1
|
Lu C, Zhang Y, Setälä H, Chen QL. Labile carbon input substantially increases priming effect in urban greenspace soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177258. [PMID: 39471950 DOI: 10.1016/j.scitotenv.2024.177258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Urban greenspace soils can store equal amount of carbon, or even more, compared to agricultural and forest soils, and play an important role in carbon sequestration. Despite its importance, the patterns and drivers of the priming effect-a key and complex process in soil organic matter decomposition-in urban ecosystems remain poorly understood. Here, we sampled soils in urban lawns, suburban lawns, and forests, and conducted a 30-day microcosm incubation with 13C-labelled glucose and nitrogen additions to explore whether and how the intensity of soil organic matter priming effect differs between urbanized and forest ecosystems. We found that lawn soils in urban (7.01 mg C g-1 SOC) and suburban (5.86) areas had a significantly higher intensity of priming effect than forest soils (1.34), with further enhancement observed in urban lawn soils through simulated nitrogen deposition. Moreover, the alpha diversity of soil bacteria and fungi was found to play a crucial role in modulating the priming effect, exhibiting a positive correlation with its intensity. These findings advance our understanding of the potential mechanisms behind the soil priming effect in urban greenspaces, providing crucial insights for predicting soil carbon stocks and environmental impacts of urban development.
Collapse
Affiliation(s)
- Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yifang Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heikki Setälä
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FIN-15140, Finland
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
2
|
Guo Y, Han J, Bao H, Wu Y, Shen L, Xu X, Chen Z, Smith P, Abdalla M. A systematic analysis and review of soil organic carbon stocks in urban greenspaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174788. [PMID: 39019284 DOI: 10.1016/j.scitotenv.2024.174788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Urban greenspaces typically refer to urban wetland, urban forest and urban turfgrass. They play a critical role in carbon sequestration by absorbing carbon from the atmosphere; however, their capacity to retain and store carbon in the form of soil organic carbon (SOC) varies significantly. This study provides a systematic analysis and review on the capacity of different urban greenspace types in retaining and storing SOC in 30 cm soil depth on a global scale. Data came from 78 publications on the subject of SOC stocks, covering different countries and climate zones. Overall, urban greenspace types exerted significant influences on the spatial pattern of SOC stocks, with the highest value of 18.86 ± 11.57 kg m-2 (mean ± standard deviation) in urban wetland, followed by urban forest (6.50 ± 3.65 kg m-2), while the lowest mean value of 4.24 ± 3.28 kg m-2 was recorded in urban turfgrass soil. Soil organic carbon stocks in each urban greenspace type were significantly affected by climate zones, management/environmental settings, and selected soil properties (i.e. soil bulk density, pH and clay content). Furthermore, our analysis showed a significantly negative correlation between SOC stocks and human footprint in urban wetland, but a significantly positive relationship in urban forest and urban turfgrass. A positive correlation between SOC stocks and human footprint indicates that increased human activity and development can enhance SOC stocks through effective management and green infrastructure. Conversely, a negative correlation suggests that improper management of human activities can degrade SOC stocks. This highlights the need for sustainable practices to maintain or enhance SOC accumulation in urban greenspaces.
Collapse
Affiliation(s)
- Yang Guo
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China; School of Public Affairs, Zhejiang University, Hangzhou 310058, China
| | - Jiatong Han
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Haijun Bao
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China.
| | - Yuzhe Wu
- School of Public Affairs, Zhejiang University, Hangzhou 310058, China
| | - Liyin Shen
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China
| | - Xiangrui Xu
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China
| | - Ziwei Chen
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Mohamed Abdalla
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| |
Collapse
|
3
|
He K, Han R, Wang Z, Xiao Z, Hao Y, Dong Z, Xu Q, Li G. Soil source, not the degree of urbanization determines soil physicochemical properties and bacterial composition in Ningbo urban green spaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172550. [PMID: 38643872 DOI: 10.1016/j.scitotenv.2024.172550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Urban green spaces provide multiple ecosystem services and have great influences on human health. However, the compositions and properties of urban soil are not well understood yet. In this study, soil samples were collected from 45 parks in Ningbo to investigate the relationships among soil physicochemical properties, heavy metals and bacterial communities. The results showed that soil dissolved organic matter (DOM) was of high molecular weight, high aromaticity, and low degree of humification. The contents of heavy metals were all below the China's national standard safety limit (GB 3660-2018). The bioavailability of heavy metals highly correlated with soil pH, the content of DOC, the fluorescent component, the degree of humification and the source of DOM. The most abundant genera were Gemmatimonadaceae_uncultured, Xanthobacteraceae_uncultured, and Acidothermus in all samples, which were related to nitrogen cycle and bioavailability of heavy metals. Soil pH, bioavailability of Zn, Cd, and Pb (CaCl2 extracted) were the main edaphic factors influencing bacterial community composition. It should be noted that there was no significant impact of urbanization on soil physicochemical properties and bacterial composition, but they were determined by the source of soil in urban green spaces. However, with the passage of time, the effect of urbanization on urban green spaces cannot be ignored. Overall, this study provided new insight for understanding the linkage among soil physicochemical properties, heavy metals, and bacterial communities in urban green spaces.
Collapse
Affiliation(s)
- Kaiwen He
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zufei Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuozhen Dong
- Agricultural Technology Management and Service Station of Haishu District in Ningbo, Ningbo 315012, China
| | - Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhao C, Liu X, Tan H, Yin S, Su L, Du B, Khalid M, Sinkkonen A, Hui N. Neighborhood garden's age shapes phyllosphere microbiota associated with respiratory diseases in cold seasons. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100315. [PMID: 37886031 PMCID: PMC10598728 DOI: 10.1016/j.ese.2023.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Neighborhood gardens serve as sensitive sites for human microbial encounters, with phyllosphere microbes directly impacting our respiratory health. Yet, our understanding remains limited on how factors like season, garden age, and land use shape the risk of respiratory diseases (RDs) tied to these garden microbes. Here we examined the microbial communities within the phyllosphere of 72 neighborhood gardens across Shanghai, spanning different seasons (warm and cold), garden ages (old and young), and locales (urban and rural). We found a reduced microbial diversity during the cold season, except for Gammaproteobacteria which exhibited an inverse trend. While land use influenced the microbial composition, urban and rural gardens had strikingly similar microbial profiles. Alarmingly, young gardens in the cold season hosted a substantial proportion of RDs-associated species, pointing towards increased respiratory inflammation risks. In essence, while newer gardens during colder periods show a decline in microbial diversity, they have an increased presence of RDs-associated microbes, potentially escalating respiratory disease prevalence. This underscores the pivotal role the garden age plays in enhancing both urban microbial diversity and respiratory health.
Collapse
Affiliation(s)
- Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Haoxin Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Lantian Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Aki Sinkkonen
- Department of Garden Technologies, Horticulture Technologies, Natural Resources Institute Finland, Helsinki, Finland
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|
5
|
Yao H, Li Z, Geisen S, Qiao Z, Breed MF, Sun X. Degree of urbanization and vegetation type shape soil biodiversity in city parks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166437. [PMID: 37604369 DOI: 10.1016/j.scitotenv.2023.166437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Urbanization negatively impacts aboveground biodiversity, such as bird and insect communities. City parks can reduce these negative impacts by providing important habitat. However, it remains poorly understood how the degree of urbanization and vegetation types within city parks (e.g., lawns, woodland) impact soil biodiversity. Here we investigated the impact of the degree of urbanization (urban vs. suburban) and vegetation type (lawn, shrub-lawn, tree-lawn and tree-shrub mixtures) on soil biodiversity in parkland systems. We used eDNA metabarcoding to characterize soil biodiversity of bacteria, fungi, protists, nematodes, meso- and macrofauna across park vegetation types in urban and suburban regions in Xiamen, China. We observed a strong effect of the degree of urbanization on the richness of different soil biota groups, with higher species richness of protists and meso/macrofauna in urban compared to suburban areas, while the richness of bacteria and fungi did not differ, and the difference of nematode richness depended on vegetation type. At the functional level, increased degree of urbanization associated with greater species richness of bacterivores, plant pathogens and animal parasites. These urbanization effects were at least partly modulated by higher soil phosphorous levels in urban compared to suburban sites. Also, the vegetation type impacted soil biodiversity, particularly fungal richness, with the richness of pathogenic and saprotrophic fungi increasing from lawn to tree-shrub mixtures. Tree-shrub mixtures also had the highest connectedness between biotas and lowest variation in the soil community structure. Overall, we show that soil biodiversity is strongly linked to the degree of urbanization, with overall richness increasing with urbanization, especially in bacterivores, plant pathogens and animal parasites. Targeted management of vegetation types in urban areas should provide a useful way to help mitigate the negative effect of urbanization on soil biodiversity.
Collapse
Affiliation(s)
- Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Zhipeng Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Stefan Geisen
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, 6700 ES Wageningen, the Netherlands.
| | - Zhihong Qiao
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
6
|
Qu Y, Liu Q, Zhao W, Cheng H, Chen H, Tian Y, Ma S, Chen Y, Ma J. Characters and environmental driving factors of bacterial community in soil of Beijing urban parks. ENVIRONMENTAL RESEARCH 2022; 215:114178. [PMID: 36087773 DOI: 10.1016/j.envres.2022.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In an era of unprecedented human influence, different human activities have different degrees of impact on specific bacteria, resulting in the regional biological homogenization of soil bacteria. However, the contribution of the impact that a large number of anthropogenic activities on bacteria remains unknown. Here, by high-throughput amplicon sequencing, we characterized the composition, diversity and influencing factors of soil microbes in Beijing urban parks at geographic space and park management aspect. It is the first time to quantify and compare the importance of the impact of up to 15 human activities on soil bacterial communities. The results show that the dominant bacterial phyla in Beijing urban parks were Actinobacteria, Proteobacteria, Acidobacteria and Chloroflexi. The environmental management of different park types, as well as the land use history and development conditions of different regions, had significant differences in soil bacterial community structure. Soil bacteria in urban parks were disturbed by direct human interference far more than natural causes. The most important factors were related to the number of tourists and residents, industrial production and land use patterns. These factors may also be related to the abundance of unknown bacteria in urban parks. This also directly shows that human activities have a non-negligible impact on soil bacteria. The ways in which different human activities brought by global urbanization and their impacting mechanisms are used should be the starting point of future research.
Collapse
Affiliation(s)
- Yajing Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenhao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuxin Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Saiyan Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
7
|
Stochastic and deterministic processes shaping the testate amoeba communities across different biotopes of urban parks in Moscow and Xiamen cities. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Xie L, Yin C. Seasonal variations of soil fungal diversity and communities in subalpine coniferous and broadleaved forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157409. [PMID: 35850334 DOI: 10.1016/j.scitotenv.2022.157409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Soil fungi have essential roles in ecosystems, but the seasonal dynamics of soil fungal communities in forests remain unclear. To explore the pattern and variation of soil fungal community diversity and structural composition across forest types and seasons, and identify the main contributors to soil fungal communities, we collected soil samples from subalpine coniferous (Picea asperata and Larix gmelinii) and broadleaved plantations (Betula albosinensis and Quercus aquifolioides) in southwest China in different seasons. Soil fungal community structural composition was determined using the Illumina MiSeq sequencing platform. The results showed that soil fungal diversity and richness in broadleaved forests were higher than in conifer forests. From heatmap cluster analysis, distinct differences in fungal community composition among forest types (coniferous and broadleaved forests) and seasons (May and July, September) were observed. Fungal communities were dominated by Basidiomycota and Ascomycota regardless of forest type and season. Helotiales and Atheliales were abundant in coniferous forests, while Agaricales, Russulales and Thelephorales predominated in broadleaved forests. Fungal community diversity and composition were significantly driven by soil pH, moisture, organic carbon, ammonium (NH4+-N), fine root biomass and root tissue density, when controlling for the effects of forest type and season. Thus, forest type and season significantly affected soil fungal community diversity and composition by altering soil properties and root variables.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China.
| |
Collapse
|
9
|
Zhao X, Zhang W, Feng Y, Mo Q, Su Y, Njoroge B, Qu C, Gan X, Liu X. Soil organic carbon primarily control the soil moisture characteristic during forest restoration in subtropical China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1003532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil organic carbon (SOC) is a crucial component of the soil carbon pool that regulates fundamental soil properties and water status. In the global context of restoring vegetation, the soil carbon-water coupling relationship has gained attention. In particular, the regulatory mechanism of SOC on soil moisture requires further research. In this study, three typical forests in subtropical China were chosen as restoration sequences to investigate the changes in SOC and soil moisture during subtropical forest restoration and its regulation mechanisms: broadleaf-conifer mixed forest (EF), broad-leaved forest (MF), and old-growth forest (LF). The soil water content (35.71 ± 1.52%), maximum water holding capacity (47.74 ± 1.91%), capillary water holding capacity (43.92 ± 1.43%), and field water holding capacity (41.07 ± 1.65%) in LF were significantly higher than those in EF (p < 0.01). As forest restoration progressed, the amount of litter returning to the soil increased gradually, and the SOC content (0–100 cm) increased from 9.51 ± 1.42 g/kg (EF) to 15.60 ± 2.30 g/kg (LF). The SOC storage increased from 29.49 ± 3.59 to 42.62 ± 5.78 Mg/ha. On one hand, forest restoration led to a change in SOC content, which optimizes the soil structure and enhances soil porosity (path coefficient of 0.537, p < 0.01), further leading to a change in soil water content (path coefficient of 0.940, p < 0.01). On the other hand, the increase in SOC influenced the change in soil nutrient content, i.e., total nitrogen (TN) and total phosphorus (TP) (path coefficient of 0.842, p < 0.01). Changes in SOC and soil nutrients stimulated changes in the stoichiometric ratio, i.e., C:P and N:P (path coefficients of 0.988 and –0.968, respectively, p < 0.01), and the biological activity in soil changed appropriately, which eventually led to a change in soil water content (path coefficient of –0.257, p < 0.01). These results highlight the changes in SOC and soil water content (SWC), as well as the mechanism of SOC controlling SWC as a result of vegetation restoration, which is of tremendous importance for advancing our understanding of the eco-hydrological process of subtropical forest restoration.
Collapse
|
10
|
Demina SA, Vasenev VI, Makhinya KI, Romzaykina ON, Istomina II, Pavlova ME, Dovletyarova EA. Assessment of soils and green stands in the recreational areas with different land-use history in New Moscow. RUDN JOURNAL OF AGRONOMY AND ANIMAL INDUSTRIES 2022. [DOI: 10.22363/2312-797x-2022-17-3-331-349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Abstract. Recreational areas contribute considerably to the establishment of sustainable and comfortable urban environment. Green stands and soils of recreational areas provide important environmental functions and ecosystem services, their utilization depends on natural and anthropogenic factors distinguished by land-use history. For the case of the recreational areas of New Moscow, a comparative analysis of trees (n=1909) and soils (n=39, 0-10 cm layer) of the parks, established on former forested and fallow lands, was performed. It was shown that the species diversity was higher although the tree condition score was lower in the forest-parks, compared to the parks established on former fallow lands, which were generally characterized by a higher level of maintenance. Soils of these parks had a neutral pHH20 (7.20.8) and high content of organic matter (8.52.5 %), whereas the forest-parks soils were similar to the natural Retisols of the forest area with pHH20 6.40.2 and 5.10.2, organic matter content 5.90.2 и 3.50.2 %, respectively. Soils of the parks, established on the former fallow lands, had also a higher pollution level by particular heavy metals as well as considering the integral pollution index. Thus, a higher level of maintenance of the parks established on former fallow lands coincided with a higher anthropogenic pressure and ecosystem alteration. However, reorganization of forests into forestparks allowed partial preservation of the natural ecosystems. That is necessary to consider for planning the new urbanized areas in Moscow.
Collapse
|
11
|
Invasive Species as Rivals: Invasive Potential and Distribution Pattern of Xanthium strumarium L. SUSTAINABILITY 2022. [DOI: 10.3390/su14127141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xanthium strumarium L. is a globally successful invasive herb that has had significant negative ecological, economic and social impacts in many world regions. The present study was therefore conducted to evaluate the invasive potential and spatial distribution patterns of X. strumarium in heavily invaded plant communities of the semiarid regions of northern Pakistan. Investigations were based on data from 20 plants grown in the Herbarium at the University of Malakand, and from observations in 450 plots distributed across 45 stands representing habitats across Northern Province including open fields, hillocks and abandoned areas in both urban and rural areas. Multivariate analysis identified elevation, organic matter and organic carbon as the environmental variables most associated with communities invaded by X. strumarium. Increased soil silt was positively associated and available water was negatively associated with X. strumarium–invaded communities. These key environmental characteristics allowed us to identify four main associations: Group I: X. strumarium-C. sativa, Group II: X. strumarium-P. hysterophorus, Group III: X. strumarium-A. aspera and Group IV: X. strumarium-C. sativa. Other invasive species were observed, either exotic, such as P. hysterophorus, or indigenous, such as C. sativa and D. inoxia, often co-occurring and responding similarly to these factors. The results suggest that high temperature with drought stress could be a determinant of increasing population at lower elevations, whereas colder climates with adequate moisture are related to reduced populations at higher elevations, near the species’ upper range limits. It is recommend that the inclusion of appropriate, additional soil and climatic variables in species distribution models be implemented in order to better explain species’ ecological niches and help guide conservation and protection plans for native plant communities.
Collapse
|
12
|
Microhabitat Associations for the Threatened Cheat Mountain Salamander in Relation to Early-stage Red Spruce Restoration Areas. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2022. [DOI: 10.3996/jfwm-21-042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Central Appalachian Spruce Restoration Initiative was formed to promote restoration of red spruce Picea rubens forests in Central Appalachia. One goal of the initiative is to increase availability and enhance quality of habitat for wildlife, including the threatened Cheat Mountain salamander Plethodon nettingi. The purpose of this research was to compare microhabitat characteristics between an occupied Cheat Mountain salamander site and early-stage spruce restoration sites, and between four occupied sites and proximal non-detection sites. We found that soil pH was higher and soil moisture was lower at spruce restoration sites compared to the occupied site, and that light intensity, sub-canopy air temperature, and ground-level air temperature were higher in spruce restoration prescriptions with reduced canopy cover. We found that soil moisture was higher at occupied sites compared to proximal non-detection sites, but soil pH was not significantly different. Our study suggests that Cheat Mountain salamanders are associated with low soil pH and high soil moisture, and thus spruce restoration could enhance habitat quality for this species in the long-term.
Collapse
|
13
|
Liu G, Bai Z, Shah F, Cui G, Xiao Z, Gong H, Li D, Lin Y, Li B, Ji G, Shah S. Compositional and structural changes in soil microbial communities in response to straw mulching and plant revegetation in an abandoned artificial pasture in Northeast China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Upadhyay S, Singh R, Verma P, Raghubanshi AS. Spatio-temporal variability in soil CO 2 efflux and regulatory physicochemical parameters from the tropical urban natural and anthropogenic land use classes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113141. [PMID: 34198176 DOI: 10.1016/j.jenvman.2021.113141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Urban ecosystems, the heterogeneous and rapidly changing landscape, showed a considerable impact on the global C cycle. However, studies encompassing the spatial differences in urban land uses on soil C dynamics are limited in tropical ecosystems. In this study, seasonal and temporal variability in soil CO2 efflux (SCE) and its regulatory physicochemical variables under five urban land use classes viz., Bare (BAR), Agriculture (AGR), Plantation (PLT), Grassland (GRA) and Lawns (LAW) were assessed from 2014 to 2016. Bare land use was considered as the reference for observing the variation for different land uses. Seasonal measurements of SCE, soil temperature, moisture content, pH, ammonium-N, nitrate-N and microbial biomass C (MBC) were performed whereas soil organic C (SOC), soil N, and soil physical properties were measured annually. Our results showed a significant (P < 0.01) increase in SCE by 89%, 117%, 132% and 166% for land use types from BAR to AGR, PLT, GRA and LAW, respectively. The results revealed a two-fold increase in SCE from anthropogenically managed urban lawns as compared to bare soil. PLT and LAW land use classes showed higher SOC and N contents. SCE was found positively correlated with temperature, moisture, SOC, soil N and MBC whereas negatively correlated with ammonium-N and nitrate-N (at P < 0.05) for the overall dataset. Soil moisture, temperature, SOC, porosity and pH were identified as the major determinant of urban SCE by explaining 63% of the variability in overall SCE. Further, temperature for BAR and LAW; moisture for PLT; ammonium-N for GRA; and nitrate-N for AGR were identified as the major regulators of SCE for different land use classes. The findings revealed that the interaction of soil temperature and moisture with nutrient availability regulates overall and seasonal variability in SCE in an urban ecosystem. Since these variables are highly affected by climate change, thus, the soil C source-sink relationships in tropical urban ecosystems may further change and induce a positive global warming potential from urban ecosystems.
Collapse
Affiliation(s)
- Shweta Upadhyay
- Integrative Ecology Laboratory (IEL), Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India
| | - Rishikesh Singh
- Integrative Ecology Laboratory (IEL), Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India
| | - Pramit Verma
- Integrative Ecology Laboratory (IEL), Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India
| | - Akhilesh Singh Raghubanshi
- Integrative Ecology Laboratory (IEL), Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
15
|
MacGregor-Fors I, García-Arroyo M, Kotze DJ, Ojala E, Setälä H, Vauramo S. A more sustainable urban future calls for action: the city of Lahti as European Green Capital 2021. JOURNAL OF URBAN ECOLOGY 2021. [DOI: 10.1093/jue/juab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
In 2020, a small urban center from southern Finland, the City of Lahti, was awarded the 2021 European Green Capital, which recognizes and rewards local efforts that seek to improve the urban environment, together with its economy and the quality of life for its inhabitants, further posing ambitious goals for ecological improvement. In this commentary, we describe some of the key elements that made Lahti the 2021 European Green Capital, as well as some of the future plans for the city. We also highlight the importance of research-based knowledge as the foundation for achieving better outcomes in urban decision making.
Collapse
Affiliation(s)
- Ian MacGregor-Fors
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Michelle García-Arroyo
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - D Johan Kotze
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Elina Ojala
- Environmental Development, City of Lahti, Askonkatu 2, Lahti FI-15100, Finland
| | - Heikki Setälä
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Saara Vauramo
- Sustainable Lahti Foundation, Rautatienkatu 20, Lahti FI-15100, Finland
| |
Collapse
|
16
|
Kotze DJ, Ghosh S, Hui N, Jumpponen A, Lee BPYH, Lu C, Lum S, Pouyat R, Szlavecz K, Wardle DA, Yesilonis I, Zheng B, Setälä H. Urbanization minimizes the effects of plant traits on soil provisioned ecosystem services across climatic regions. GLOBAL CHANGE BIOLOGY 2021; 27:4139-4153. [PMID: 34021965 DOI: 10.1111/gcb.15717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
An increasingly urbanized world is one of the most prominent examples of global environmental change. Across the globe, urban parks are designed and managed in a similar way, resulting in visually pleasing expansions of lawn interspersed with individually planted trees of varying appearances and functional traits. These large urban greenspaces have the capacity to provide various ecosystem services, including those associated with soil physicochemical properties. Our aim was to explore whether soil properties in urban parks diverge underneath vegetation producing labile or recalcitrant litter, and whether the impact is affected by climatic zone (from a boreal to temperate to tropical city). We also compared these properties to those in (semi)natural forests outside the cities to assess the influence of urbanization on plant-trait effects. We showed that vegetation type affected percentage soil organic matter (OM), total carbon (C) and total nitrogen (N), but inconsistently across climatic zones. Plant-trait effects were particularly weak in old parks in the boreal and temperate zones, whereas in young parks in these zones, soils underneath the two tree types accumulated significantly more OM, C and N compared to lawns. Within climatic zones, anthropogenic drivers dominated natural ones, with consistently lower values of organic-matter-related soil properties under trees producing labile or recalcitrant litter in parks compared to forests. The dominating effect of urbanization is also reflected in its ability to homogenize soil properties in parks across the three cities, especially in lawn soils and soils under trees irrespective of functional trait. Our study demonstrates that soil functions that relate to carbon and nitrogen dynamics-even in old urban greenspaces where plant-soil interactions have a long history-clearly diverged from those in natural ecosystems, implying a long-lasting influence of anthropogenic drivers on soil ecosystem services.
Collapse
Affiliation(s)
- D Johan Kotze
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Subhadip Ghosh
- Centre for Urban Greenery and Ecology, National Parks Board, Singapore, Singapore
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, NY, USA
| | - Benjamin P Y-H Lee
- Wildlife Management Division, National Parks Board, Singapore, Singapore
| | - Changyi Lu
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Shawn Lum
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Richard Pouyat
- Emeritus USDA Forest Service, NRS, Affiliate Faculty Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | - Katalin Szlavecz
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - David A Wardle
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Ian Yesilonis
- USDA Forest Service, Baltimore Field Station, Baltimore, MD, USA
| | - Bangxiao Zheng
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heikki Setälä
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|
17
|
Lu C, Kotze DJ, Setälä HM. Evergreen trees stimulate carbon accumulation in urban soils via high root production and slow litter decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145129. [PMID: 33609825 DOI: 10.1016/j.scitotenv.2021.145129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Urban soils can, when not sealed, store a considerable amount of carbon (C) especially under cool climates. Soil C sequestration is controlled by plant functional type, but the mechanisms by which plant types affect C accumulation in urbanised settings is poorly known. We selected 27 urban parks of varying ages (young: 5-15, old: >70 years) and 10 reference forests (>80 years) in southern Finland to study whether the ability of soils to store C relates to (i) the decomposition rate of different litter types (recalcitrant vs. labile), and/or (ii) organic matter (OM) input via root production among three common plant functional types (deciduous trees, evergreen trees, grass/lawn). Our results suggest that the high soil C accumulation under evergreen trees can result from low needle litter decomposability, accompanied by a low soil CO2 efflux. Furthermore, high root production by evergreen trees compared to deciduous trees and lawns, likely reflects the high % OM under evergreen trees. We showed that plant effects on C inputs and outputs are modulated, either directly or indirectly, by park age so that these effects are accentuated in old parks. Our results suggest that despite the capacity of evergreen trees to accumulate C in soils in urban parks, this capacity is far less compared to soils in forests of the same age. OM content under deciduous trees did not differ between old parks and reference forests, suggesting that the raking of leaves in the fall has a surprisingly small impact on OM and C accumulation in urban parks. Soil OM content is an important measure that controls various ecosystem services in cities and elsewhere. Therefore, increasing the proportion of evergreen trees in urban parks in cool cities is a good option to boost the ecosystem services capacity in the often strongly disturbed urban soils.
Collapse
Affiliation(s)
- Changyi Lu
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FIN-15140 Lahti, Finland.
| | - D Johan Kotze
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FIN-15140 Lahti, Finland
| | - Heikki M Setälä
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FIN-15140 Lahti, Finland
| |
Collapse
|
18
|
Urbanisation differently affects decomposition rates of recalcitrant woody material and labile leaf litter. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01125-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractLitter decomposition is a fundamental ecosystem process and service that supplies nutrients to the soil. Although decomposition rate is influenced by litter quality, climatic conditions, the decomposer community and vegetation type in non-urban ecosystems, little is known about the degradation of different organic matter types in urban settings. We investigated the decomposition rates of recalcitrant (wood sticks for 4 years) and labile litter (green tea leaves in pyramid-shaped teabags for 3 years) in urban habitats that differed in level of management and disturbance. We found that recalcitrant woody material decomposed slower in urban habitat types (ca. 60–75% mass loss after 4 years in remnant spruce forests, park lawns, ruderal habitats) than in natural to semi-natural spruce forest soils (84% mass loss) outside the city. Labile tea litter, however, decomposed faster in typical open urban habitats (70% mass loss after 3 years in park lawns, ruderal habitats) than in forested habitats (60% mass loss in semi-natural and remnant spruce forests), with a remarkable dichotomy in decomposition rate between open and forested habitats. We suggest that the slower rate of wood decomposition in the city relates to its depauperate saprotrophic fungal community. The faster rate of labile litter decomposition in open habitats is difficult to explain, but is potentially a consequence of environmental factors that support the activity of bacteria over fungi in open habitats. We propose that the reintroduction of decaying woody material into the urban greenspace milieu could increase biodiversity and also improve the ability of urban soils to decompose an array of organic material entering the system. This reintroduction of decaying woody material could either occur by leaving cut logs – due to management – in urban remnant forests, which has been shown to be accepted as natural features by residents in Fennoscandian cities, and by placing logs in urban parks in ways that communicate their intentional use as part of urban landscape design and management.
Collapse
|
19
|
Zhang W, Han J, Wu H, Zhong Q, Liu W, He S, Zhang L. Diversity patterns and drivers of soil microbial communities in urban and suburban park soils of Shanghai, China. PeerJ 2021; 9:e11231. [PMID: 33959419 PMCID: PMC8053383 DOI: 10.7717/peerj.11231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The rapid expansion of urbanization leads to significant losses of soil ecological functions. Microbes directly participate in key soil processes and play crucial roles in maintaining soil functions. However, we still have a limited understanding of underlying mechanisms shaping microbial communities and the interactions among microbial taxa in park soils. METHODS In this study, the community variations of bacteria and fungi in urban and suburban park soils were investigated in Shanghai, China. Real-time PCR and high-throughput Illumina sequencing were used to examine the microbial abundance and community composition, respectively. RESULTS The results showed that soil molecular biomass and fungal abundance in urban park soils were significantly higher than those in suburban park soils, while no significant difference was observed in the bacterial abundance between urban and suburban park soils. The alpha diversity of soil microbes in urban and suburban park soils was similar to each other, except for Chao1 index of fungal communities. The results of similarity analysis (ANOSIM) revealed remarkable differences in the composition of bacterial and fungal communities between urban and suburban park soils. Specifically, park soils in urban areas were enriched with the phyla Methylomirabilota and Verrucomicrobiota, while the relative abundance of Gemmatimonadota was higher in suburban park soils. Moreover, the fungal class Eurotiomycetes was also enriched in urban park soils. Compared with suburban park soils, nodes and average paths of the bacterial and fungal networks were higher in urban park soils, but the number of module hubs and connectors of the bacterial networks and negative interactions among bacterial taxa were lower. Compared with suburban park soils, Acidobacteriota bacterium and Mortierellomycota fungus played more important roles in the ecological networks of urban park soils. Soil available zinc (Zn), available nitrogen (N), pH, and total potassium (K) significantly affected fungal community composition in park soils in Shanghai. Soil available Zn was also the most important factor affecting the bacterial community composition in this study. CONCLUSION There were significant differences in the soil molecular biomass, fungal abundance, and the community composition and co-occurrence relations of both soil bacterial and fungal communities between urban and suburban park soils. Soil available Zn played an important part in shaping the structures of both the bacterial and fungal communities in park soils in Shanghai.
Collapse
Affiliation(s)
- Weiwei Zhang
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Jigang Han
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Haibing Wu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Qicheng Zhong
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Wen Liu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Shanwen He
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Lang Zhang
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| |
Collapse
|
20
|
Abstract
Cities and towns are complex ecosystems with features that can vary dramatically in space and time. Our knowledge of the spatial structure of urban land and ecological systems is expanding. These systems have been investigated across spatial scales, urban to rural gradients, networks of urban macrosystems, and global megalopolises. However, the temporal dimensions of urban ecosystems – such as those related to ecological cycles and historical legacies – are far less understood and investigated. Here, we outline the main dimensions of time that can shape how events in urban ecosystems unfold, which we categorize as: (i) time flows and duration, (ii) synchrony, lags, and delays, (iii) trends and transitions, (iv) cycles and hysteresis, (v) legacies and priming, (vi) temporal hotspots and hot moments, and (vii) stochastic vs. deterministic processes affecting our ability to forecast the future of cities and the species that live in them. First, we demonstrate the roles of these understudied dimensions by discussing exemplary studies. We then propose key future research directions for investigating how processes over time may regulate the structure and functioning of urban land and biodiversity, as well as its effects on and implications for urban ecology. Our analysis and conceptual framework highlights that several temporal dimensions of urban ecosystems – like those related to temporal hotspots/moments and stochastic vs. deterministic processes – are understudied. This offers important research opportunities to further urban ecology and a comprehensive research agenda valuing the “Urban Chronos” – the change of urban ecosystems through time.
Collapse
|
21
|
Allen JA, Setälä H, Kotze DJ. Dog Urine Has Acute Impacts on Soil Chemistry in Urban Greenspaces. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.615979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urban residents and their pets utilize urban greenspaces daily. As urban dog ownership rates increase globally, urban greenspaces are under mounting pressure even as the benefits and services they provide become more important. The urine of dogs is high in nitrogen (N) and may represent a significant portion of the annual urban N load. We examined the spatial distribution and impact of N deposition from dog urine on soils in three urban greenspace typologies in Finland: Parks, Tree Alleys, and Remnant Forests. We analyzed soil from around trees, lampposts and lawn areas near walking paths, and compared these to soils from lawn areas 8 m away from pathways. Soil nitrate, ammonium, total N concentrations, and electrical conductivity were significantly higher and soil pH significantly lower near path-side trees and poles relative to the 8 m lawn plots. Also, stable isotope analysis indicates that the primary source of path-side N are distinct from those of the 8 m lawn plots, supporting our hypothesis that dogs are a significant source of N in urban greenspaces, but that this deposition occurs in a restricted zone associated with walking paths. Additionally, we found that Remnant Forests were the least impacted of the three typologies analyzed. We recommend that landscape planners acknowledge this impact, and design parks to reduce or isolate this source of N from the wider environment.
Collapse
|
22
|
Smith J, Hallett R, Groffman PM. The state factor model and urban forest restoration. JOURNAL OF URBAN ECOLOGY 2020. [DOI: 10.1093/jue/juaa018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
A ‘state factor’ model of ecosystems can serve as a conceptual framework for researching and managing urban ecosystems. This approach provides alternative goals and narratives to those derived from historically grounded dichotomies between nature and culture, which can reify constructions of human influence as inherently destructive. The integration of human behaviour and state factors is critical to the application of a state factor model to urban ecosystems. We emphasize the role of culture in co-producing urban ecosystems and the importance of feedbacks between urban ecosystems and state factors. We advocate for ecosystem models that encourage local agency and actions that enhance the capacity of cities to constructively adapt to environmental change. We contrast this approach to efforts intended to minimize human impacts on ecosystems. The usefulness of the state factor model for informing such efforts is assessed through a consideration of the norms and practices of urban forest restoration in New York City. Despite the limitations and challenges of applying a state factor model to urban ecosystems, it can inform comparative research within and between cities and offers an intuitive framework for understanding the ecological conditions created in cities by human behaviour.
Collapse
Affiliation(s)
- Jason Smith
- Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York (CUNY), 2900 Bedford Avenue, Brooklyn, NY 11210 USA
- New York Restoration Project, 254 West 31st Street, 10th Floor, New York, NY 10001, USA
| | - Richard Hallett
- USDA Forest Service, Northern Research Station, New York City Urban Field Station, 431 Walter Reed Road, Bayside, NY 11359, USA
| | - Peter M Groffman
- Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York (CUNY), 2900 Bedford Avenue, Brooklyn, NY 11210 USA
- City University of New York, Advanced Science Research Center at the Graduate Center, Environmental Science Initiative, 85 St Nicholas Terrace, New York, NY 10031, USA
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| |
Collapse
|
23
|
Lu C, Kotze DJ, Setälä HM. Soil sealing causes substantial losses in C and N storage in urban soils under cool climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138369. [PMID: 32278181 DOI: 10.1016/j.scitotenv.2020.138369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/07/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Urban soil can store large amounts of carbon (C) and nitrogen (N). To accurately estimate C and N storage in urban soils, C and N contents underneath impervious surfaces - the most prevalent land cover type in cities - should be taken into account. To date, however, only few studies have reported urban soil C and N content underneath impervious surfaces, and no data exist for cities under cold/cool climates, such as the Boreal zone. Here, we studied, for the first time, the effects of sealing on soil C and N storage in a Boreal city. Sealed soils were sampled for physico-chemical and biological parameters from 13 sites in the city of Lahti, Finland, at three depths (0-10 and 45-55 cm, representing the construction layer composed of gravel, other moraine material and crushed rock, and the native soil layer beneath the ca. 1 m thick construction layer). Our results show that urban soils underneath impervious surfaces in Finland contain 11 and 31 times less C and N content, respectively, compared with warmer regions. This is due to a deep C and N deficient construction layer below sealed surfaces. Even though impervious surfaces cover ca. twice the area of pervious surfaces in the centre of Lahti, we estimate that only 6% and 4% of urban soil C and N, respectively, are stored underneath them. Furthermore, we found very little C and N accumulation underneath the sealed surfaces via root growth and/or leakage through ageing asphalt. Our results show that soil sealing, in concert with a massive top soil removal typical to cold climates, induces a considerable loss of C and N in Boreal urban areas.
Collapse
Affiliation(s)
- Changyi Lu
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FIN-15140 Lahti, Finland.
| | - D Johan Kotze
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FIN-15140 Lahti, Finland.
| | - Heikki M Setälä
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FIN-15140 Lahti, Finland.
| |
Collapse
|
24
|
Wang C, Masoudi A, Wang M, Yang J, Shen R, Man M, Yu Z, Liu J. Community structure and diversity of the microbiomes of two microhabitats at the root-soil interface: implications of meta-analysis of the root-zone soil and root endosphere microbial communities in Xiong'an New Area. Can J Microbiol 2020; 66:605-622. [PMID: 32526152 DOI: 10.1139/cjm-2020-0061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diversity of the microbial compositions of the root-zone soil (the rhizosphere-surrounding soil) and root endosphere (all inner root tissues) of Pinus tabulaeformis Carr. and Ginkgo biloba L. were evaluated in Xiong'an New Area using high-throughput sequencing; the influence of the soil edaphic parameters on microbial community compositions was also evaluated. Our results showed that both the taxonomic and phylogenetic diversities of the root endosphere were lower than those of the root-zone soil, but the variation in the endosphere microbial community structure was remarkably higher than that of the root-zone soil. Spearman correlation analysis showed that the soil organic matter, total nitrogen, total phosphate, total potassium, ratio of carbon to nitrogen, and pH significantly explained the α-diversity of the bacterial community and that total nitrogen differentially contributed to the α-diversity of the fungal community. Variation partitioning analysis showed that plant species had a greater influence on microbial composition variations than did any other soil property, although soil chemical parameters explained more variation when integrated. Together, our results suggest that both plant species and soil chemical parameters played a critical role in shaping the microbial community composition.
Collapse
Affiliation(s)
- Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Jia Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Ruowen Shen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Meng Man
- Library of Hebei Normal University, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P.R. China
| |
Collapse
|
25
|
Isaifan RJ, Baldauf RW. Estimating economic and environmental benefits of urban trees in desert regions. URBAN FORESTRY & URBAN GREENING 2020; N/A:10.3389/fevo.2020.00016. [PMID: 33746692 PMCID: PMC7970529 DOI: 10.3389/fevo.2020.00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Trees in urban areas have a significant impact on air quality and other environmental issues. Trees can affect the concentration of air pollutants that we breathe in by directly removing pollutants or avoiding emissions and secondary pollutant formation in the atmosphere. In addition, trees have other benefits including increasing property value, intercepting storm water runoff and saving energy needed for cooling of buildings in hot seasons. In this work, we estimate economic and environmental benefits of three tree species typical for desert regions such as Acacia tortilis, Ziziphus spina-christi and Phoenix dactylifera. The benefits varied by species with Acacia tortilis having the highest overall benefits, mostly because of its large leaf surface area and canopy shape. Tree benefits from carbon reduction reached up to US $14 billion annually. Mature trees tended to be more beneficial than smaller trees for improving environmental conditions. The location of trees had minimal impact on the overall economic value. This assessment provides urban planners, foresters, and developers in desert regions with the information needed to make informed decisions on the economic and environmental benefits of urban tree planting.
Collapse
Affiliation(s)
- Rima J. Isaifan
- Division of Sustainable Development, Hamad bin Khalifa University, Doha, Qatar
| | - Richard W. Baldauf
- Office of Research and Development, United States Environmental Protection Agency, Washington, DC, United States
| |
Collapse
|
26
|
Norton BA, Bending GD, Clark R, Corstanje R, Dunnett N, Evans KL, Grafius DR, Gravestock E, Grice SM, Harris JA, Hilton S, Hoyle H, Lim E, Mercer TG, Pawlett M, Pescott OL, Richards JP, Southon GE, Warren PH. Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01946. [PMID: 31173423 PMCID: PMC6851864 DOI: 10.1002/eap.1946] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 05/16/2023]
Abstract
There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups: plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0-10 cm), but in deeper soils (11-20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents' site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits.
Collapse
Affiliation(s)
- Briony A. Norton
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
- College of Life and Natural SciencesUniversity of DerbyDerbyDE22 1GBUnited Kingdom
| | - Gary D. Bending
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Rachel Clark
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Ron Corstanje
- Centre for Environmental and Agricultural InformaticsCranfield UniversityCranfieldMK43 0ALUnited Kingdom
| | - Nigel Dunnett
- Department of LandscapeUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Karl L. Evans
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Darren R. Grafius
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
- Cranfield Soil and Agrifood InstituteCranfield UniversityCranfieldMK43 0ALUnited Kingdom
| | - Emily Gravestock
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Samuel M. Grice
- Cranfield Soil and Agrifood InstituteCranfield UniversityCranfieldMK43 0ALUnited Kingdom
| | - Jim A. Harris
- Cranfield Soil and Agrifood InstituteCranfield UniversityCranfieldMK43 0ALUnited Kingdom
| | - Sally Hilton
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Helen Hoyle
- Department of LandscapeUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
- Department of Architecture and Built EnvironmentUWE BristolBristolBS16 1QYUnited Kingdom
| | - Edward Lim
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Theresa G. Mercer
- Cranfield Soil and Agrifood InstituteCranfield UniversityCranfieldMK43 0ALUnited Kingdom
- School of GeographyUniversity of LincolnLincolnLN6 7TSUnited Kingdom
| | - Mark Pawlett
- Cranfield Soil and Agrifood InstituteCranfield UniversityCranfieldMK43 0ALUnited Kingdom
| | | | - J. Paul Richards
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Georgina E. Southon
- Department of LandscapeUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Philip H. Warren
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| |
Collapse
|
27
|
Tresch S, Frey D, Bayon RCL, Mäder P, Stehle B, Fliessbach A, Moretti M. Direct and indirect effects of urban gardening on aboveground and belowground diversity influencing soil multifunctionality. Sci Rep 2019; 9:9769. [PMID: 31278335 PMCID: PMC6611818 DOI: 10.1038/s41598-019-46024-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/18/2019] [Indexed: 12/04/2022] Open
Abstract
Urban gardens are popular green spaces that have the potential to provide essential ecosystem services, support human well-being, and at the same time foster biodiversity in cities. We investigated the impact of gardening activities on five soil functions and the relationship between plant (600 spp.) and soil fauna (earthworms: 18 spp., springtails: 39 spp.) in 85 urban gardens (170 sites) across the city of Zurich (Switzerland). Our results suggest that high plant diversity in gardens had a positive effect on soil fauna and soil multifunctionality, and that garden management intensity decreased plant diversity. Indices of biological activity in soil, such as organic and microbial carbon and bacterial abundance, showed a direct positive effect on soil multifunctionality. Soil moisture and disturbance, driven by watering and tilling, were the driving forces structuring plant and soil fauna communities. Plant indicator values proved useful to assess soil fauna community structure, even in anthropogenic plant assemblages. We conclude that to enhance soil functions, gardeners should increase plant diversity, and lower management intensity. Soil protective management practices, such as applying compost, mulch or avoiding soil tilling, should be included in urban green space planning to improve urban biodiversity and nature’s contribution to people.
Collapse
Affiliation(s)
- Simon Tresch
- Research Institute of Organic Agriculture (FiBL), Department of Soil Sciences, Ackerstrasse 113, 5070, Frick, CH, Switzerland. .,Swiss Federal Research Institute WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, 8903, Birmensdorf, CH, Switzerland. .,University of Neuchâtel, Institute of Biology, Functional Ecology Laboratory, Rue Emile-Argand 11, 2000, Neuchâtel, CH, Switzerland.
| | - David Frey
- Swiss Federal Research Institute WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, 8903, Birmensdorf, CH, Switzerland.,ETHZ, Department of Environmental System Science, Institute of Terrestrial Ecosystems, Universitaetstrasse 16, 8092, Zurich, CH, Switzerland
| | - Renée-Claire Le Bayon
- University of Neuchâtel, Institute of Biology, Functional Ecology Laboratory, Rue Emile-Argand 11, 2000, Neuchâtel, CH, Switzerland
| | - Paul Mäder
- Research Institute of Organic Agriculture (FiBL), Department of Soil Sciences, Ackerstrasse 113, 5070, Frick, CH, Switzerland
| | - Bernhard Stehle
- Research Institute of Organic Agriculture (FiBL), Department of Soil Sciences, Ackerstrasse 113, 5070, Frick, CH, Switzerland.,University of Konstanz, Department of Biology, Ecology, Universitätstrasse 10, 78464, Konstanz, DE, Germany
| | - Andreas Fliessbach
- Research Institute of Organic Agriculture (FiBL), Department of Soil Sciences, Ackerstrasse 113, 5070, Frick, CH, Switzerland
| | - Marco Moretti
- Swiss Federal Research Institute WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, 8903, Birmensdorf, CH, Switzerland
| |
Collapse
|
28
|
Mukherjee A, Agrawal M. The influence of urban stress factors on responses of ground cover vegetation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36194-36206. [PMID: 30362039 DOI: 10.1007/s11356-018-3437-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
A comprehensive study was conducted to evaluate the effects of ambient air pollution, land use, and soil properties on ground cover vegetation in the urban area of Varanasi city, situated in the Indo Gangetic Plain of India. Twelve leaf functional traits were assessed on eight most dominant herbaceous species belonging to four angiospermic families in three different land uses with varying air pollution loads and soil properties. Particulate matter (PM10 and TSP), gaseous pollutants (SO2, NO2, and O3), land uses (built-up area, shrub, and grass cover), and soil properties showed significant variability among the land uses. Air pollution was identified as the major stress factor which influenced leaf functional traits of ground cover vegetation followed by soil properties and land uses. Among the plants, Croton sparsiflorus was found to be the most responsive plants to all the factors. Plants responded differently under varying environmental factors as Euphorbia hirta was maximally influenced by air pollution, whereas the effect of land use was maximum in C. sparsiflorus. Influence of soil properties was highest in Digitaria ciliaris and Scoparia dulcis. All the environmental factors in combination maximally influenced non-enzymatic antioxidants (ascorbic acid and polyphenolics) followed by photosynthetic pigments among the different leaf functional traits. Among the environmental factors, NO2 and PM were identified as the most influencing factors regulating leaf functional traits followed by K level in soil and shrub cover. It can be concluded that responses of different leaf functional traits of ground cover vegetation varied with different environmental factors and responses were mostly species specific.
Collapse
Affiliation(s)
- Arideep Mukherjee
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
29
|
Abstract
There are great concerns about the impacts of soil biodiversity loss on ecosystem functions and services such as nutrient cycling, food production, and carbon storage. A diverse community of soil organisms that together comprise a complex food web mediates such ecosystem functions and services. Recent advances have shed light on the key drivers of soil food web structure, but a conceptual integration is lacking. Here, we explore how human-induced changes in plant community composition influence soil food webs. We present a framework describing the mechanistic underpinnings of how shifts in plant litter and root traits and microclimatic variables impact on the diversity, structure, and function of the soil food web. We then illustrate our framework by discussing how shifts in plant communities resulting from land-use change, climatic change, and species invasions affect soil food web structure and functioning. We argue that unravelling the mechanistic links between plant community trait composition and soil food webs is essential to understanding the cascading effects of anthropogenic shifts in plant communities on ecosystem functions and services.
Collapse
Affiliation(s)
- Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonathan R. De Long
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| |
Collapse
|
30
|
Setälä H, Francini G, Allen JA, Jumpponen A, Hui N, Kotze DJ. Urban parks provide ecosystem services by retaining metals and nutrients in soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:451-461. [PMID: 28830018 DOI: 10.1016/j.envpol.2017.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 05/17/2023]
Abstract
Urban greenspaces provide ecosystem services like more natural ecosystems do. For instance, vegetation modifies soil properties, including pH and soil organic matter content, yet little is known about its effect on metals. We investigated whether the accumulation and mobility of heavy metals, nutrients and carbon is affected by plant functional types (evergreen or deciduous trees, lawns) in urban parks of varying ages in southern Finland. Plant types modified soil physico-chemical parameters differently, resulting in diverging accumulation and mobility of metals and other elements in park soils. However, the effects of plant functional type depended on park age: lawns in parks of ca. 50 y old had the highest contents of Cr, Cu, Fe, Mn, Ni, and Zn, and in these, and older parks (>100 y old), contents of most metals were lowest under evergreen trees. The mobility of metals and other elements was influenced by the amount of water leached through the soils, highlighting the importance of vegetation on hydrology. Soils under evergreen trees in young parks and lawns in intermediately-aged parks were most permeable to water, and thus had high loads of Ca, Cr, Cu, Fe, Ni, tot-P and tot-N. The loads/concentrations of elements in the leachates was not clearly reflected by their content/concentration in the soil, alluding to the storage capacity of these elements in urban park soils. Our results suggest that in urban systems with a high proportion of impermeable surfaces, park soil has the potential to store nutrients and metals and provide an important ecosystem service particularly in polluted cities.
Collapse
Affiliation(s)
- H Setälä
- Department of Environmental Sciences, University of Helsinki, FIN-15140 Lahti, Finland.
| | - G Francini
- Department of Environmental Sciences, University of Helsinki, FIN-15140 Lahti, Finland.
| | - J A Allen
- Department of Environmental Sciences, University of Helsinki, FIN-15140 Lahti, Finland.
| | - A Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | - N Hui
- Department of Environmental Sciences, University of Helsinki, FIN-15140 Lahti, Finland.
| | - D J Kotze
- Department of Environmental Sciences, University of Helsinki, FIN-15140 Lahti, Finland.
| |
Collapse
|
31
|
Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age. Appl Environ Microbiol 2017; 83:AEM.01797-17. [PMID: 28970220 DOI: 10.1128/aem.01797-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi are important mutualists for the growth and health of most boreal trees. Forest age and its host species composition can impact the composition of ECM fungal communities. Although plentiful empirical data exist for forested environments, the effects of established vegetation and its successional trajectories on ECM fungi in urban greenspaces remain poorly understood. We analyzed ECM fungi in 5 control forests and 41 urban parks of two plant functional groups (conifer and broadleaf trees) and in three age categories (10, ∼50, and >100 years old) in southern Finland. Our results show that although ECM fungal richness was marginally greater in forests than in urban parks, urban parks still hosted rich and diverse ECM fungal communities. ECM fungal community composition differed between the two habitats but was driven by taxon rank order reordering, as key ECM fungal taxa remained largely the same. In parks, the ECM communities differed between conifer and broadleaf trees. The successional trajectories of ECM fungi, as inferred in relation to the time since park construction, differed among the conifers and broadleaf trees: the ECM fungal communities changed over time under the conifers, whereas communities under broadleaf trees provided no evidence for such age-related effects. Our data show that plant-ECM fungus interactions in urban parks, in spite of being constructed environments, are surprisingly similar in richness to those in natural forests. This suggests that the presence of host trees, rather than soil characteristics or even disturbance regime of the system, determine ECM fungal community structure and diversity.IMPORTANCE In urban environments, soil and trees improve environmental quality and provide essential ecosystem services. ECM fungi enhance plant growth and performance, increasing plant nutrient acquisition and protecting plants against toxic compounds. Recent evidence indicates that soil-inhabiting fungal communities, including ECM and saprotrophic fungi, in urban parks are affected by plant functional type and park age. However, ECM fungal diversity and its responses to urban stress, plant functional type, or park age remain unknown. The significance of our study is in identifying, in greater detail, the responses of ECM fungi in the rhizospheres of conifer and broadleaf trees in urban parks. This will greatly enhance our knowledge of ECM fungal communities under urban stresses, and the findings can be utilized by urban planners to improve urban ecosystem services.
Collapse
|
32
|
Hui N, Jumpponen A, Francini G, Kotze DJ, Liu X, Romantschuk M, Strömmer R, Setälä H. Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environ Microbiol 2017; 19:1281-1295. [DOI: 10.1111/1462-2920.13660] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Nan Hui
- Department of Environmental Sciences; University of Helsinki, Niemenkatu 73; Lahti 15140 Finland
| | - Ari Jumpponen
- Division of Biology; Kansas State University; Manhattan KS 66506 USA
| | - Gaia Francini
- Department of Environmental Sciences; University of Helsinki, Niemenkatu 73; Lahti 15140 Finland
| | - D. Johan Kotze
- Department of Environmental Sciences; University of Helsinki, Niemenkatu 73; Lahti 15140 Finland
| | - Xinxin Liu
- Department of Environmental Sciences; University of Helsinki, Niemenkatu 73; Lahti 15140 Finland
| | - Martin Romantschuk
- Department of Environmental Sciences; University of Helsinki, Niemenkatu 73; Lahti 15140 Finland
- Institute of Environmental Sciences; Kazan Federal University; Kazan 420008 Russia
| | - Rauni Strömmer
- Department of Environmental Sciences; University of Helsinki, Niemenkatu 73; Lahti 15140 Finland
| | - Heikki Setälä
- Department of Environmental Sciences; University of Helsinki, Niemenkatu 73; Lahti 15140 Finland
| |
Collapse
|
33
|
Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China. FORESTS 2016. [DOI: 10.3390/f7090200] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|