic cAMP concentration in mice. CONCLUSIONS BAs improve metabolism via activating GPBAR1 to increase cAMP in NAFLD mice after SG.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| | - Xin Xu
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| | - Lixin Chai
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| | - Qunhao Guo
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| | - Wei Wu
- Department of Gastrointestinal Hepatobiliary SurgeryThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou CityChina
| |
Collapse
|
8
|
Chow MD, Otersen K, Wassef A, Kong B, Yamarthy S, Rizzolo D, Yang I, Buckley B, Lu A, Crook N, Lee M, Gao J, Naganand S, Stofan MF, Armstrong L, Schumacher J, Taylor R, Henry Z, Basaly V, Yang Z, Zhang M, Huang M, Kagan L, Brunetti L, Sadek R, Lee YH, Guo GL. Effects of intestine-specific deletion of FGF15 on the development of fatty liver disease with vertical sleeve gastrectomy. Hepatol Commun 2024; 8:e0444. [PMID: 38780301 PMCID: PMC11124683 DOI: 10.1097/hc9.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Vertical sleeve gastrectomy (SGx) is a type of bariatric surgery to treat morbid obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The molecular mechanisms of SGx to improve MASLD are unclear, but increased bile acids (BAs) and FGF19 (mouse FGF15) were observed. FGF15/19 is expressed in the ileum in response to BAs and is critical in not only suppressing BA synthesis in the liver but also promoting energy expenditure. We hypothesized the reduction of obesity and resolution of MASLD by SGx may be mediated by FGF15/19. METHODS First, we conducted hepatic gene expression analysis in obese patients undergoing SGx, with the results showing increased expression of FGF19 in obese patients' livers. Next, we used wild-type and intestine-specific Fgf15 knockout mice (Fgf15ile-/-) to determine the effects of FGF15 deficiency on improving the metabolic effects. RESULTS SGx improved metabolic endpoints in both genotypes, evidenced by decreased obesity, improved glucose tolerance, and reduced MASLD progression. However, Fgf15ile-/- mice showed better improvement compared to wild-type mice after SGx, suggesting that other mediators than FGF15 are also responsible for the beneficial effects of FGF15 deficiency. Further gene expression analysis in brown adipose tissue suggests increased thermogenesis. CONCLUSIONS FGF15 deficiency, the larger BA pool and higher levels of secondary BAs may increase energy expenditure in extrahepatic tissues, which may be responsible for improved metabolic functions following SGx.
Collapse
Affiliation(s)
- Monica D. Chow
- Department of Surgery, Division of Pediatric Surgery, Rutgers Robert Wood Johnson Medical Center School, New Brunswick, New Jersey, USA
| | - Katherine Otersen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Andrew Wassef
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey, USA
- Advanced Surgical & Bariatrics of NJ, Somerset, New Jersey, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Sowmya Yamarthy
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Daniel Rizzolo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Ill Yang
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Brian Buckley
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Alexander Lu
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Naomi Crook
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Matthew Lee
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Judy Gao
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Sareena Naganand
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Mary F. Stofan
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Laura Armstrong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Justin Schumacher
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Zakiyah Henry
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Min Zhang
- Children’s Liver Disease Center, 302 Military Hospital, Beijing, China
| | - Mingxing Huang
- Department of Infectious Diseases, the Fifth Affiliated Hospital of Sun Yat-Sen University (SYSU), Zhuhai, Guangdong, China
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
| | - Ragui Sadek
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey, USA
- Advanced Surgical & Bariatrics of NJ, Somerset, New Jersey, USA
| | - Yi-Horng Lee
- Department of Surgery, Division of Pediatric Surgery, Rutgers Robert Wood Johnson Medical Center School, New Brunswick, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, USA
- Rutgers Center for Lipid Research, New Brunswick, New Jersey, USA
| |
Collapse
|
9
|
Zhang L, Liu X, Jin T, Dong J, Li X, Zhang Y, Liu D. Isomers-oriented separation of forty-five plasma bile acids with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1721:464827. [PMID: 38520985 DOI: 10.1016/j.chroma.2024.464827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Some bile acids (BAs) were considered as biomarkers or have therapeutical effect on metabolic diseases. However, due to the existence of isomers and limitations in sensitivity, simultaneous quantification of multiple BAs remains a challenge. The aim of this study is to establish an accurate and sensitive method for the determination of multiple BAs with similar polarity. A LC-MS/MS analytical method capable of quantifying forty-five BAs simultaneously using nine stable isotope internal standards was developed and fully validated based on key isomers-oriented separation strategy. The method was further applied to analyze plasma samples to describe the dynamic profile of BAs after high glucose intake. The chromatography and mass spectrum conditions were optimized to enable the accurate quantification of forty-five BAs, while ensuring the lower limit of quantification between 0.05-10 ng/mL. The results of system suitability, linearity, dilution integrity, accuracy and precision demonstrated the good quantitative capacity and robustness of the method. A total of thirty-five BAs were quantified in plasma samples from twelve healthy Chinese individuals. The established method featured superior sensitivity and better separation efficiency compared to previous studies. Meanwhile, BAs exhibited correlations with glucose and insulin, suggesting their potential as biomarkers for metabolic disorders.
Collapse
Affiliation(s)
- Lei Zhang
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China; Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xu Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Tenghui Jin
- Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Jing Dong
- Shimadzu China Innovation Center, Beijing 100020, China
| | - Xiaodong Li
- Shimadzu China Innovation Center, Beijing 100020, China
| | - Youyi Zhang
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Dongyang Liu
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China; Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
10
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
11
|
Wu KC, McCauley KE, Lynch SV, Nayak RR, King NJ, Patel S, Kim TY, Condra K, Fadrosh D, Nguyen D, Lin DL, Lynch K, Rogers SJ, Carter JT, Posselt AM, Stewart L, Schafer AL. Alteration in the gut microbiome is associated with changes in bone metabolism after laparoscopic sleeve gastrectomy. J Bone Miner Res 2024; 39:95-105. [PMID: 38477719 PMCID: PMC11240164 DOI: 10.1093/jbmr/zjad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 03/14/2024]
Abstract
Laparoscopic sleeve gastrectomy (LSG), the most common bariatric surgical procedure, leads to durable weight loss and improves obesity-related comorbidities. However, it induces abnormalities in bone metabolism. One unexplored potential contributor is the gut microbiome, which influences bone metabolism and is altered after surgery. We characterized the relationship between the gut microbiome and skeletal health in severe obesity and after LSG. In a prospective cohort study, 23 adults with severe obesity underwent skeletal health assessment and stool collection preoperatively and 6 mo after LSG. Gut microbial diversity and composition were characterized using 16S rRNA gene sequencing, and fecal concentrations of short-chain fatty acids (SCFA) were measured with LC-MS/MS. Spearman's correlations and PERMANOVA analyses were applied to assess relationships between the gut microbiome and bone health measures including serum bone turnover markers (C-terminal telopeptide of type 1 collagen [CTx] and procollagen type 1 N-terminal propeptide [P1NP]), areal BMD, intestinal calcium absorption, and calciotropic hormones. Six months after LSG, CTx and P1NP increased (by median 188% and 61%, P < .01) and femoral neck BMD decreased (mean -3.3%, P < .01). Concurrently, there was a decrease in relative abundance of the phylum Firmicutes. Although there were no change in overall microbial diversity or fecal SCFA concentrations after LSG, those with greater within-subject change in gut community microbial composition (β-diversity) postoperatively had greater increases in P1NP level (ρ = 0.48, P = .02) and greater bone loss at the femoral neck (ρ = -0.43, P = .04). In addition, within-participant shifts in microbial richness/evenness (α-diversity) were associated with changes in IGF-1 levels (ρ = 0.56, P < .01). The lower the postoperative fecal butyrate concentration, the lower the IGF-1 level (ρ = 0.43, P = .04). Meanwhile, the larger the decrease in butyrate concentration, the higher the postoperative CTx (ρ = -0.43, P = .04). These findings suggest that LSG-induced gut microbiome alteration may influence skeletal outcomes postoperatively, and microbial influences on butyrate formation and IGF-1 are possible mechanisms.
Collapse
Affiliation(s)
- Karin C Wu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Kathryn E McCauley
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Renuka R Nayak
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Nicole J King
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Sheena Patel
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, United States
| | - Tiffany Y Kim
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Katherine Condra
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Doug Fadrosh
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Dat Nguyen
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Din L Lin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Kole Lynch
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Stanley J Rogers
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Jonathan T Carter
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Andrew M Posselt
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Lygia Stewart
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
- Surgical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Anne L Schafer
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
12
|
Happonen N, Härma MA, Akhi R, Nissinen AE, Savolainen MJ, Ruuth M, Öörni K, Adeshara K, Lehto M, Groop PH, Koivukangas V, Hukkanen J, Hörkkö S. Impact of RYGB surgery on plasma immunoglobulins: association between blood pressure and glucose levels six months after surgery. APMIS 2024; 132:187-197. [PMID: 38149431 DOI: 10.1111/apm.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
We aimed to study levels of natural antibodies in plasma, and their associations to clinical and fecal biomarkers, before and 6 months after Roux-en-Y gastric bypass (RYGB) surgery. Thirty individuals with obesity [16 type 2 diabetic, 14 non-diabetic (ND)] had RYGB surgery. Total plasma IgA, IgG and IgM antibody levels and specific antibodies to oxidized low-density lipoprotein (oxLDL), malondialdehyde-acetaldehyde adducts, Porphyromonas gingivalis gingipain A hemagglutinin domain (Rgp44), and phosphocholine were measured using chemiluminescence immunoassay. Associations between plasma and fecal antibodies as well as clinical markers were analyzed. RYGB surgery reduced blood pressure, and the glycemic state was improved. A higher level of diastolic blood pressure was associated with lower plasma antibodies to oxLDL after surgery. Also, lower level of glucose markers associated with lower level of plasma antibodies to bacterial virulence factors. Antibodies to oxLDL decreased after surgery, and positive association between active serum lipopolysaccharide and specific oxLDL antibodies was detected. Total IgG levels decreased after surgery, but only in ND individuals. Reduced level of total plasma IgG, improved state of hypertension and hyperglycemia and their associations with decreased levels of specific antibodies in plasma, suggest an improved state of systemic inflammation after RYGB surgery.
Collapse
Affiliation(s)
- Natalie Happonen
- Medical Microbiology and Immunology, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Nordlab, Oulu University Hospital, Oulu, Finland
| | - Mari-Anne Härma
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ramin Akhi
- Medical Microbiology and Immunology, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Antti E Nissinen
- Medical Microbiology and Immunology, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Markku J Savolainen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Research Unit of Biomedicine and Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Krishna Adeshara
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vesa Koivukangas
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Research Unit of Biomedicine and Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
13
|
Ke Z, Lu Z, Li Q, Tong W. Intestinal glucose excretion: A potential mechanism for glycemic control. Metabolism 2024; 152:155743. [PMID: 38007149 DOI: 10.1016/j.metabol.2023.155743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The gut has been increasingly recognized in recent years as a pivotal organ in the maintenance of glucose homeostasis. Specifically, the profound and enduring improvement in glucose metabolism achieved through metabolic surgery to modify the anatomy of the gut has prompted scholars to acknowledge that the most effective strategy for treating type 2 diabetes mellitus (T2DM) involves the gut. The mechanisms underlying the regulation of glucose metabolism by the gut encompass gut hormones, bile acids, intestinal gluconeogenesis, gut microbiota, and signaling interactions between the gut and other organs (liver, brain, adipose, etc.). Recent studies have also revealed a novel phenomenon of glucose lowering through the gut: metabolic surgery and metformin promote the excretion of glucose from the circulation into the intestinal lumen by enterocytes. However, there is still limited understanding regarding the underlying mechanisms of intestinal glucose excretion and its contribution to glycemic control. This article reviews current research on intestinal glucose excretion while focusing on its role in T2DM management as well as potential mechanisms.
Collapse
Affiliation(s)
- Zhigang Ke
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Qing Li
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Weidong Tong
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
14
|
Senanayake T, Makanyengo S, Hoedt EC, Goggins B, Smith SR, Keely S. Influence of the bile acid/microbiota axis in ileal surgery: a systematic review. Colorectal Dis 2024; 26:243-257. [PMID: 38177086 DOI: 10.1111/codi.16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
AIM The gastrointestinal bile acid (BA)/microbiota axis has emerged as a potential mediator of health and disease, particularly in relation to pathologies such as inflammatory bowel disease (IBD) and colorectal cancer. Whilst it presents an exciting new avenue for therapies, it has not yet been characterized in surgical resection of the ileum, where BA reabsorption occurs. The identification of BA/microbiota signatures may provide future therapies with perioperative personalized medicine. In this work we conduct a systematic review with the aim of investigating the microbiome and BA changes that are associated with resection of the ileum. METHOD The databases included were MEDLINE, EMBASE, Web of Science and Cochrane libraries. The outcomes of interest were faecal microbiome and BA signatures after ileal resection. RESULTS Of the initial 3106 articles, three studies met the inclusion/exclusion criteria for data extraction. A total of 257 patients (46% surgery, 54% nonsurgery controls) were included in the three studies. Two studies included patients with short bowel syndrome and the other included patients with IBD. Large-scale microbiota changes were reported. In general, alpha diversity had decreased amongst patients with ileal surgery. Phylum-level changes included decreased Bacteroidetes and increased Proteobacteria and Fusobacteria in patients with an intestinal resection. Surgery was associated with increased total faecal BAs, cholic acid and chenodeoxycholic acid. There were decreases in deoxycholic acid and glycine and taurine conjugated bile salts. Integrated BA and microbiota data identified correlations with several bacterial families and BA. CONCLUSION The BA/microbiota axis is still a novel area with minimal observational data in surgery. Further mechanistic research is necessary to further explore this and identify its role in improving perioperative outcomes.
Collapse
Affiliation(s)
- Tharindu Senanayake
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- Surgical and Perioperative Care Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| | - Samwel Makanyengo
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- Surgical and Perioperative Care Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| | - Emily C Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| | - Bridie Goggins
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| | - Stephen R Smith
- Surgical and Perioperative Care Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Immune Health Program, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
15
|
Moszak M, Pelczyńska M, Wesołek A, Stenclik D, Bogdański P. Does gut microbiota affect the success of weight loss? Evidence and speculation. Nutrition 2023; 116:112111. [PMID: 37562188 DOI: 10.1016/j.nut.2023.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 08/12/2023]
Abstract
Obesity is a chronic state of excessive fat accumulation in the body, characterized by significant relapse and complicated by a range of health consequences. In the treatment of obesity, a holistic approach including diet, physical activity, pharmacotherapy, bariatric surgery, and psychological support is recommended. The implications of gut microbiota (GM) as a pathogenic factor in excess body weight have been discussed, and microbial-targeted therapies-including probiotics, prebiotics, and synbiotics-are considered adjuvant in obesity management. Many studies have focused on assessing the effectiveness of probiotics, prebiotics, or synbiotics in weight control, although with inconclusive results, mainly because of the significant heterogeneity of the studies (with different strains, doses, forms, interventional durations, and outcomes). It is also unclear whether using probiotics or synbiotics accompanied by weight loss dietary interventions or as a part of bariatric surgery will be more effective in obesity management, not only in the short-term but also for long-term weight loss maintenance. The aim of this study was to collect and compare the available scientific data on the effectiveness of probiotic or synbiotic supplementation (as a single therapy versus as part of dietary interventions, pharmacotherapy, or bariatric therapy) on weight control in obesity.
Collapse
Affiliation(s)
- Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland.
| | - Marta Pelczyńska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Wesołek
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominika Stenclik
- Student Scientific Club of Clinical Dietetics, Department of the Treatment of Obesity and Metabolic Disorders, and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
16
|
Tedjo DI, Wilbrink JA, Boekhorst J, Timmerman HM, Nienhuijs SW, Stronkhorst A, Savelkoul PHM, Masclee AAM, Penders J, Jonkers DMAE. Impact of Sleeve Gastrectomy on Fecal Microbiota in Individuals with Morbid Obesity. Microorganisms 2023; 11:2353. [PMID: 37764197 PMCID: PMC10537490 DOI: 10.3390/microorganisms11092353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The intestinal microbiota plays an important role in the etiology of obesity. Sleeve gastrectomy (SG) is a frequently performed and effective therapy for morbid obesity. OBJECTIVE To investigate the effect of sleeve gastrectomy on the fecal microbiota of individuals with morbid obesity and to examine whether shifts in microbiota composition are associated with markers of inflammation and intestinal barrier function. METHODS Fecal and blood samples of healthy individuals (n = 27) and morbidly obese individuals pre-SG (n = 24), and at 2 months (n = 13) and 6 months post-SG (n = 9) were collected. The 16SrRNA gene was sequenced to assess microbiota composition. Fecal calprotectin, plasma inflammatory markers and intestinal permeability markers (multi-sugar test) were determined. RESULTS Fecal microbiota composition between morbidly obese and lean individuals was significantly different. The fecal microbiota composition changed significantly 2 and 6 months post-SG (p = 0.008) compared to pre-SG but not towards a more lean profile. The post-SG microbiota profile was characterized by an increase in facultative anaerobic bacteria, characteristic for the upper gastrointestinal tract. No correlations were found between inflammatory markers, intestinal permeability and microbial profile changes. CONCLUSIONS Fecal microbiota composition in morbidly obese individuals changed significantly following SG. This change might be explained by functional changes induced by the SG procedure.
Collapse
Affiliation(s)
- Danyta I. Tedjo
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (P.H.M.S.); (J.P.)
| | - Jennifer A. Wilbrink
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
- Department of Gastroenterology, Zuyderland Ziekenhuis, 6162 Sittard-Geleen, The Netherlands
| | - Jos Boekhorst
- NIZO Food Research B.V., 6718 Ede, The Netherlands; (J.B.); (H.M.T.)
| | | | - Simon W. Nienhuijs
- Department of Surgery and Gastroenterology, Catharina Hospital, 5623 Eindhoven, The Netherlands; (S.W.N.); (A.S.)
| | - Arnold Stronkhorst
- Department of Surgery and Gastroenterology, Catharina Hospital, 5623 Eindhoven, The Netherlands; (S.W.N.); (A.S.)
| | - Paul H. M. Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (P.H.M.S.); (J.P.)
- Department of Medical Microbiology & Infection Control, VU University Medical Center, 1081 Amsterdam, The Netherlands
| | - Ad A. M. Masclee
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (P.H.M.S.); (J.P.)
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, 6229 Maastricht, The Netherlands; (D.I.T.); (J.A.W.); (D.M.A.E.J.)
| |
Collapse
|
17
|
Li Z, Qiu K, Zhao J, Granger K, Yu H, Lewis AG, Myronovych A, Toure MH, Hatsell SJ, Economides AN, Seeley RJ, MacDougald OA. Antibodies to sclerostin or G-CSF receptor partially eliminate bone or marrow adipocyte loss, respectively, following vertical sleeve gastrectomy. Bone 2023; 169:116682. [PMID: 36709915 PMCID: PMC10513354 DOI: 10.1016/j.bone.2023.116682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Vertical sleeve gastrectomy (VSG), the most utilized bariatric procedure in clinical practice, greatly reduces body weight and improves a variety of metabolic disorders. However, one of its long-term complications is bone loss and increased risk of fracture. Elevated circulating sclerostin (SOST) and granulocyte-colony stimulating factor (G-CSF) concentrations have been considered as potential contributors to VSG-associated bone loss. To test these possibilities, we administrated antibodies to SOST or G-CSF receptor and investigated alterations to bone and marrow niche following VSG. Neutralizing either SOST or G-CSF receptor did not alter beneficial effects of VSG on adiposity and hepatic steatosis, and anti-SOST treatment provided a further improvement to glucose tolerance. SOST antibodies partially reduced trabecular and cortical bone loss following VSG by increasing bone formation, whereas G-CSF receptor antibodies had no effects on bone mass. The expansion in myeloid cellularity and reductions in bone marrow adiposity seen with VSG were partially eliminated by treatment with Anti-G-CSF receptor. Taken together, these experiments demonstrate that antibodies to SOST or G-CSF receptor may act through independent mechanisms to partially block effects of VSG on bone loss or marrow niche cells, respectively.
Collapse
Affiliation(s)
- Ziru Li
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America; MaineHealth Institute for Research, Scarborough, ME, United States of America
| | - Kevin Qiu
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Jingtong Zhao
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Katrina Granger
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Hui Yu
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Alfor G Lewis
- University of Michigan Medical School, Department of Surgery, Ann Arbor, MI, United States of America
| | - Andriy Myronovych
- University of Michigan Medical School, Department of Surgery, Ann Arbor, MI, United States of America
| | - Mouhamadoul H Toure
- University of Michigan Medical School, Department of Surgery, Ann Arbor, MI, United States of America
| | - Sarah J Hatsell
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, United States of America
| | - Aris N Economides
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, United States of America
| | - Randy J Seeley
- University of Michigan Medical School, Department of Surgery, Ann Arbor, MI, United States of America
| | - Ormond A MacDougald
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America; University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, MI, United States of America.
| |
Collapse
|
18
|
Micic D, Polovina S, Micic D, Macut D. OBESITY AND GUT-BRAIN AXIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:234-240. [PMID: 37908875 PMCID: PMC10614596 DOI: 10.4183/aeb.2023.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Epidemic of obesity is ongoing and did not slow down. Causes of obesity are numerous and very complex. Among them, the concept of bidirectional signaling within the brain-gut-microbiome axis was recently proposed as possible pathophysiological mechanism and become a hot topic in the explanations for the control of food intake. Discoveries of new anti-obesity drugs that are analogs for the receptors for some hormones derived from gastrointestinal tract contribute to the investigations in this area. The human gut microbiota plays a fundamental role in human health and disease and it is considered that it represent an endocrine organ that participate in energy homeostasis and host immunity. Role of gut microbiome has been investigated in metabolic diseases such as obesity, type 2 diabetes and non-alcoholic fatty liver disease. Gut microbiome participate in regulation of various mechanisms inside the gastrointestinal tract due to its production of different bacterial metabolites. In our manuscript we present current knowledge about microbiota in the gut; the relation between gut microbiota and brain; neuroendocrine system and gut-brain axis; immune system and gut-brain axis; endocrine system and gut-brain axis; the role of gut microbiota in obesity development and possible use of gut microbiota for the treatment of obesity.
Collapse
Affiliation(s)
- Dr. Micic
- Serbian Academy of Sciences and Arts - Department of Medical Sciences, Belgrade
| | - S. Polovina
- University Business Academy, Faculty of Pharmacy, Novi Sad
- University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Du. Micic
- University of Belgrade, Faculty of Medicine - University Clinical Centre of Serbia, Clinic for Emergency Surgery, Emergency Centre
| | - D. Macut
- University of Belgrade, Faculty of Medicine - University Clinical Centre of Serbia, Clinic for Emergency Surgery, Emergency Centre
| |
Collapse
|
19
|
Van Hul M, Cani PD. The gut microbiota in obesity and weight management: microbes as friends or foe? Nat Rev Endocrinol 2023; 19:258-271. [PMID: 36650295 DOI: 10.1038/s41574-022-00794-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/18/2023]
Abstract
Obesity is caused by a long-term difference between energy intake and expenditure - an imbalance that is seemingly easily restored by increasing exercise and reducing caloric consumption. However, as simple as this solution appears, for many people, losing excess weight is difficult to achieve and even more difficult to maintain. The reason for this difficulty is that energy intake and expenditure, and by extension body weight, are regulated through complex hormonal, neural and metabolic mechanisms that are under the influence of many environmental factors and internal responses. Adding to this complexity, the microorganisms (microbes) that comprise the gut microbiota exert direct effects on the digestion, absorption and metabolism of food. Furthermore, the gut microbiota exerts a miscellany of protective, structural and metabolic effects both on the intestinal milieu and peripheral tissues, thus affecting body weight by modulating metabolism, appetite, bile acid metabolism, and the hormonal and immune systems. In this Review, we outline historical and recent advances in understanding how the gut microbiota is involved in regulating body weight homeostasis. We also discuss the opportunities, limitations and challenges of using gut microbiota-related approaches as a means to achieve and maintain a healthy body weight.
Collapse
Affiliation(s)
- Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
20
|
Mercado A, Pham A, Wang Z, Huang W, Chan P, Ibrahim H, Gogineni H, Huang Y, Wang J. Effects of bariatric surgery on drug pharmacokinetics-Preclinical studies. Front Pharmacol 2023; 14:1133415. [PMID: 37089960 PMCID: PMC10113450 DOI: 10.3389/fphar.2023.1133415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
With the rising worldwide obesity rates, bariatric surgeries are increasing. Although the surgery offers an effective treatment option for weight loss, the procedure causes dramatic physiological and metabolic changes. Animal models in rodents provide a valuable tool for studying the systemic effects of the surgery. Since the surgery may significantly influence the pharmacokinetic properties of medications, animal studies should provide essential insight into mechanisms underlying changes in how the body handles the drug. This review summarizes research work in rodents regarding the impact of standard bariatric procedures on pharmacokinetics. A qualitative literature search was conducted via PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE. Studies that examined bariatric surgery's effects on drug pharmacokinetics in rodent models were included. Clinical studies and studies not involving drug interventions were excluded. A total of 15 studies were identified and assessed in this review. These studies demonstrate the possible impact of bariatric surgery on drug absorption, distribution, metabolism, excretion, and potential mechanisms. Pharmacokinetic changes exhibited in the limited pre-clinical studies highlight a need for further investigation to fully understand the impact and mechanism of bariatric surgery on drug responses.
Collapse
Affiliation(s)
- Angela Mercado
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Anna Pham
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Zhijun Wang
- College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA, United States
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Patrick Chan
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | | | - Hyma Gogineni
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Ying Huang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Ying Huang, ; Jeffrey Wang,
| | - Jeffrey Wang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Ying Huang, ; Jeffrey Wang,
| |
Collapse
|