1
|
Brajon L, Comte A, Capoduro R, Meslin C, Antony B, Al-Saleh MA, Pain A, Jacquin-Joly E, Montagné N. A conserved pheromone receptor in the American and the Asian palm weevils is also activated by host plant volatiles. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100090. [PMID: 39193175 PMCID: PMC11345504 DOI: 10.1016/j.cris.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
The evolution of chemosensory receptors is key for the adaptation of animals to their environment. Recent knowledge acquired on the tri-dimensional structure of insect odorant receptors makes it possible to study the link between modifications in the receptor structure and evolution of response spectra in more depth. We investigated this question in palm weevils, several species of which are well-known invasive pests of ornamental or cultivated palm trees worldwide. These insects use aggregation pheromones to gather on their host plants for feeding and reproduction. An odorant receptor detecting the aggregation pheromone components was characterised in the Asian palm weevil Rhynchophorus ferrugineus. This study compared the response spectra of this receptor, RferOR1, and its ortholog in the American palm weevil R. palmarum, RpalOR1. Sequences of these two receptors exhibit more than 70 amino acid differences, but modelling of their 3D structures revealed that their putative binding pockets differ by only three amino acids, suggesting possible tuning conservation. Further functional characterization of RpalOR1 confirmed this hypothesis, as RpalOR1 and RferOR1 exhibited highly similar responses to coleopteran aggregation pheromones and chemically related molecules. Notably, we showed that R. ferrugineus pheromone compounds strongly activated RpalOR1, but we did not evidence any response to the R. palmarum pheromone compound rhynchophorol. Moreover, we discovered that several host plant volatiles also activated both pheromone receptors, although with lower sensitivity. This study not only reveals evolutionary conservation of odorant receptor tuning across the two palm weevil species, but also questions the specificity of pheromone detection usually observed in insects.
Collapse
Affiliation(s)
- Ludvine Brajon
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Mohammed Ali Al-Saleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Versailles and Paris, France
- Institut universitaire de France (IUF)
| |
Collapse
|
2
|
Antony B, Montagné N, Comte A, Mfarrej S, Jakše J, Capoduro R, Shelke R, Cali K, AlSaleh MA, Persaud K, Pain A, Jacquin-Joly E. Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 169:104129. [PMID: 38704126 DOI: 10.1016/j.ibmb.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.
Collapse
Affiliation(s)
- Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000, Ljubljana, Slovenia
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Rajan Shelke
- Don Bosco College of Agriculture, Agricultural Entomology Department, Sulcorna, Goa, 403705, India
| | - Khasim Cali
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia
| | - Krishna Persaud
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| |
Collapse
|
3
|
Ghosh S, Suray C, Bozzolan F, Palazzo A, Monsempès C, Lecouvreur F, Chatterjee A. Pheromone-mediated command from the female to male clock induces and synchronizes circadian rhythms of the moth Spodoptera littoralis. Curr Biol 2024; 34:1414-1425.e5. [PMID: 38479388 DOI: 10.1016/j.cub.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 04/11/2024]
Abstract
To extract any adaptive benefit, the circadian clock needs to be synchronized to the 24-h day-night cycles. We have investigated if it is a general property of the brain's circadian clock to recognize social interactions as external time givers. Sociosexual interactions with the opposite sex are universal, prevalent even in the lives of solitary animals. The solitary adult life of the Spodoptera littoralis moth is singularly dedicated to sex, offering an ideal context for exploring the impact of sociosexual cues on circadian timekeeping. We have identified specific olfactory cues responsible for social entrainment, revealing a surprisingly strong influence of pheromone-mediated remote sociosexual interactions on circadian rhythms. Males' free-running rhythms are induced and synchronized by the sex pheromone that the female releases in a rhythmic fashion, highlighting a hierarchical relation between the female and male circadian oscillators. Even a single pulse of the sex pheromone altered clock gene expression in the male brain, surpassing the effect of light on the clock. Our finding of a daytime-dependent, lasting impact of pheromone on male's courtship efficacy indicates that circadian timing in moths is a trait under sexual selection. We have identified specific components of the sex-pheromone blend that lack mate-attractive property but have powerful circadian effects, providing rationale for their continued retention by the female. We show that such volatiles, when shared across sympatric moth species, can trigger communal synchronization. Our results suggest that the sex pheromone released by female moths entrains males' behavioral activity rhythm to ensure synchronized timing of mating.
Collapse
Affiliation(s)
- Sagnik Ghosh
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Caroline Suray
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Antonio Palazzo
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - François Lecouvreur
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Abhishek Chatterjee
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France.
| |
Collapse
|
4
|
Zhang S, Jacquin-Joly E, Montagné N, Liu F, Liu Y, Wang G. Identification of an odorant receptor responding to sex pheromones in Spodoptera frugiperda extends the novel type-I PR lineage in moths. INSECT SCIENCE 2024; 31:489-502. [PMID: 37573259 DOI: 10.1111/1744-7917.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/14/2023] [Accepted: 06/09/2023] [Indexed: 08/14/2023]
Abstract
In moths, pheromone receptors (PRs) are crucial for intraspecific sexual communication between males and females. Moth PRs are considered as an ideal model for studying the evolution of insect PRs, and a large number of PRs have been identified and functionally characterized in different moth species. Moth PRs were initially thought to fall into a single monophyletic clade in the odorant receptor (OR) family, but recent studies have shown that ORs in another lineage also bind type-I sex pheromones, which indicates that type-I PRs have multiple independent origins in the Lepidoptera. In this study, we investigated whether ORs of the pest moth Spodoptera frugiperda belonging to clades closely related to this novel PR lineage may also have the capacity to bind type-I pheromones and serve as male PRs. Among the 7 ORs tested, only 1 (SfruOR23) exhibited a male-biased expression pattern. Importantly, in vitro functional characterization showed that SfruOR23 could bind several type-I sex pheromone compounds with Z-9-tetradecenal (Z9-14:Ald), a minor component found in female sex pheromone glands, as the optimal ligand. In addition, SfruOR23 also showed weak responses to plant volatile organic compounds. Altogether, we characterized an S. frugiperda PR positioned in a lineage closely related to the novel PR clade, indicating that the type-I PR lineage can be extended in moths.
Collapse
Affiliation(s)
- Sai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
5
|
Li Z, Capoduro R, François MC, Jacquin-Joly E, Montagné N, Meslin C. Multiple amino acid changes are responsible for the shift of tuning breadth along the evolutionary trajectory of a moth pheromone receptor. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001075. [PMID: 38404917 PMCID: PMC10884835 DOI: 10.17912/micropub.biology.001075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Sex pheromone recognition is essential for mating in many insects and plays a major role in maintaining reproductive barriers. A previous study from our lab reported the evolutionary history of the pheromone receptor OR5 in Spodoptera moths. Using heterologous expression in Xenopus oocytes and site-directed mutagenesis, we found that eight amino acid substitutions were sufficient to recapitulate the evolution from an ancestral broadly-tuned to a highly specific receptor. Here, we confirmed this result using expression in Drosophila olfactory neurons. This further confirmed that multiple amino acid changes explain the shift in tuning breadth of Spodoptera OR5 during evolution.
Collapse
Affiliation(s)
- Zibo Li
- Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), France, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité
| | - Rémi Capoduro
- Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), France, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité
| | - Marie-Christine François
- Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), France, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité
| | - Emmanuelle Jacquin-Joly
- Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), France, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité
| | - Nicolas Montagné
- Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), France, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité
| | - Camille Meslin
- Institut d’Ecologie et des Sciences de l’Environnement de Paris (iEES-Paris), France, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité
| |
Collapse
|
6
|
Zhang YY, Bai TF, Guo JM, Wei ZQ, Liu SR, He Y, Ye JJ, Yan Q, Zhang J, Dong SL. Molecular mechanism of sex pheromone perception in male Mythimna loreyi revealed by in vitro system. PEST MANAGEMENT SCIENCE 2024; 80:744-755. [PMID: 37779104 DOI: 10.1002/ps.7806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Mythimna loreyi is an important agricultural pest with a sensitive sex pheromone communication system. To clarify the pheromone binding proteins (PBPs) and pheromone receptors (PRs) involved in sex pheromone perception is important for both understanding the molecular olfactory mechanism and developing a new pest control strategy in M. loreyi. RESULTS First, the electroantennogram (EAG) assay showed that male M. loreyi displayed the highest response to the major sex pheromone component Z9-14:Ac, and higher responses to two minor components, Z7-12:Ac and Z11-16:Ac. Second, the fluorescence competition binding assay showed that PBP1 bound all three pheromones and other tested compounds with high or moderate affinity, while PBP2 and PBP3 each bound only one pheromone component and few other compounds. Third, functional study using the Xenopus oocyte system demonstrated that, of the six candidate PRs, PR2 was weakly sensitive to the major pheromone Z9-14:Ac, but was strongly sensitive to pheromone analog Z9-14:OH; PR3 was strongly and specifically sensitive to a minor component Z7-12:Ac; PR4 and OR33 were both weakly sensitive to another minor component, Z11-16:Ac. Finally, phylogenetic relationship and ligand profiles of PRs were compared among six species from two closely related genera Mythimna and Spodoptera, suggesting functional shifts of M. loreyi PRs toward Spodoptera PRs. CONCLUSION Functional differentiations were revealed among three PBPs and six PRs in sex pheromone perception, laying an important basis for understanding the molecular mechanism of sex pheromone perception and for developing new control strategies in M. loreyi. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Ying Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Teng-Fei Bai
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Si-Ruo Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu He
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing-Jing Ye
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Mariette J, Noël A, Louis T, Montagné N, Chertemps T, Jacquin-Joly E, Marion-Poll F, Sandoz JC. Transcuticular calcium imaging as a tool for the functional study of insect odorant receptors. Front Mol Neurosci 2023; 16:1182361. [PMID: 37645702 PMCID: PMC10461100 DOI: 10.3389/fnmol.2023.1182361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The "empty neuron system" of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis, a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Amélie Noël
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Thierry Louis
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Nicolas Montagné
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Frédéric Marion-Poll
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Li Z, Capoduro R, Bastin–Héline L, Zhang S, Sun D, Lucas P, Dabir-Moghaddam D, François MC, Liu Y, Wang G, Jacquin-Joly E, Montagné N, Meslin C. A tale of two copies: Evolutionary trajectories of moth pheromone receptors. Proc Natl Acad Sci U S A 2023; 120:e2221166120. [PMID: 37155838 PMCID: PMC10193968 DOI: 10.1073/pnas.2221166120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Pheromone communication is an essential component of reproductive isolation in animals. As such, evolution of pheromone signaling can be linked to speciation. For example, the evolution of sex pheromones is thought to have played a major role in the diversification of moths. In the crop pests Spodoptera littoralis and S. litura, the major component of the sex pheromone blend is (Z,E)-9,11-tetradecadienyl acetate, which is lacking in other Spodoptera species. It indicates that a major shift occurred in their common ancestor. It has been shown recently in S. littoralis that this compound is detected with high specificity by an atypical pheromone receptor, named SlitOR5. Here, we studied its evolutionary history through functional characterization of receptors from different Spodoptera species. SlitOR5 orthologs in S. exigua and S. frugiperda exhibited a broad tuning to several pheromone compounds. We evidenced a duplication of OR5 in a common ancestor of S. littoralis and S. litura and found that in these two species, one duplicate is also broadly tuned while the other is specific to (Z,E)-9,11-tetradecadienyl acetate. By using ancestral gene resurrection, we confirmed that this narrow tuning evolved only in one of the two copies issued from the OR5 duplication. Finally, we identified eight amino acid positions in the binding pocket of these receptors whose evolution has been responsible for narrowing the response spectrum to a single ligand. The evolution of OR5 is a clear case of subfunctionalization that could have had a determinant impact in the speciation process in Spodoptera species.
Collapse
Affiliation(s)
- Zibo Li
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Rémi Capoduro
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Lucie Bastin–Héline
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
- Laboratoire Reproduction et Développement des plantes, UMR 5667, Ecole Normale Supérieure de Lyon, CNRS, LyonF-69364, France
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Dongdong Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Philippe Lucas
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Diane Dabir-Moghaddam
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Marie-Christine François
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Nicolas Montagné
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| | - Camille Meslin
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Versailles78026, France
| |
Collapse
|
9
|
Zhang S, Liu F, Yang B, Liu Y, Wang GR. Functional characterization of sex pheromone receptors in Spodoptera frugiperda, S. exigua, and S. litura moths. INSECT SCIENCE 2023; 30:305-320. [PMID: 35932282 DOI: 10.1111/1744-7917.13098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Moths possess an extremely sensitive and diverse sex pheromone processing system, in which pheromone receptors (PRs) are essential to ensure communication between mating partners. Functional properties of some PRs are conserved among species, which is important for reproduction. However, functional differentiation has occurred in some homologous PR genes, which may drive species divergence. Here, using genome analysis, 17 PR genes were identified from Spodoptera frugiperda, S. exigua, and S. litura, which belong to 6 homologous groups (odorant receptor [OR]6, 11, 13, 16, 56, and 62); of which 6 PR genes (OR6, OR11, OR13, OR16, OR56, and OR62) were identified in S. frugiperda and S. exigua, and 5 PR genes were identified in S. litura, excluding OR62. Using heterologous expression in Xenopus oocytes, we characterized the functions of PR orthologs including OR6, OR56, and OR62, which have not been clarified in previous studies. OR6 orthologs were specifically tuned to (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:OAc), and OR62 orthologs were robustly tuned to Z7-12:OAc in S. frugiperda and S. exigua. The optimal ligand for OR56 was Z7-12:OAc in S. frugiperda, but responses were minimal in S. exigua and S. litura. In addition, SfruOR6 was male antennae-specific, whereas SfruOR56 and SfruOR62 were male antennae-biased. Our study further clarified the functional properties of PRs in 3 Spodoptera moth species, providing a comprehensive understanding of the mechanisms of intraspecific communication and interspecific isolation in Spodoptera.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
10
|
Vandroux P, Li Z, Capoduro R, François MC, Renou M, Montagné N, Jacquin-Joly E. Activation of pheromone-sensitive olfactory neurons by plant volatiles in the moth Agrotis ipsilon does not occur at the level of the pheromone receptor protein. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1035252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In moths, mate finding relies on female-emitted sex pheromones that the males have to decipher within a complex environmental odorant background. Previous studies have shown that interactions of both sex pheromones and plant volatiles can occur in the peripheral olfactory system, and that some plant volatiles can activate the pheromone-specific detection pathway. In the noctuid moth Agrotis ipsilon, plant volatiles such as heptanal activate the receptor neurons tuned to the pheromone component (Z)7-12:OAc. However, the underlying mechanisms remain totally unknown. Following the general rule that states that one olfactory receptor neuron usually expresses only one type of receptor protein, a logic explanation would be that the receptor protein expressed in (Z)7-12:OAc-sensitive neurons recognizes both pheromone and plant volatiles. To test this hypothesis, we first annotated odorant receptor genes in the genome of A. ipsilon and we identified a candidate receptor putatively tuned to (Z)7-12:OAc, named AipsOR3. Then, we expressed it in Drosophila olfactory neurons and determined its response spectrum to a large panel of pheromone compounds and plant volatiles. Unexpectedly, the receptor protein AipsOR3 appeared to be very specific to (Z)7-12:OAc and was not activated by any of the plant volatiles tested, including heptanal. We also found that (Z)7-12:OAc responses of Drosophila neurons expressing AipsOR3 were not affected by a background of heptanal. As the Drosophila olfactory sensilla that house neurons in which AipsOR3 was expressed contain other olfactory proteins – such as odorant-binding proteins – that may influence its selectivity, we also expressed AipsOR3 in Xenopus oocytes and confirmed its specificity and the lack of activation by plant volatiles. Altogether, our results suggest that a still unknown second odorant receptor protein tuned to heptanal and other plant volatiles is expressed in the (Z)7-12:OAc-sensitive neurons of A. ipsilon.
Collapse
|
11
|
Guo H, Gong XL, Li GC, Mo BT, Jiang NJ, Huang LQ, Wang CZ. Functional analysis of pheromone receptor repertoire in the fall armyworm, Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2022; 78:2052-2064. [PMID: 35124874 DOI: 10.1002/ps.6831] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/26/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a polyphagous moth species that is spreading all around the globe. It uses (Z)-9-tetradecenyl acetate (Z9-14:Ac) and (Z)-7-dodecenyl acetate (Z7-12:Ac) (100:3.9) as essential sex pheromone components. However, our understanding of the molecular basis of pheromone detection of S. frugiperda is still incomplete. RESULTS Herein, we identified six PRs, i.e. SfruOR6, 11, 13, 16, 56, and 62, by transcriptome sequencing. Subsequently, we heterologously expressed them in Drosophila OR67d neurons and determined their response spectra with a large panel of sex pheromones and analogs. Among them, SfruOR13-expressing neurons strongly respond to the major sex pheromone component Z9-14:Ac, but also comparably to (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:Ac) and weakly to (Z)-9-dodecenyl acetate (Z9-12:Ac). Both SfruOR56 and SfruOR62 are specifically tuned to the minor sex pheromone component Z7-12:Ac with varying intensities and sensitivities. In addition, SfruOR6 is activated only by Z9,E12-14:Ac, and SfruOR16 by both (Z)-9-tetradecenol (Z9-14:OH) and (Z)-9-tetradecenal (Z9-14:Ald). However, the OR67d neurons expressing SfruOR11 remain silent to all compounds tested, a phenomenon commonly found in the OR11 clade of Noctuidae species. Next, using single sensillum recording, we characterized four sensilla types on the antennae of males, namely A, B, C and D types that are tuned to the ligands of PRs, thereby confirming that S. frugiperda uses both SfruOR56 and SfruOR62 to detect Z7-12:Ac. Finally, using wind tunnel assay, we demonstrate that both Z9,E12-14:Ac and Z9-14:OH act as antagonists to the sex pheromone. CONCLUSION We have deorphanized five PRs and characterized four types of sensilla responsible for the detection of pheromone compounds, providing insights into the peripheral encoding of sex pheromones in S. frugiperda.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Nan-Ji Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Yang C, Cheng J, Lin J, Zheng Y, Yu X, Sun J. Corrigendum: Sex Pheromone Receptors of Lepidopteran Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.900818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Koutroumpa F, Monsempès C, Anton S, François MC, Montagné N, Jacquin-Joly E. Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth. Biomolecules 2022; 12:341. [PMID: 35327533 PMCID: PMC8945201 DOI: 10.3390/biom12030341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023] Open
Abstract
Sex pheromone receptors are crucial in insects for mate finding and contribute to species premating isolation. Many pheromone receptors have been functionally characterized, especially in moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the development of the macroglomeruli in the antennal lobe (the brain structures processing pheromone signals) is not known. Here, we used CRISPR-Cas9 to knock-out the receptor for the major component of the sex pheromone of the noctuid moth Spodoptera littoralis, and investigated the resulting effects on electrophysiological responses of peripheral pheromone-sensitive neurons and on the structure of the macroglomeruli. We show that the inactivation of the receptor specifically affected the responses of the corresponding antennal neurons did not impact the number of macroglomeruli in the antennal lobe but reduced the size of the macroglomerulus processing input from neurons tuned to the main pheromone component. We suggest that this mutant neuroanatomical phenotype results from a lack of neuronal activity due to the absence of the pheromone receptor and potentially reduced neural connectivity between peripheral and antennal lobe neurons. This is the first evidence of the role of a moth pheromone receptor in macroglomerulus development and extends our knowledge of the different functions odorant receptors can have in insect neurodevelopment.
Collapse
Affiliation(s)
- Fotini Koutroumpa
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| | - Sylvia Anton
- Institute for Genetics, Environment and Plant Protection, INRAE, Institut Agro, Université Rennes 1, 49045 Angers, France;
| | - Marie-Christine François
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| |
Collapse
|
14
|
Yang C, Cheng J, Lin J, Zheng Y, Yu X, Sun J. Sex Pheromone Receptors of Lepidopteran Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.797287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The sex pheromone receptors (SPRs) of Lepidopteran insects play important roles in chemical communication. In the sex pheromone detection processes, sex pheromone molecule (SPM), SPR, co-receptor (Orco), pheromone binding protein (PBP), sensory neuron membrane protein (SNMP), and pheromone degradation enzyme (PDE) play individual and cooperative roles. Commonly known as butterfly and moth, the Lepidopteran insects are widely distributed throughout the world, most of which are pests. Comprehensive knowledge of the SPRs of Lepidopteran insects would help the development of sex lure technology and the sex communication pathway research. In this review, we summarized SPR/Orco information from 10 families of Lepidopteran insects from corresponding studies. According to the research progress in the literature, we speculated the evolution of SPRs/Orcos and phylogenetically analyzed the Lepidopteran SPRs and Orcos with the neighbor-joining tree and further concluded the relationship between the cluster of SPRs and their ligands; we analyzed the predicted structural features of SPRs and gave our prediction results of SPRs and Orcos with Consensus Constrained TOPology Prediction (CCTOP) and SwissModel; we summarized the functional characterization of Lepidopteran SPRs and SPR-ligand interaction and then described the progress in the sex pheromone signaling pathways and metabotropic ion channel. Further studies are needed to work out the cryo-electron microscopy (EM) structure of SPR and the SPR-ligand docking pattern in a biophysical perspective, which will directly facilitate the understanding of sex pheromone signal transduction pathways and provide guidance in the sex lure technology in field pest control.
Collapse
|
15
|
Yuvaraj JK, Jordan MD, Zhang DD, Andersson MN, Löfstedt C, Newcomb RD, Corcoran JA. Sex pheromone receptors of the light brown apple moth, Epiphyas postvittana, support a second major pheromone receptor clade within the Lepidoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103708. [PMID: 34973420 DOI: 10.1016/j.ibmb.2021.103708] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 05/14/2023]
Abstract
Sex pheromones facilitate species-specific sex communication within the Lepidoptera. They are detected by specialised pheromone receptors (PRs), most of which to date fall into a single monophyletic receptor lineage (frequently referred to as "the PR clade") within the odorant receptor (OR) family. Here we investigated PRs of the invasive horticultural pest, Epiphyas postvittana, commonly known as the light brown apple moth. Ten candidate PRs were selected, based on their male-biased expression in antennae or their relationship to the PR clade, for functional assessment in both HEK293 cells and Xenopus oocytes. Of these, six ORs responded to compounds that include components of the E. postvittana ('Epos') sex pheromone blend or compounds that antagonise sex pheromone attraction. In phylogenies, four of the characterised receptors (EposOR1, 6, 7 and 45) fall within the PR clade and two other male-biased receptors (EposOR30 and 34) group together well outside the PR clade. This new clade of pheromone receptors includes the receptor for (E)-11-tetradecenyl acetate (EposOR30), which is the main component of the sex pheromone blend for this species. Interestingly, receptors of the two clades do not segregate by preference for compounds associated with behavioural response (agonist or antagonist), isomer type (E or Z) or functional group (alcohol or acetate), with examples of each scattered across both clades. Phylogenetic comparison with PRs from other species supports the existence of a second major clade of lepidopteran ORs including, EposOR30 and 34, that has been co-opted into sex pheromone detection in the Lepidoptera. This second clade of sex pheromone receptors has an origin that likely predates the split between the major lepidopteran families.
Collapse
Affiliation(s)
| | - Melissa D Jordan
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden.
| | | | | | - Richard D Newcomb
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.
| | - Jacob A Corcoran
- Department of Biology, Lund University, Lund, Sweden; The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.
| |
Collapse
|
16
|
Guo H, Huang LQ, Gong XL, Wang CZ. Comparison of functions of pheromone receptor repertoires in Helicoverpa armigera and Helicoverpa assulta using a Drosophila expression system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103702. [PMID: 34942332 DOI: 10.1016/j.ibmb.2021.103702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Helicoverpa armigera and H. assulta are sympatric closely related species sharing two sex pheromone components, (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) but in opposite ratios, 97:3 and 3:97 respectively. This feature makes them a feasible model for studying the evolution of pheromone coding mechanisms of lepidopteran insects. Despite a decade-long study to deorphanize the pheromone receptor (PR) repertoires of the two species, the comparison of the function of all PR orthologs between the two species is incomplete. Moreover, the ligands of OR14 and OR15 have so far not been found, likely due to the missing of the active ligand(s) in the compound panel and/or incompatibility of heterologous expression systems used. In the present study, we expressed the PR repertoires of both Helicoverpa species in Drosophila T1 neurons to comparatively study the function of PRs. Among those PRs, OR13, OR6, and OR14 of both species are functionally conserved and narrowly tuned, and the T1 neurons expressing each of them respond to Z11-16:Ald, (Z)-9-hexadecenol (Z9-16:OH), and (Z)-11-hexadecenyl acetate (Z11-16:Ac), respectively. While HarmOR16-expressing neurons respond strongly to (Z)-9-tetradecenal (Z9-14:Ald) and (Z)-11-hexadecenol (Z11-16:OH), the neurons expressing HassOR16 mainly respond to Z9-14:Ald and also weakly respond to (Z)-9-tetradecenol (Z9-14:OH). Moreover, HarmOR14b-expressing neurons are activated by Z9-14:Ald, whereas HassOR14b-expressing neurons are sensitive to Z9-16:Ald, Z9-14:Ald, and (Z)-9-hexadecenol (Z9-16:OH). In addition, HarmOR15-expressing neurons are selectively responsive to Z9-14:Ald. However, the Drosophila T1 neurons expressing either HarmOR11 or HassOR11 are silent to all of the compounds tested. In summary, except for OR11, we have deorphanized all the PRs of these two Helicoverpa species using a Drosophila expression system and a large panel of pheromone compounds, thereby providing a valuable reference for parsing the code of peripheral coding of pheromones.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
17
|
Antony B, Johny J, Montagné N, Jacquin-Joly E, Capoduro R, Cali K, Persaud K, Al-Saleh MA, Pain A. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). Mol Ecol 2021; 30:2025-2039. [PMID: 33687767 DOI: 10.1111/mec.15874] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Palm trees are of immense economic, sociocultural, touristic, and patrimonial significance all over the world, and date palm-related knowledge, traditions, and practices are now included in UNESCOs list of the Intangible Cultural Heritage of Humanity. Of all the pests that infest these trees, the red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), is its primary enemy. The RPW is a category-1 quarantine insect pest that causes enormous economic losses in palm tree cultivation worldwide. The RPW synchronizes mass gathering on the palm tree for feeding and mating, regulated by a male-produced pheromone composed of two methyl-branched compounds, (4RS, 5RS)-4-methylnonan-5-ol (ferrugineol) and 4(RS)-methylnonan-5-one (ferrugineone). Despite the importance of odorant detection in long-range orientation towards palm trees, palm colonization, and mating, the pheromone receptor has not been identified in this species. In this study, we report the identification and characterization of the first RPW pheromone receptor, RferOR1. Using gene silencing and functional expression in Drosophila olfactory receptor neurons, we demonstrate that RferOR1 is tuned to ferrugineol and ferrugineone and binds five other structurally related molecules. We reveal the lifetime expression of RferOR1, which correlates with adult mating success irrespective of age, a factor that could explain the wide distribution and spread of this pest. As palm weevils are challenging to control based on conventional methods, elucidation of the mechanisms of pheromone detection opens new routes for mating disruption and the early detection of this pest via the development of pheromone receptor-based biosensors.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, College of Food and Agricultural Sciences, Center for Chemical Ecology and Functional Genomics, Chair of Date Palm Research, King Saud University, Riyadh, Saudi Arabia
| | - Jibin Johny
- Department of Plant Protection, College of Food and Agricultural Sciences, Center for Chemical Ecology and Functional Genomics, Chair of Date Palm Research, King Saud University, Riyadh, Saudi Arabia
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, Université Paris Diderot, Versailles, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, Université Paris Diderot, Versailles, France
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, Université Paris Diderot, Versailles, France
| | - Khasim Cali
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Krishna Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Mohammed Ali Al-Saleh
- Department of Plant Protection, College of Food and Agricultural Sciences, Center for Chemical Ecology and Functional Genomics, Chair of Date Palm Research, King Saud University, Riyadh, Saudi Arabia
| | - Arnab Pain
- BESE Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| |
Collapse
|
18
|
He X, Cai Y, Zhu J, Zhang M, Zhang Y, Ge Y, Zhu Z, Zhou W, Wang G, Gao Y. Identification and Functional Characterization of Two Putative Pheromone Receptors in the Potato Tuber Moth, Phthorimaea operculella. Front Physiol 2021; 11:618983. [PMID: 33569012 PMCID: PMC7868389 DOI: 10.3389/fphys.2020.618983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Pheromones are a kind of signal produced by an animal that evoke innate responses in conspecifics. In moth, pheromone components can be detected by specialized olfactory receptor neurons (OSNs) housed in long sensilla trichoids on the male antennae. The pheromone receptors (PRs) located in the dendrite membrane of OSNs are responsible for pheromone sensing in most Lepidopteran insects. The potato tuber moth Phthorimaea operculella is a destructive pest of Solanaceae crops. Although sex attractant is widely used in fields to monitor the population of P. operculella, no study has been reported on the mechanism the male moth of P. operculella uses to recognize sex pheromone components. In the present study, we cloned two pheromone receptor genes PopeOR1 and PopeOR3 in P. operculella. The transcripts of them were highly accumulated in the antennae of male adults. Functional analysis using the heterologous expression system of Xenopus oocyte demonstrated that these two PR proteins both responded to (E, Z)-4,7–13: OAc and (E, Z, Z)-4,7,10–13: OAc, the key sex pheromone components of P. operculella, whilst they responded differentially to these two ligands. Our findings for the first time characterized the function of pheromone receptors in gelechiid moth and could promote the olfactory based pest management of P. operculella in the field.
Collapse
Affiliation(s)
- Xiaoli He
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Yajie Cai
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Jinglei Zhu
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China.,State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengdi Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yadong Zhang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Yang Ge
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Zengrong Zhu
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Wenwu Zhou
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, State Key Laboratory of Rice Biology, Hangzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Cao S, Huang T, Shen J, Liu Y, Wang G. An Orphan Pheromone Receptor Affects the Mating Behavior of Helicoverpa armigera. Front Physiol 2020; 11:413. [PMID: 32425812 PMCID: PMC7204811 DOI: 10.3389/fphys.2020.00413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 01/21/2023] Open
Abstract
The Lepidoptera is the second largest insect order, which has the most extensive knowledge of sex pheromones and mechanisms of pheromone communication since the identification of the first insect pheromone in Bombyx mori. In the past 15 years, pheromone receptors have been identified and functionally characterized in many moth species. HarmOR14 is a typical pheromone receptor of Helicoverpa armigera which showed no response to the tested pheromones in Xenopus oocyte expression system, but its orthologous gene in Heliothis virescens, HvirOR14 could be activated by pheromones in the same expression system. To assess the possible functions of OR14 in vivo, in this study, we knocked out this gene using CRISPR/Cas9 system and compared the mating behaviors and EAG response to pheromones between the wild type and mutant strains. Our results showed that OR14 mutants did not affect the mating rate or the EAG response to pheromones but could prolong the mating duration and change the mating time in undefined manners, which extends our understanding to this kind of pheromone receptors.
Collapse
Affiliation(s)
- Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Tianyu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
20
|
Functional Characterization of Sex Pheromone Receptors in the Fall Armyworm ( Spodoptera frugiperda). INSECTS 2020; 11:insects11030193. [PMID: 32197457 PMCID: PMC7143582 DOI: 10.3390/insects11030193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/31/2023]
Abstract
Pheromone receptors (PRs) found in the antennae of male moths play a vital role in the recognition of sex pheromones released by females. The fall armyworm (FAW), Spodoptera frugiperda, is a notorious invasive pest, but its PRs have not been reported. In this report, six candidate PRs (SfruOR6, 11, 13, 16, 56 and 62) suggested by phylogenetic analysis were cloned, and their tissue-sex expression profiles were determined by quantitative real-time PCR (qPCR). All six genes except for SfruOR6 were highly and specifically expressed in the antennae, with SfruOR6, 13 and 62 being male-specific, while the other three (SfruOR11, 16 and 56) were male biased, suggesting their roles in sex pheromone perception. A functional analysis by the Xenopus oocyte system further demonstrated that SfruOR13 was highly sensitive to the major sex pheromone component Z9-14:OAc and the pheromone analog Z9,E12-14:OAc, but less sensitive to the minor pheromone component Z9-12:OAc; SfruOR16 responded weakly to pheromone component Z9-14:OAc, but strongly to pheromone analog Z9-14:OH; the other four candidate PRs did not respond to any of the four pheromone components and four pheromone analogs. This study contributes to clarifying the pheromone perception in the FAW, and provides potential gene targets for developing OR-based pest control techniques.
Collapse
|
21
|
Caballero-Vidal G, Bouysset C, Grunig H, Fiorucci S, Montagné N, Golebiowski J, Jacquin-Joly E. Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. Sci Rep 2020; 10:1655. [PMID: 32015393 PMCID: PMC6997167 DOI: 10.1038/s41598-020-58564-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
Odorant receptors expressed at the peripheral olfactory organs are key proteins for animal volatile sensing. Although they determine the odor space of a given species, their functional characterization is a long process and remains limited. To date, machine learning virtual screening has been used to predict new ligands for such receptors in both mammals and insects, using chemical features of known ligands. In insects, such approach is yet limited to Diptera, whereas insect odorant receptors are known to be highly divergent between orders. Here, we extend this strategy to a Lepidoptera receptor, SlitOR25, involved in the recognition of attractive odorants in the crop pest Spodoptera littoralis larvae. Virtual screening of 3 million molecules predicted 32 purchasable ones whose function has been systematically tested on SlitOR25, revealing 11 novel agonists with a success rate of 28%. Our results show that Support Vector Machine optimizes the discovery of novel agonists and expands the chemical space of a Lepidoptera OR. More, it opens up structure-function relationship analyses through a comparison of the agonist chemical structures. This proof-of-concept in a crop pest could ultimately enable the identification of OR agonists or antagonists, capable of modifying olfactory behaviors in a context of biocontrol.
Collapse
Affiliation(s)
- Gabriela Caballero-Vidal
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris, Versailles, France
| | - Cédric Bouysset
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Hubert Grunig
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Sébastien Fiorucci
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris, Versailles, France.
| | - Jérôme Golebiowski
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France. .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea.
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris, Versailles, France.
| |
Collapse
|
22
|
Hou X, Zhang DD, Yuvaraj JK, Corcoran JA, Andersson MN, Löfstedt C. Functional characterization of odorant receptors from the moth Eriocrania semipurpurella: A comparison of results in the Xenopus oocyte and HEK cell systems. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103289. [PMID: 31778795 DOI: 10.1016/j.ibmb.2019.103289] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
The Xenopus oocyte and the Human Embryonic Kidney (HEK) 293 cell expression systems are frequently used for functional characterization (deorphanization) of insect odorant receptors (ORs). However, the inherent characteristics of these heterologous systems differ in several aspects, which raises the question of whether the two systems provide comparable results, and how well the results correspond to the responses obtained from olfactory sensory neurons in vivo. Five candidate pheromone receptors were previously identified in the primitive moth Eriocrania semipurpurella (Esem) and their responses were characterized in HEK cells. We re-examined the responses of these five EsemORs in Xenopus oocytes. We showed that in both systems, EsemOR1 specifically responded to the plant volatile β-caryophyllene. EsemOR3 responded stronger to the pheromone component (S,Z)-6-nonen-2-ol than to its enantiomer (R,Z)-6-nonen-2-ol, the second pheromone component. However, EsemOR3 also responded secondarily to the plant volatile β-caryophyllene in the oocyte system, but not in the HEK cell system. EsemOR4 was unresponsive in the HEK cells, but responded primarily to (R,Z)-6-nonen-2-ol followed by (S,Z)-6-nonen-2-ol in the oocytes, representing a discovery of a new pheromone receptor in this species. EsemOR5 was broadly tuned in both systems, but the rank order among the most active pheromone compounds and antagonists was different. EsemOR6 showed no response to any compound in either system. We compared the results obtained in the two different heterologous systems with the activity previously recorded in vivo, and performed in situ hybridization to localize the expression of these OR genes in the antennae. In spite of similar results overall, differences in OR responses between heterologous expression systems suggest that conclusions about the function of individual ORs may differ depending on the system used for deorphanization.
Collapse
Affiliation(s)
- Xiaoqing Hou
- Department of Biology, Lund University, Lund, Sweden.
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Bastin-Héline L, de Fouchier A, Cao S, Koutroumpa F, Caballero-Vidal G, Robakiewicz S, Monsempes C, François MC, Ribeyre T, Maria A, Chertemps T, de Cian A, Walker WB, Wang G, Jacquin-Joly E, Montagné N. A novel lineage of candidate pheromone receptors for sex communication in moths. eLife 2019; 8:49826. [PMID: 31818368 PMCID: PMC6904214 DOI: 10.7554/elife.49826] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Sex pheromone receptors (PRs) are key players in chemical communication between mating partners in insects. In the highly diversified insect order Lepidoptera, male PRs tuned to female-emitted type I pheromones (which make up the vast majority of pheromones identified) form a dedicated subfamily of odorant receptors (ORs). Here, using a combination of heterologous expression and in vivo genome editing methods, we bring functional evidence that at least one moth PR does not belong to this subfamily but to a distantly related OR lineage. This PR, identified in the cotton leafworm Spodoptera littoralis, is highly expressed in male antennae and is specifically tuned to the major sex pheromone component emitted by females. Together with a comprehensive phylogenetic analysis of moth ORs, our functional data suggest two independent apparitions of PRs tuned to type I pheromones in Lepidoptera, opening up a new path for studying the evolution of moth pheromone communication.
Collapse
Affiliation(s)
- Lucie Bastin-Héline
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Arthur de Fouchier
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fotini Koutroumpa
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Gabriela Caballero-Vidal
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Stefania Robakiewicz
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Christelle Monsempes
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Marie-Christine François
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Tatiana Ribeyre
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Annick Maria
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Thomas Chertemps
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Anne de Cian
- CNRS UMR 7196, INSERM U1154, Museum National d'Histoire Naturelle, Paris, France
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| | - Nicolas Montagné
- Sorbonne Université, Inra, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| |
Collapse
|
24
|
Walker WB, Roy A, Anderson P, Schlyter F, Hansson BS, Larsson MC. Transcriptome Analysis of Gene Families Involved in Chemosensory Function in Spodoptera littoralis (Lepidoptera: Noctuidae). BMC Genomics 2019; 20:428. [PMID: 31138111 PMCID: PMC6540431 DOI: 10.1186/s12864-019-5815-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/20/2019] [Indexed: 11/26/2022] Open
Abstract
Background Deciphering the molecular mechanisms mediating the chemical senses, taste, and smell has been of vital importance for understanding the nature of how insects interact with their chemical environment. Several gene families are implicated in the uptake, recognition, and termination of chemical signaling, including binding proteins, chemosensory receptors and degrading enzymes. The cotton leafworm, Spodoptera littoralis, is a phytophagous pest and current focal species for insect chemical ecology and neuroethology. Results We produced male and female Illumina-based transcriptomes from chemosensory and non-chemosensory tissues of S. littoralis, including the antennae, proboscis, brain and body carcass. We have annotated 306 gene transcripts from eight gene families with known chemosensory function, including 114 novel candidate genes. Odorant receptors responsive to floral compounds are expressed in the proboscis and may play a role in guiding proboscis probing behavior. In both males and females, expression of gene transcripts with known chemosensory function, including odorant receptors and pheromone-binding proteins, has been observed in brain tissue, suggesting internal, non-sensory function for these genes. Conclusions A well-curated set of annotated gene transcripts with putative chemosensory function is provided. This will serve as a resource for future chemosensory and transcriptomic studies in S. littoralis and closely related species. Collectively, our results expand current understanding of the expression patterns of genes with putative chemosensory function in insect sensory and non-sensory tissues. When coupled with functional data, such as the deorphanization of odorant receptors, the gene expression data can facilitate hypothesis generation, serving as a substrate for future studies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5815-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53, Alnarp, Sweden.
| | - Amit Roy
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53, Alnarp, Sweden.,Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21, Suchdol, Czech Republic
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53, Alnarp, Sweden
| | - Fredrik Schlyter
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53, Alnarp, Sweden.,Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21, Suchdol, Czech Republic
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Mattias C Larsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53, Alnarp, Sweden
| |
Collapse
|
25
|
de Fouchier A, Sun X, Caballero-Vidal G, Travaillard S, Jacquin-Joly E, Montagné N. Behavioral Effect of Plant Volatiles Binding to Spodoptera littoralis Larval Odorant Receptors. Front Behav Neurosci 2018; 12:264. [PMID: 30483075 PMCID: PMC6240680 DOI: 10.3389/fnbeh.2018.00264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
Phytophagous insects use volatile organic compounds (VOC) emitted by plants to orient towards their hosts. In lepidopteran pests, crop damages are caused by larval stages-the caterpillars-that feed extensively on leaves or other plant tissues. However, larval host plant choice has been poorly studied, and it is generally admitted that caterpillars feed on the plant where the female laid the eggs. The mobility of caterpillars has been generally overlooked even though several studies showed that they can orient towards odors and change host plant. Recently, a large number of odorant receptors (ORs) tuned to plant volatiles have been characterized in the model pest moth Spodoptera littoralis (Noctuidae). In the present work, we identified nine of these deorphanized ORs as expressed in S. littoralis caterpillars. In order to understand whether these ORs are involved in host searching, we tested the behavioral significance of their ligands using a larval two-choice assay. This OR-guided approach led to the identification of nine plant volatiles, namely 1-hexanol, benzyl alcohol, acetophenone, benzaldehyde, (Z)3-hexenol, (E)2-hexenol, indole, DMNT and (Z)3-hexenyl acetate, which are active on S. littoralis caterpillar behavior, increasing our knowledge on larval olfactory abilities. To further explore the link between OR activation and behavioral output induced by plant volatiles we used a modeling approach, thereby allowing identification of some ORs whose activation is related to caterpillar attraction. These ORs may be promising targets for future plant protection strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Montagné
- Institut National de la Recherche Agronomique (INRA), Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| |
Collapse
|
26
|
Wang B, Liu Y, Wang GR. Proceeding From in vivo Functions of Pheromone Receptors: Peripheral-Coding Perception of Pheromones From Three Closely Related Species, Helicoverpa armigera, H. assulta, and Heliothis virescens. Front Physiol 2018; 9:1188. [PMID: 30214413 PMCID: PMC6125646 DOI: 10.3389/fphys.2018.01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023] Open
Abstract
Three closely related species, Helicoverpa armigera, H. assulta, and Heliothis virescens from Lepidoptera Noctuidae, are used as a model system for exploring sexual communication and species isolation. Pheromone receptors (PRs) previously discovered in model moth species include seven in H. armigera, six in H. assulta, and six in H. virescens. PRs named OR6, OR13, and OR16 among these species were found to be functional, characterized by an in vitro Xenopus oocytes system. Using an in vivo transgenic fly system, functional assays of OR6, OR13, and OR16 clades from three closely related Noctuidae species showed that OR13 function was highly conserved, whereas OR6 and OR16 exhibited functional divergence. Similar results were produced from assays in the Xenopus oocytes system. Combined with earlier behavioral results and electrophysiological recordings, we found corresponding relationships among pheromones, PRs, and neurons at the periphery sensory system of each species. Our results provide vital information at the neuronal and molecular level, shedding insight into the sexual communication of closely related species in Lepidoptera.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Yuvaraj JK, Corcoran JA, Andersson MN, Newcomb RD, Anderbrant O, Löfstedt C. Characterization of Odorant Receptors from a Non-ditrysian Moth, Eriocrania semipurpurella Sheds Light on the Origin of Sex Pheromone Receptors in Lepidoptera. Mol Biol Evol 2018; 34:2733-2746. [PMID: 29126322 PMCID: PMC5850608 DOI: 10.1093/molbev/msx215] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pheromone receptors (PRs) are essential in moths to detect sex pheromones for mate finding. However, it remains unknown from which ancestral proteins these specialized receptors arose. The oldest lineages of moths, so-called non-ditrysian moths, use short-chain pheromone components, secondary alcohols, or ketones, so called Type 0 pheromones that are similar to many common plant volatiles. It is, therefore, possible that receptors for these ancestral pheromones evolved from receptors detecting plant volatiles. Hence, we identified the odorant receptors (ORs) from a non-ditrysian moth, Eriocrania semipurpurella (Eriocraniidae, Lepidoptera), and performed functional characterization of ORs using HEK293 cells. We report the first receptors that respond to Type 0 pheromone compounds; EsemOR3 displayed highest sensitivity toward (2S, 6Z)-6-nonen-2-ol, whereas EsemOR5 was most sensitive to the behavioral antagonist (Z)-6-nonen-2-one. These receptors also respond to plant volatiles of similar chemical structures, but with lower sensitivity. Phylogenetically, EsemOR3 and EsemOR5 group with a plant volatile-responding receptor from the tortricid moth Epiphyas postvittana (EposOR3), which together reside outside the previously defined lepidopteran PR clade that contains the PRs from more derived lepidopteran families. In addition, one receptor (EsemOR1) that falls at the base of the lepidopteran PR clade, responded specifically to β-caryophyllene and not to any other additional plant or pheromone compounds. Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles. They are unrelated to PRs detecting pheromones in more derived Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles.
Collapse
Affiliation(s)
| | | | | | - Richard D Newcomb
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
28
|
Short-term peripheral sensitization by brief exposure to pheromone components in Spodoptera littoralis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:973-982. [PMID: 28852845 DOI: 10.1007/s00359-017-1205-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 02/05/2023]
Abstract
In insects, the olfactory system displays a high degree of plasticity. In Spodoptera littoralis, pre-exposure of males to the sex pheromone has been shown to increase the sensitivity of the olfactory sensory neurons at peripheral level. In this study, we have investigated this sensitization effect by recording the electroantennographic responses of male antennae to the major sex pheromone component (Z,E)-9,11-tetradecadienyl acetate and to the minor components (Z,E)-9,12-tetradecadienyl acetate and (Z)-9-tetradecenyl acetate. Responses to the conjugated diene acetate at 1 and 10 µg and to the unconjugated ester at 10 µg at three different times (11, 22 and 33 min) after pre-exposure (T = 0 min) were significantly higher than those at T = 0, whereas no increase of sensitivity to the pheromone was elicited by any dose of the minor monoene acetate. In addition, pre-exposed antennae to sub-threshold amounts (0.1, 1 and 10 ng) of the major pheromone component also induced an increased response to the chemical at different times (5 and 15 min) after exposure. Our results revealed that pre-exposed isolated antennae display a short-term higher sensitivity at the peripheral level when compared to naive antennae. In addition, we provide evidence of a peripheral sensitization mediated not only by the major pheromone component, but also by the minor unconjugated diene acetate, and the induction of this sensitivity appears to be dependent on the pre-exposure dose and the time span between pre-exposure and subsequent recordings. Possible implications of the sensitization effect displayed by the minor component for a more effective discrimination of the pheromone bouquets of other closely related species are highlighted.
Collapse
|
29
|
de Fouchier A, Walker WB, Montagné N, Steiner C, Binyameen M, Schlyter F, Chertemps T, Maria A, François MC, Monsempes C, Anderson P, Hansson BS, Larsson MC, Jacquin-Joly E. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun 2017; 8:15709. [PMID: 28580965 PMCID: PMC5465368 DOI: 10.1038/ncomms15709] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/20/2017] [Indexed: 02/07/2023] Open
Abstract
Insects detect their hosts or mates primarily through olfaction, and olfactory receptors (ORs) are at the core of odorant detection. Each species has evolved a unique repertoire of ORs whose functional properties are expected to meet its ecological needs, though little is known about the molecular basis of olfaction outside Diptera. Here we report a pioneer functional analysis of a large array of ORs in a lepidopteran, the herbivorous pest Spodoptera littoralis. We demonstrate that most ORs are narrowly tuned to ubiquitous plant volatiles at low, relevant odorant titres. Our phylogenetic analysis highlights a basic conservation of function within the receptor repertoire of Lepidoptera, across the expansive evolutionary radiation of different major clades. Our study provides a reference for further studies of olfactory mechanisms in Lepidoptera, a historically crucial insect order in olfactory research.
Collapse
Affiliation(s)
- Arthur de Fouchier
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - William B. Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Nicolas Montagné
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Claudia Steiner
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Muhammad Binyameen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Chemical Ecology Laboratory, Department of Entomology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Fredrik Schlyter
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Thomas Chertemps
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Annick Maria
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Marie-Christine François
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Christelle Monsempes
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mattias C. Larsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Emmanuelle Jacquin-Joly
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
30
|
Wang B, Liu Y, He K, Wang G. Comparison of research methods for functional characterization of insect olfactory receptors. Sci Rep 2016; 6:32806. [PMID: 27633402 PMCID: PMC5025650 DOI: 10.1038/srep32806] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Insect olfactory receptors (ORs) in the peripheral olfactory system play an important role detecting elements of information from the environment. At present, various approaches are used for deorphanizing of ORs in insect. In this study, we compared methods for functional analysis of ORs in vitro and in vivo taking the candidate pheromone receptor OR13 of Helicoverpa assulta (HassOR13) as the object of our experiments. We found that the natural system was more sensitive than those utilizing transgenic Drosophila. The two-electrode voltage-clamp recording is more suitable for functional screening of large numbers of ORs, while the in vivo transgenic Drosophila system could prove more accurate to further validate the function of a specific OR. We also found that, among the different solvents used to dissolve pheromones and odorants, hexane offered good reproducibility and high sensitivity. Finally, the function of ORs was indirectly confirmed in transgenic Drosophila, showing that odor-activation of ORs-expressing olfactory receptor neurons (ORNs) can mediate behavioral choices. In summary, our results compare advantages and drawbacks of different approaches, thus helping in the choice of the method most suitable, in each specific situation, for deorphanizing insect ORs.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|