1
|
Velikaneye BA, Kozak GM. Timing-dependent effects of elevated temperature on reproductive traits in the European corn borer moth. J Evol Biol 2024; 37:1076-1090. [PMID: 39037024 DOI: 10.1093/jeb/voae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Elevated temperature often has life stage-specific effects on ectotherms because thermal tolerance varies throughout ontogeny. Impacts of elevated temperature may extend beyond the exposed life stage if developmental plasticity causes early exposure to carry-over or if exposure at multiple life stages cumulatively produces effects. Reproductive traits may be sensitive to different thermal environments experienced during development, but such effects have not been comprehensively measured in Lepidoptera. In this study, we investigate how elevated temperature at different life stages alters reproduction in the European corn borer moth, Ostrinia nubilalis. We tested effects of exposure to elevated temperature (28 °C) separately or additively during larval, pupal, and adult life stages compared to control temperatures (23 °C). We found that exposure to elevated pupal and adult temperature decreased the number of egg clusters produced, but exposure limited to a single stage did not significantly impact reproductive output. Furthermore, elevated temperature during the pupal stage led to a faster transition to the adult stage and elevated larval temperature altered synchrony of adult eclosion, either by itself or combined with pupal temperature exposure. These results suggest that exposure to elevated temperature during development alters reproduction in corn borers in multiple ways, including through carry-over and additive effects. Additive effects of temperature across life stages are thought to be less common than stage-specific or carry-over effects, but our results suggest thermal environments experienced at all life stages need to be considered when predicting reproductive responses of insects to heatwaves.
Collapse
Affiliation(s)
- Brittany A Velikaneye
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| |
Collapse
|
2
|
Christensen T, Dyer LA, Forister ML, Bowers MD, Carper A, Teglas MB, Hurtado P, Smilanich AM. Host plant-mediation of viral transmission and its consequences for a native butterfly. Ecology 2024; 105:e4282. [PMID: 38483138 DOI: 10.1002/ecy.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/11/2023] [Accepted: 01/18/2024] [Indexed: 04/04/2024]
Abstract
Pathogens play a key role in insect population dynamics, contributing to short-term fluctuations in abundance as well as long-term demographic trends. Two key factors that influence the effects of entomopathogens on herbivorous insect populations are modes of pathogen transmission and larval host plants. In this study, we examined tritrophic interactions between a sequestering specialist lepidopteran, Euphydryas phaeton, and a viral pathogen, Junonia coenia densovirus, on its native host plant, Chelone glabra, and a novel host plant, Plantago lanceolata, to explore whether host plant mediates viral transmission, survival, and viral loads. A two-factor factorial experiment was conducted in the laboratory with natal larval clusters randomly assigned to either the native or novel host plant and crossed with either uninoculated controls or viral inoculation (20% of individuals in the cluster inoculated). Diapausing clusters were overwintered in the laboratory and checked weekly for mortality. At the end of diapause, all surviving individuals were reared to adulthood to estimate survivorship. All individuals were screened to quantify viral loads, and estimate horizontal transmission postmortem. To test for vertical transmission, adults were mated, and the progeny were screened for viral presence. Within virus-treated groups, we found evidence for both horizontal and vertical transmission. Larval clusters reared on the native host plant had slightly higher horizontal transmission. Survival probability was lower in clusters feeding on the native host plant, with inoculated groups reared on the native host plant experiencing complete mortality. Viral loads did not differ by the host plant, although viral loads decreased with increased sequestration of secondary compounds on both host plants. Our results indicate that the use of a novel host plant may confer fitness benefits in terms of survival and reduced viral transmission when larvae feeding on it are infected with this pathogen, supporting hypotheses of potential evolutionary advantages of a host range expansion in the context of tritrophic interactions.
Collapse
Affiliation(s)
- Tara Christensen
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
| | - Lee A Dyer
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
| | - Matthew L Forister
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
| | - M Deane Bowers
- Department of Ecology and Evolutionary Biology and Museum of Natural History, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Adrian Carper
- Department of Ecology and Evolutionary Biology and Museum of Natural History, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Mike B Teglas
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, Nevada, USA
| | - Paul Hurtado
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Mathematics and Statistics, University of Nevada, Reno, Nevada, USA
| | - Angela M Smilanich
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
3
|
Ashe-Jepson E, Anderson J, Hitchcock GE, Wallis S, Wingader K, Bladon AJ, Turner EC. Habitat associations of day-flying Lepidoptera and their foodplants within nature reserves in Bedfordshire, UK. JOURNAL OF INSECT CONSERVATION 2024; 28:891-908. [PMID: 39430688 PMCID: PMC11489185 DOI: 10.1007/s10841-024-00554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/15/2024] [Indexed: 10/22/2024]
Abstract
Abstract Species often associate with specific habitat characteristics, resulting in patchy distributions, whereby they only occupy a proportion of available habitat. Understanding which characteristics species require is a valuable tool for informing conservation management. We investigated the associations of eleven species of day-flying Lepidoptera larvae and their foodplants with habitat characteristics within calcareous grassland reserves in Bedfordshire, UK, across two scales relevant to land managers and target species: the reserve (cardinal aspect, vegetation type) and foodplant patch scale (foodplant height and density). We investigated whether ecological traits (habitat specialism, as defined at a national-scale, and overwintering life stage) influenced the strength of associations. At the reserve scale, we found variation in associations with habitat characteristics across species, with species that overwinter at non-adult life stages having more restricted associations, indicating that they may be more vulnerable to environmental change. Associations were generally stronger with vegetation type than aspect, which can be manipulated more easily by land managers. Seven species had similar associations with habitat characteristics to their foodplants, implying that management to benefit foodplants will also benefit larvae. However, the remaining four species had different associations to their foodplants, and may require alternative management approaches. At the foodplant patch scale, four species were associated with foodplant characteristics, which could be used to inform effective fine-scale management. Implications for insect conservation Implications for insect conservation: Diverse habitat associations imply that topographic and vegetation variation are valuable for supporting diverse assemblages of butterflies and their foodplants. Supplementary Information The online version contains supplementary material available at 10.1007/s10841-024-00554-7.
Collapse
Affiliation(s)
- Esme Ashe-Jepson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Juliet Anderson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Gwen E. Hitchcock
- The Wildlife Trust for Bedfordshire, Cambridgeshire and Northamptonshire, The Manor House, Broad Street, Cambourne, Cambridge, CB23 6DH UK
| | - Sky Wallis
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
- Ecology Department, JBA Consulting, Epsom House, Red House Interchange, Doncaster, DN6 7FE UK
| | - Keira Wingader
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Andrew J. Bladon
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
- Ecology and Evolutionary Biology Division, University of Reading, School of Biological Sciences, RG6 6EX Reading, UK
| | - Edgar C. Turner
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| |
Collapse
|
4
|
Shirey V, Neupane N, Guralnick R, Ries L. Rising minimum temperatures contribute to 50 years of occupancy decline among cold-adapted Arctic and boreal butterflies in North America. GLOBAL CHANGE BIOLOGY 2024; 30:e17205. [PMID: 38403895 DOI: 10.1111/gcb.17205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024]
Abstract
Global climate change has been identified as a potential driver of observed insect declines, yet in many regions, there are critical data gaps that make it difficult to assess how communities are responding to climate change. Poleward regions are of particular interest because warming is most rapid while biodiversity data are most sparse. Building on recent advances in occupancy modeling of presence-only data, we reconstructed 50 years (1970-2019) of butterfly occupancy trends in response to rising minimum temperatures in one of the most under-sampled regions of North America. Among 90 modeled species, we found that cold-adapted species are far more often in decline compared with their warm-adapted, more southernly distributed counterparts. Furthermore, in a post hoc analysis using species' traits, we find that species' range-wide average annual temperature is the only consistent predictor of occupancy changes. Species with warmer ranges were most likely to be increasing in occupancy. This trend results in the majority of butterflies increasing in occupancy probability over the last 50 years. Our results provide the first look at macroscale butterfly biodiversity shifts in high-latitude North America. These results highlight the potential of leveraging the wealth of presence-only data, the most abundant source of biodiversity data, for inferring changes in species distributions.
Collapse
Affiliation(s)
- Vaughn Shirey
- Department of Biology, Georgetown University, Washington, DC, USA
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Naresh Neupane
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Robert Guralnick
- Florida Museum of Natural History - University of Florida, Gainesville, Florida, USA
| | - Leslie Ries
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
5
|
Michielini JP, Yi X, Brown LM, Gao SM, Orians C, Crone EE. Novel host plant use by a specialist insect depends on geographic variation in both the host and herbivore species. Oecologia 2024; 204:95-105. [PMID: 38123786 PMCID: PMC10830605 DOI: 10.1007/s00442-023-05490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Understanding the circumstances under which insect herbivores will adopt a novel host plant is a longstanding question in basic and applied ecology. While geographic variation in host use can arise through differences in both herbivore preference and plant characteristics, there is a tendency to attribute geographic variation in host use to regional differences in herbivore preference alone. This is especially true for herbivores specialized to one or a few plant species. We compared how geographic variation in herbivore preference and host plant origin shape regional differences in host plant use by the specialized herbivore, Euphydryas phaeton. In parts of its range, E. phaeton uses only a native host, Chelone glabra, while in others, it also uses an introduced host, Plantago lanceolata. We offered female butterflies from each region the non-native host plant sourced from both regions and compared their oviposition behavior. The non-native host was almost universally rejected by butterflies in the region where only the native plant is used. In the region where butterflies use both hosts, females accepted non-native plants from their natal region twice as often as non-native plants from the other region where they are not used. Acceptance differed substantially among individual butterflies within regions but not among plants within regions. Thus, both individual preference and regional differences in both the insect and non-native host contributed to the geographic variation in different ways. These results highlight that, in addition to herbivore preference, regional differences in perceived plant suitability may be an important driver of diet breadth.
Collapse
Affiliation(s)
- James P Michielini
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| | - Xianfeng Yi
- College of Life Science, Qufu Normal University, Qufu, China
| | - Leone M Brown
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Biology Department, James Madison University, Harrisonburg, VA, 22807, USA
| | - Shan Ming Gao
- Biology Department, Pomona College, Claremont, CA, 91711, USA
| | - Colin Orians
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Elizabeth E Crone
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Sturiale SL, Armbruster PA. Contrasting effects of an extended fall period and winter heatwaves on the overwintering fitness of diapausing disease vector, Aedes albopictus. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100067. [PMID: 38161991 PMCID: PMC10757285 DOI: 10.1016/j.cris.2023.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 01/03/2024]
Abstract
Climate change is expected to dramatically alter autumnal and winter conditions in many temperate regions. However, limited data is available to accurately predict how these changes will impact species' overwinter survival and post-winter fitness. Here, we determine how a longer, warmer fall period and winter heatwaves affect overwintering fitness and post-winter performance of the invasive mosquito vector, Aedes albopictus. We found that a longer, warmer fall period representative of early entry into diapause did not affect overwinter survival but did lead to reduced post-winter performance for multiple traits. Specifically, larvae that experienced longer, warmer fall conditions as diapause embryos exhibited reduced post-diapause larval starvation tolerance, increased post-diapause larval mortality, and longer post-diapause larval development compared to individuals from the short-fall treatments. These negative post-diapause fitness effects likely resulted from the greater energetic demands and/or damage incurred during the warmer, longer fall period. In contrast, exposure to winter heatwaves increased overwinter survival, possibly by allowing diapausing embryos to escape or repair cold injury. Finally, fall treatment and winter heatwaves had an interactive effect on male development time, while neither treatment impacted pupal mass in either sex. Overall, our results highlight that experiments that fail to measure post-diapause fitness are likely to substantially under-estimate the impacts of climate change on post-winter performance. Additionally, our results emphasize that it is crucial to consider the potentially conflicting effects of different aspects of climate change on a species' overall overwintering success.
Collapse
Affiliation(s)
- Samantha L. Sturiale
- Department of Biology, Georgetown University, Washington, DC 20057, United States
| | - Peter A. Armbruster
- Department of Biology, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
7
|
Franklin AM, Rivera A, Robbins J, Pechenik JA. Body mass index does not decline during winter for the sedentary marine gastropod Crepidula fornicata. Biol Lett 2023; 19:20230026. [PMID: 37311546 DOI: 10.1098/rsbl.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
Seasonal extremes in environmental conditions can substantially limit the growth and reproduction of animals. Sedentary marine animals are particularly susceptible to winter food limitation since they cannot relocate to more favourable conditions. In several temperate-zone bivalve species, substantial winter tissue mass declines have been documented; however, no comparable studies have been conducted on intertidal gastropods. Here, we investigate whether the suspension-feeding intertidal gastropod Crepidula fornicata also loses substantial tissue mass during the winter. We calculated body mass index (BMI) for individuals collected in New England at different times of year for 7 years to determine whether BMI declines through winter or varies seasonally. Remarkably, C. fornicata body mass did not decline significantly during winter months; indeed, a relatively poorer body condition was associated with higher seawater temperature, higher air temperature and higher chlorophyll concentration. In a laboratory experiment, we found that C. fornicata adults that were not fed for three weeks at 6°C (local winter seawater temperature) showed no detectable declines in BMI compared to field-collected individuals. Future studies should document energy budgets of C. fornicata and other sedentary marine animals at low winter seawater temperatures, and the impact of short-term elevated temperatures on those energy budgets.
Collapse
Affiliation(s)
- Amanda M Franklin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alberto Rivera
- Biology Department, Tufts University, Medford, MA 02155, USA
- Department of Environmental and Ocean Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Justin Robbins
- Biology Department, Tufts University, Medford, MA 02155, USA
- Forestry and Environmental Conservation Department, Clemson University, Clemson, SC 29634, USA
| | - Jan A Pechenik
- Biology Department, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
8
|
Halsch CA, Zullo DJ, Forister ML. Additive and interactive effects of anthropogenic stressors on an insect herbivore. Proc Biol Sci 2023; 290:20222431. [PMID: 37015275 PMCID: PMC10072940 DOI: 10.1098/rspb.2022.2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
The pressures of global change acting on wild plants and animals include exposure to environmental toxins, the introduction of non-native species, and climate change. Relatively few studies have been reported in which these three main classes of stressors have been examined simultaneously, allowing for the possibility of synergistic effects in an experimental context. In this study, we exposed caterpillars of the Melissa blue butterfly (Lycaeides melissa) to three concentrations of chlorantraniliprole, under three experimental climates, on a diet of a native or a non-native host plant throughout larval development in a fully factorial experiment. We find that high pesticide exposure and a non-native diet exhibit strong negative effects on caterpillars, resulting in 62% and 42% reduction in survival, respectively, while interactive effects tend to be weaker, ranging from 15% to 22% reduction in survival. Interactive effects have been shown to be strong in other contexts, but do not appear to be universal; however, our study shows that the cumulative effects of stressors acting in isolation (additively) are sufficiently strong to severely reduce survival and by extension population persistence in the wild.
Collapse
Affiliation(s)
- Christopher A. Halsch
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| | - Dominic J. Zullo
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| | - Matthew L. Forister
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
9
|
Hector TE, Gehman ALM, King KC. Infection burdens and virulence under heat stress: ecological and evolutionary considerations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220018. [PMID: 36744570 PMCID: PMC9900716 DOI: 10.1098/rstb.2022.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/17/2022] [Indexed: 02/07/2023] Open
Abstract
As a result of global change, hosts and parasites (including pathogens) are experiencing shifts in their thermal environment. Despite the importance of heat stress tolerance for host population persistence, infection by parasites can impair a host's ability to cope with heat. Host-parasite eco-evolutionary dynamics will be affected if infection reduces host performance during heating. Theory predicts that within-host parasite burden (replication rate or number of infecting parasites per host), a key component of parasite fitness, should correlate positively with virulence-the harm caused to hosts during infection. Surprisingly, however, the relationship between within-host parasite burden and virulence during heating is often weak. Here, we describe the current evidence for the link between within-host parasite burden and host heat stress tolerance. We consider the biology of host-parasite systems that may explain the weak or absent link between these two important host and parasite traits during hot conditions. The processes that mediate the relationship between parasite burden and host fitness will be fundamental in ecological and evolutionary responses of host and parasites in a warming world. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- T. E. Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - A.-L. M. Gehman
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC Canada, V0N 1M0
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC Canada, V6T 1Z4
| | - K. C. King
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
10
|
Kleckova I, Okrouhlik J, Svozil T, Matos-Maraví P, Klecka J. Body size, not species identity, drives body heating in alpine Erebia butterflies. J Therm Biol 2023; 113:103502. [PMID: 37055121 DOI: 10.1016/j.jtherbio.2023.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Efficient thermoregulation is crucial for animals living under fluctuating climatic and weather conditions. We studied the body heating of six butterfly species of the genus Erebia (Lepidoptera: Nymphalidae) that co-occur in the European Alps. We tested whether butterfly physical characteristics (body size, wing loading) are responsible for the inter-specific differences in body temperatures recorded previously under natural conditions. We used a thermal camera to measure body heating of wild butterfly individuals in a laboratory experiment with artificial light and heating sources. We revealed that physical characteristics had a small effect on explaining inter-specific differences in mean body temperatures recorded in the field. Our results show that larger butterflies, with higher weight and wing loading, heated up more slowly but reached the same asymptotic body temperature as smaller butterflies. Altogether, our results suggest that differences in body temperatures among Erebia species observed in the field might be caused mainly by species-specific microhabitat use and point towards an important role of active behavioural thermoregulation in adult butterflies. We speculate that microclimate heterogeneity in mountain habitats facilitates behavioural thermoregulation of adults. Similarly, microclimate structuring might also increase survival of less mobile butterfly life stages, i.e., eggs, larvae and pupae. Thus, landscape heterogeneity in management practices may facilitate long term survival of montane invertebrates under increased anthropogenic pressures.
Collapse
|
11
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M, Boggs C, Brodeur J, Cardoso P, de Boer JG, De Snoo GR, Deacon C, Dell JE, Desneux N, Dillon ME, Duffy GA, Dyer LA, Ellers J, Espíndola A, Fordyce J, Forister ML, Fukushima C, Gage MJG, García‐Robledo C, Gely C, Gobbi M, Hallmann C, Hance T, Harte J, Hochkirch A, Hof C, Hoffmann AA, Kingsolver JG, Lamarre GPA, Laurance WF, Lavandero B, Leather SR, Lehmann P, Le Lann C, López‐Uribe MM, Ma C, Ma G, Moiroux J, Monticelli L, Nice C, Ode PJ, Pincebourde S, Ripple WJ, Rowe M, Samways MJ, Sentis A, Shah AA, Stork N, Terblanche JS, Thakur MP, Thomas MB, Tylianakis JM, Van Baaren J, Van de Pol M, Van der Putten WH, Van Dyck H, Verberk WCEP, Wagner DL, Weisser WW, Wetzel WC, Woods HA, Wyckhuys KAG, Chown SL. Scientists' warning on climate change and insects. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Kévin Tougeron
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
- EDYSAN, UMR 7058, Université de Picardie Jules Verne, CNRS Amiens France
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Robin Heinen
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Mariana Abarca
- Department of Biological Sciences Smith College Northampton Massachusetts USA
| | - Paul K. Abram
- Agriculture and Agri‐Food Canada, Agassiz Research and Development Centre Agassiz British Columbia Canada
| | - Yves Basset
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Matty Berg
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Groningen Institute of Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Carol Boggs
- School of the Earth, Ocean and Environment and Department of Biological Sciences University of South Carolina Columbia South Carolina USA
- Rocky Mountain Biological Laboratory Gothic Colorado USA
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal Québec Canada
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | - Jetske G. de Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Geert R. De Snoo
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Jane E. Dell
- Geosciences and Natural Resources Department Western Carolina University Cullowhee North Carolina USA
| | | | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Grant A. Duffy
- School of Biological Sciences Monash University Melbourne Victoria Australia
- Department of Marine Science University of Otago Dunedin New Zealand
| | - Lee A. Dyer
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Jacintha Ellers
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Anahí Espíndola
- Department of Entomology University of Maryland College Park Maryland USA
| | - James Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee, Knoxville Knoxville Tennessee USA
| | - Matthew L. Forister
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Caroline Fukushima
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | | | | | - Claire Gely
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Mauro Gobbi
- MUSE‐Science Museum, Research and Museum Collections Office Climate and Ecology Unit Trento Italy
| | - Caspar Hallmann
- Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Thierry Hance
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - John Harte
- Energy and Resources Group University of California Berkeley California USA
| | - Axel Hochkirch
- Department of Biogeography Trier University Trier Germany
- IUCN SSC Invertebrate Conservation Committee
| | - Christian Hof
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| | - Greg P. A. Lamarre
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Blas Lavandero
- Laboratorio de Control Biológico Universidad de Talca Talca Chile
| | - Simon R. Leather
- Center for Integrated Pest Management Harper Adams University Newport UK
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Cécile Le Lann
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | | | | | - Chris Nice
- Department of Biology Texas State University San Marcos Texas USA
| | - Paul J. Ode
- Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS Université de Tours Tours France
| | - William J. Ripple
- Department of Forest Ecosystems and Society Oregon State University Oregon USA
| | - Melissah Rowe
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Arnaud Sentis
- INRAE, Aix‐Marseille University, UMR RECOVER Aix‐en‐Provence France
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | - Nigel Stork
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Queensland Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Madhav P. Thakur
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology University of York York UK
| | - Jason M. Tylianakis
- Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Joan Van Baaren
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | - Martijn Van de Pol
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Hans Van Dyck
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - David L. Wagner
- Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Wolfgang W. Weisser
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - William C. Wetzel
- Department of Entomology, Department of Integrative Biology, and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Kris A. G. Wyckhuys
- Chrysalis Consulting Hanoi Vietnam
- China Academy of Agricultural Sciences Beijing China
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
12
|
Hinneberg H, Döring J, Hermann G, Markl G, Theobald J, Aust I, Bamann T, Bertscheit R, Budach D, Niedermayer J, Rissi A, Gottschalk TK. Multi-surveyor capture-mark-recapture as a powerful tool for butterfly population monitoring in the pre-imaginal stage. Ecol Evol 2022; 12:e9140. [PMID: 35923945 PMCID: PMC9339765 DOI: 10.1002/ece3.9140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
For many elusive insect species, which are difficult to cover by standard monitoring schemes, innovative survey methods are needed to gain robust data on abundance and population trends. We suggest a monitoring of overwintering larvae for the endangered nymphalid butterfly Limenitis reducta. We tested different removal and capture-mark-recapture (CMR) approaches in a field study in the "Alb-Donau" region, Germany. Classical removal and CMR studies require movement of the organisms under study, but in our approach, we replaced movement of the study organisms by random movement of multiple different surveyors. We tested the validity of the approach by comparing detection frequencies from our field data with simulated detections. Our results indicate that multi-surveyor removal/CMR techniques are suitable for estimating abundance of overwintering L. reducta larvae. Depending on surveyor experience, the average detection probability ranged between 16% for novices and 35% for experts. The uncertainty of population estimates increased with a decrease in personnel expenditure. Estimated larval densities on a spruce clear-cut varied between one and three individuals per 100 m2, probably related to habitat conditions. We suggest a CMR approach with three to four trained surveyors for the monitoring of L. reducta populations in the overwintering stage. Compared with previous sampling methods, our approach is a powerful tool with clear advantages: long survey period, estimates of the absolute population size accompanied by uncertainty measures, and estimates of overwinter mortality. The proposed method can be adapted and used for several different butterfly species, other insect taxa with specific immobile life stages, and some sessile organisms, for example, elusive plants, fungi, or corals.
Collapse
Affiliation(s)
- Heiko Hinneberg
- University of Applied Forest Sciences RottenburgRottenburg am NeckarGermany
| | | | - Gabriel Hermann
- Arbeitsgruppe für Tierökologie und Planung GmbH (Filderstadt)FilderstadtGermany
| | - Gregor Markl
- University of Tübingen, Petrology and Mineral ResourcesTübingenGermany
| | - Jennifer Theobald
- Arbeitsgruppe für Tierökologie und Planung GmbH (Filderstadt)FilderstadtGermany
| | - Ines Aust
- Regierungspräsidium Tübingen, Referat 56 ‐ Naturschutz und LandschaftspflegeTübingenGermany
| | - Thomas Bamann
- Regierungspräsidium Tübingen, Referat 56 ‐ Naturschutz und LandschaftspflegeTübingenGermany
| | | | | | - Jana Niedermayer
- Institut für Landschaftsökologie und Naturschutz (ILN) BühlBühlGermany
| | - Alicia Rissi
- University of Applied Forest Sciences RottenburgRottenburg am NeckarGermany
| | | |
Collapse
|
13
|
Weather and butterfly responses: a framework for understanding population dynamics in terms of species' life-cycles and extreme climatic events. Oecologia 2022; 199:427-439. [PMID: 35616737 DOI: 10.1007/s00442-022-05188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Understanding population responses to environmental conditions is key in the current context of climate change and the extreme climatic events that are threatening biodiversity in an unprecedented way. In this work, we provide a framework for understanding butterfly population responses to weather and extreme climatic seasons by taking into account topographic heterogeneity, species' life-cycles and density-dependent processes. We used a citizen-science database of Mediterranean butterflies that contains long-term population data (28 years) on 78 butterfly species from 146 sites in the Mediterranean mesic and alpine climate regions. Climatic data were obtained from 93 meteorological stations operating during this period near the butterfly sites. We studied how seasonal precipitation and temperature affect population growth while taking into account the effects of density dependence. Our results reveal (i) the beneficial effects of winter and spring precipitation for butterfly populations, which are most evident in the Mediterranean region and in univoltine species, and mainly affect the larval stage; (ii) a general negative effect of summer rain in the previous year, which affects the adult stage; and (iii) a consistent negative effect of mild autumns and winters on population growth. In addition, density dependence played a major role in the population dynamics of most species, except for those with long-term negative population trends. Our analyses also provide compelling evidence that both extreme population levels in previous years and extreme climatic seasons in the current year provoke population crashes and explosions, especially in the Mediterranean mesic region.
Collapse
|
14
|
Vrba P, Sucháčková Bartoňová A, Andres M, Nedvěd O, Šimek P, Konvička M. Exploring Cold Hardiness within a Butterfly Clade: Supercooling Ability and Polyol Profiles in European Satyrinae. INSECTS 2022; 13:insects13040369. [PMID: 35447811 PMCID: PMC9031891 DOI: 10.3390/insects13040369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
The cold hardiness of overwintering stages affects the distribution of temperate and cold-zone insects. Studies on Erebia, a species-rich cold-zone butterfly genus, detected unexpected diversity of cold hardiness traits. We expanded our investigation to eight Satyrinae species of seven genera. We assessed Autumn and Winter supercooling points (SCPs) and concentrations of putatively cryoprotective sugars and polyols via gas chromatography–mass spectrometry. Aphantopus hyperantus and Hipparchia semele survived freezing of body fluids; Coenonympha arcania, C. gardetta, and Melanargia galathea died prior to freezing; Maniola jurtina, Chazara briseis, and Minois dryas displayed a mixed response. SCP varied from −22 to −9 °C among species. Total sugar and polyol concentrations (TSPC) varied sixfold (2 to 12 μg × mg−1) and eightfold including the Erebia spp. results. SCP and TSPC did not correlate. Alpine Erebia spp. contained high trehalose, threitol, and erythritol; C. briseis and C. gardetta contained high ribitol and trehalose; lowland species contained high saccharose, maltose, fructose, and sorbitol. SCP, TSPC, and glycerol concentrations were affected by phylogeny. Species of mountains or steppes tend to be freeze-avoidant, overwinter as young larvae, and contain high concentrations of trehalose, while those of mesic environments tend to be freeze-tolerant, overwinter as later instars, and rely on compounds such as maltose, saccharose, and fructose.
Collapse
Affiliation(s)
- Pavel Vrba
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.V.); (A.S.B.); (O.N.); (P.Š.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Alena Sucháčková Bartoňová
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.V.); (A.S.B.); (O.N.); (P.Š.)
| | - Miloš Andres
- JARO Jaroměř, Národní 83, 551 01 Jaroměř, Czech Republic;
| | - Oldřich Nedvěd
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.V.); (A.S.B.); (O.N.); (P.Š.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.V.); (A.S.B.); (O.N.); (P.Š.)
| | - Martin Konvička
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.V.); (A.S.B.); (O.N.); (P.Š.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Correspondence: ; Tel.: +420-775-13-13-54
| |
Collapse
|
15
|
Nielsen ME, Lehmann P, Gotthard K. Longer and warmer prewinter periods reduce post‐winter fitness in a diapausing insect. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum Greifswald University Greifswald Germany
| | - Karl Gotthard
- Department of Zoology Stockholm University Stockholm Sweden
| |
Collapse
|
16
|
Abarca M, Spahn R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. CURRENT OPINION IN INSECT SCIENCE 2021; 47:67-74. [PMID: 33989831 DOI: 10.1016/j.cois.2021.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Climate change is transforming ecosystems by altering species ranges, the composition of communities, and trophic interactions. Here, we synthesize recent reviews and subsequent developments to provide an overview of insect ecological and evolutionary responses to altered temperature regimes. We discuss both direct responses to thermal stress and indirect responses arising from phenological mismatches, altered host quality, and changes in natural enemy activity. Altered temperature regimes can increase exposure to both cold and heat stress and result in phenological and morphological mismatches with adjacent trophic levels. Host plant quality varies in a heterogenous way in response to altered temperatures with both increases and decreases observed. Density-dependent effects, spatial heterogeneity, and rapid evolutionary change provide some resilience to these threats.
Collapse
Affiliation(s)
- Mariana Abarca
- Department of Biological Sciences, Smith College, Northampton, MA, United States.
| | - Ryan Spahn
- Department of Biological Sciences, George Washington University, DC, 20052, United States
| |
Collapse
|
17
|
Schmitt L, Burghardt KT. Urbanization as a disrupter and facilitator of insect herbivore behaviors and life cycles. CURRENT OPINION IN INSECT SCIENCE 2021; 45:97-105. [PMID: 33676055 DOI: 10.1016/j.cois.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Insect herbivores require a variety of habitats across their life cycle, with behavior often mediating transitions between life stages or habitats. Human management strongly alters urban habitats, yet herbivore behavior is rarely examined in cities. We review the existing literature on several key behaviors: host finding, feeding, egg placement and pupation location, and antipredator defense. We emphasize that unapparent portions of the life cycle, such as the habitat of the overwintering stage, may influence if urbanized areas act as population sources or sinks. Here, management of the soil surface and aboveground biomass are two areas with especially pressing research gaps. Lastly, high variability in urban environments may select for more plastic behaviors or greater generalism. We encourage future research that assesses both behavior and less apparent portions of insect life cycles to determine best practices for conservation and management.
Collapse
Affiliation(s)
- Lauren Schmitt
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Karin T Burghardt
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
18
|
Harvey JA, Heinen R, Gols R, Thakur MP. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns. GLOBAL CHANGE BIOLOGY 2020; 26:6685-6701. [PMID: 33006246 PMCID: PMC7756417 DOI: 10.1111/gcb.15377] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
Insects are among the most diverse and widespread animals across the biosphere and are well-known for their contributions to ecosystem functioning and services. Recent increases in the frequency and magnitude of climatic extremes (CE), in particular temperature extremes (TE) owing to anthropogenic climate change, are exposing insect populations and communities to unprecedented stresses. However, a major problem in understanding insect responses to TE is that they are still highly unpredictable both spatially and temporally, which reduces frequency- or direction-dependent selective responses by insects. Moreover, how species interactions and community structure may change in response to stresses imposed by TE is still poorly understood. Here we provide an overview of how terrestrial insects respond to TE by integrating their organismal physiology, multitrophic, and community-level interactions, and building that up to explore scenarios for population explosions and crashes that have ecosystem-level consequences. We argue that TE can push insect herbivores and their natural enemies to and even beyond their adaptive limits, which may differ among species intimately involved in trophic interactions, leading to phenological disruptions and the structural reorganization of food webs. TE may ultimately lead to outbreak-breakdown cycles in insect communities with detrimental consequences for ecosystem functioning and resilience. Lastly, we suggest new research lines that will help achieve a better understanding of insect and community responses to a wide range of CE.
Collapse
Affiliation(s)
- Jeffrey A. Harvey
- Netherlands Institute of EcologyWageningenThe Netherlands
- Department of Ecological Sciences – Animal EcologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Robin Heinen
- Department of Terrestrial EcologyTechnische Universität MünchenFreisingGermany
| | - Rieta Gols
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Madhav P. Thakur
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
19
|
Miler K, Stec D, Czarnoleski M. Heat wave effects on the behavior and life-history traits of sedentary antlions. Behav Ecol 2020; 31:1326-1333. [PMID: 33380898 PMCID: PMC7755325 DOI: 10.1093/beheco/araa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/27/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Research on the behavioral responses of animals to extreme weather events, such as heat wave, is lacking even though their frequency and intensity in nature are increasing. Here, we investigated the behavioral response to a simulated heat wave in two species of antlions (Neuroptera: Myrmeleontidae). These insects spend the majority of their lives as larvae and live in sandy areas suitable for a trap-building hunting strategy. We used larvae of Myrmeleon bore and Euroleon nostras, which are characterized by different microhabitat preferences-sunlit in the case of M. bore and shaded in the case of E. nostras. Larvae were exposed to fluctuating temperatures (40 °C for 10 h daily and 25 °C for the remaining time) or a constant temperature (25 °C) for an entire week. We found increased mortality of larvae under heat. We detected a reduction in the hunting activity of larvae under heat, which corresponded to changes in the body mass of individuals. Furthermore, we found long-term consequences of the simulated heat wave, as it prolonged the time larvae needed to molt. These effects were pronounced in the case of E. nostras but did not occur or were less pronounced in the case of M. bore, suggesting that microhabitat-specific selective pressures dictate how well antlions handle heat waves. We, thus, present results demonstrating the connection between behavior and the subsequent changes to fitness-relevant traits in the context of a simulated heat wave. These results illustrate how even closely related species may react differently to the same event.
Collapse
Affiliation(s)
- Krzysztof Miler
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska, Kraków, Poland
| | - Daniel Stec
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Marcin Czarnoleski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
20
|
Chen C, Donner SH, Biere A, Gols R, Harvey JA. Simulated heatwave conditions associated with global warming affect development and competition between hyperparasitoids. OIKOS 2019. [DOI: 10.1111/oik.06538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Cong Chen
- Dept of Terrestrial Ecology, Netherlands Inst. of Ecology Droevendaalsesteeg 10 NL‐6708 PB Wageningen the Netherlands
- Dept of Ecological Science, Section Animal Ecology, VU University Amsterdam Amsterdam the Netherlands
| | - S. Helena Donner
- Dept of Terrestrial Ecology, Netherlands Inst. of Ecology Droevendaalsesteeg 10 NL‐6708 PB Wageningen the Netherlands
- Dept of Ecological Science, Section Animal Ecology, VU University Amsterdam Amsterdam the Netherlands
| | - Arjen Biere
- Dept of Terrestrial Ecology, Netherlands Inst. of Ecology Droevendaalsesteeg 10 NL‐6708 PB Wageningen the Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen Univ. and Research Wageningen the Netherlands
| | - Jeffrey A. Harvey
- Dept of Terrestrial Ecology, Netherlands Inst. of Ecology Droevendaalsesteeg 10 NL‐6708 PB Wageningen the Netherlands
- Dept of Ecological Science, Section Animal Ecology, VU University Amsterdam Amsterdam the Netherlands
| |
Collapse
|