1
|
ISHIMARU M, TSUCHIYA T, ENDO Y, MATSUI A, OHMURA H, MURASE H, KOROSUE K, SATO F, TAYA K. Effects of different winter paddock management of Thoroughbred weanlings and yearlings in the cold region of Japan on physiological function, endocrine function and growth. J Vet Med Sci 2024; 86:756-768. [PMID: 38777756 PMCID: PMC11251821 DOI: 10.1292/jvms.24-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Effects of different winter paddock management of Thoroughbred weanlings and yearlings in Hokkaido, Japan, which is extremely cold in winter, on physiological function, endocrine function and growth were investigated. They were divided into two groups; those kept outdoors for 22 hr in the paddock (22hr group) and those kept outdoors for 7 hr in daytime with walking exercise for 1 hr using the horse-walker (7hr+W group), and the changes in daily distance travelled, body temperature (BT), heart rate (HR), HR variability (HRV), endocrine function and growth parameters were compared between the two groups from November at the year of birth to January at 1 year of age. The 7hr+W group could travel almost the same distance as the 22hr group by using the horse-walker. The 22hr group had a lower rate of increase in body weight than the 7hr+W group in January. In addition, lower in BT and HR were observed, and HRV analysis showed an increase in high frequency power spectral density, indicating that parasympathetic nervous activity was dominant. And also, changes in circulating cortisol and thyroxine were not observed despite cold environment. On the other hand, the 7hr+W group had higher prolactin and insulin like growth factor than the 22hr group in January, and cortisol and thyroxine were also increased. Physiological and endocrinological findings from the present study indicate that the management of the 7hr+W group is effective in promoting growth and maintaining metabolism during the winter season.
Collapse
Affiliation(s)
- Mutsuki ISHIMARU
- International Department, Japan Racing Association, Tokyo, Japan
| | | | - Yoshiro ENDO
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | - Akira MATSUI
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | - Hajime OHMURA
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | | | - Kenji KOROSUE
- Equine Department, Japan Racing Association, Tokyo, Japan
| | - Fumio SATO
- Japan Farriery Association, Tokyo, Japan
| | - Kazuyoshi TAYA
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology,
Tokyo, Japan
| |
Collapse
|
2
|
Granweiler J, Cristóbal-Azkarate J, Morton N, Palme R, Shultz S. The paradox of spring: Thyroid and glucocorticoid responses to cold temperatures and food availability in free living Carneddau ponies. Horm Behav 2024; 161:105526. [PMID: 38503098 DOI: 10.1016/j.yhbeh.2024.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
In seasonal environments, maintaining a constant body temperature poses challenges for endotherms. Cold winters at high latitudes, with limited food availability, create opposing demands on metabolism: upregulation preserves body temperature but depletes energy reserves. Examining endocrine profiles, such as thyroid hormone triiodothyronine (T3) and glucocorticoids (GCs), proxies for changes in metabolic rate and acute stressors, offer insights into physiological trade-offs. We evaluated how environmental conditions and gestation impact on faecal hormone metabolites (fT3Ms and fGCMs) from late winter to spring in a free-living population of Carneddau ponies. Faecal T3Ms were highest in late February and March, when temperatures were lowest. Then, fT3Ms concentrations decreased throughout April and were at the lowest in May before increasing towards the end of the study. The decline in fT3M levels in April and May was associated with warmer weather but poor food availability, diet diversity and diet composition. On the other hand, fGCM levels did not display a clear temporal pattern but were associated with reproductive status, where pregnant and lactating females had higher fGCM levels as compared to adult males and non-reproductive females. The temporal profile of fT3Ms levels highlights metabolic trade-offs in a changing environment. In contrast, the ephemeral but synchronous increase in fGCM concentrations across the population suggest a shared experience of acute stressors (i.e., weather, disturbance or social). This multi-biomarker approach can evaluate the role of acute stressors versus energy budgets in the context of interventions, reproduction, seasonality and environmental change, or across multiple scales from individuals to populations.
Collapse
Affiliation(s)
- Jessica Granweiler
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, UK.
| | - Jurgi Cristóbal-Azkarate
- Department of Basic Psychological Processes and their Development, Faculty of Psychology, University of the Basque Country, Donostia, Spain
| | - Nathan Morton
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Susanne Shultz
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Gesquiere LR, Adjangba C, Wango TL, Oudu VK, Mututua RS, Warutere JK, Siodi IL, Campos FA, Archie EA, Markham AC, Alberts SC. Thyroid hormone concentrations in female baboons: Metabolic consequences of living in a highly seasonal environment. Horm Behav 2024; 161:105505. [PMID: 38364455 PMCID: PMC11218546 DOI: 10.1016/j.yhbeh.2024.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
How female mammals adapt metabolically in response to environmental variation remains understudied in the wild, because direct measures of metabolic activity are difficult to obtain in wild populations. However, recent advances in the non-invasive measurement of fecal thyroid hormones, triiodothyronine (T3), an important regulator of metabolism, provide an opportunity to understand how female baboons living in the harsh Amboseli ecosystem in southern Kenya adapt to environmental variability and escape strict reproductive seasonality. Specifically, we assessed how a female's activity budget, diet, and concentrations of fecal T3 metabolites (mT3) changed over the course of the year and between years. We then tested which of several environmental variables (season, rainfall, and temperature) and behavioral variables (female activity budget and diet) best predicted mT3 concentrations. Finally, we determined if two important reproductive events - onset of ovarian cycling and conception of an offspring - were preceded by changes in female mT3 concentrations. We found female baboons' mT3 concentrations varied markedly across the year and between years as a function of environmental conditions. Further, changes in a female's behavior and diet only partially mediated the metabolic response to the environment. Finally, mT3 concentrations increased in the weeks prior to menarche and cycling resumption, regardless of the month or season in which cycling started. This pattern indicates that metabolic activation may be an indicator of reproductive readiness in female baboons as their energy balance is restored.
Collapse
Affiliation(s)
| | | | - Tim L Wango
- Amboseli Baboon Research Project, PO Box 72211-0020, Nairobi, Kenya; Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Vivian K Oudu
- Amboseli Baboon Research Project, PO Box 72211-0020, Nairobi, Kenya; Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | | | | | - I Long'ida Siodi
- Amboseli Baboon Research Project, PO Box 72211-0020, Nairobi, Kenya
| | - Fernando A Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - A Catherine Markham
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC 27708, USA; Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
4
|
Dijkgraaf L, Stenbacka F, Cromsigt JPGM, Ericsson G, Neumann W. Bear in mind! Bear presence and individual experience with calf survival shape the selection of calving sites in a long-lived solitary ungulate. Ecol Evol 2024; 14:e11177. [PMID: 38510538 PMCID: PMC10950790 DOI: 10.1002/ece3.11177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The careful selection of ungulate calving sites to improve offspring survival is vital in the face of predation. In general, there is limited knowledge to which degree predator presence and prey's individual experience shape the selection of calving sites. Predator presence influences the spatiotemporal risk of encountering a predator, while individual experiences with previous predation events shape perceived mortality risks. We used a multi-year movement dataset of a long-lived female ungulate (moose, Alces alces, n = 79) and associated calf survival to test how predator presence (i.e., encounter risk) and females' individual experiences with previous calf mortality events affected their calving site selection and site fidelity. Using data from areas with and without Scandinavian brown bear (Ursus arctos) predation, we compared females' calving site selection using individual-based analyses. Our findings suggest two things. First, bear presence influences calving site selection in this solitary living ungulate. Females in areas with bears were selected for higher shrub and tree cover and showed lower site fidelity than in the bear-free area. Second, the individual experience of calf loss changes females' selection the following year. Females with lost calves had a lower site fidelity compared to females with surviving calves. Our findings suggest that increased vegetation cover may be important for reducing encounter risk in bear areas, possibly by improving calf concealment. Lower site fidelity might represent a strategy to make the placement of calving sites less predictable for predators. We suggest that bear presence shapes both habitat selection and calving site fidelity in a long-lived animal, whereas the effect of individual experience with previous calf loss varies. We encourage further research on the relevance of female experience on the success of expressed anti-predator strategies during calving periods.
Collapse
Affiliation(s)
- Lisa Dijkgraaf
- Department of Wildlife Ecology and ConservationWageningen University (WUR)WageningenThe Netherlands
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural Sciences (SLU)UmeaSweden
| | - Fredrik Stenbacka
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural Sciences (SLU)UmeaSweden
| | - Joris P. G. M. Cromsigt
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural Sciences (SLU)UmeaSweden
| | - Göran Ericsson
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural Sciences (SLU)UmeaSweden
| | - Wiebke Neumann
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural Sciences (SLU)UmeaSweden
| |
Collapse
|
5
|
Levesque DL, Breit AM, Brown E, Nowack J, Welman S. Non-Torpid Heterothermy in Mammals: Another Category along the Homeothermy-Hibernation Continuum. Integr Comp Biol 2023; 63:1039-1048. [PMID: 37407285 DOI: 10.1093/icb/icad094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Variability in body temperature is now recognized to be widespread among whole-body endotherms with homeothermy being the exception rather than the norm. A wide range of body temperature patterns exists in extant endotherms, spanning from strict homeothermy, to occasional use of torpor, to deep seasonal hibernation with many points in between. What is often lost in discussions of heterothermy in endotherms are the benefits of variations in body temperature outside of torpor. Endotherms that do not use torpor can still obtain extensive energy and water savings from varying levels of flexibility in normothermic body temperature regulation. Flexibility at higher temperatures (heat storage or facultative hyperthermia) can provide significant water savings, while decreases at cooler temperatures, even outside of torpor, can lower the energetic costs of thermoregulation during rest. We discuss the varying uses of the terms heterothermy, thermolability, and torpor to describe differences in the amplitude of body temperature cycles and advocate for a broader use of the term "heterothermy" to include non-torpid variations in body temperature.
Collapse
Affiliation(s)
| | - Ana M Breit
- School of Biology and Ecology, University of Maine, 04469 Orono, ME, USA
| | - Eric Brown
- School of Biology and Ecology, University of Maine, 04469 Orono, ME, USA
| | - Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Shaun Welman
- Department of Zoology, Nelson Mandela University, Gqeberha 6031, South Africa
| |
Collapse
|
6
|
Gasch K, Habe M, Krauss JS, Painer-Gigler J, Stalder G, Arnold W. The Influence of Photoperiod, Intake of Polyunsaturated Fatty Acids, and Food Availability on Seasonal Acclimatization in Red Deer ( Cervus elaphus). Animals (Basel) 2023; 13:ani13101600. [PMID: 37238030 DOI: 10.3390/ani13101600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Hypometabolism and hypothermia are common reactions of birds and mammals to cope with harsh winter conditions. In small mammals, the occurrence of hibernation and daily torpor is entrained by photoperiod, and the magnitude of hypometabolism and decrease of body temperature (Tb) is influenced by the dietary supply of essential polyunsaturated fatty acids. We investigated whether similar effects exist in a non-hibernating large mammal, the red deer (Cervus elaphus). We fed adult females with pellets enriched with either linoleic acid (LA) or α-linolenic acid (ALA) during alternating periods of ad libitum and restricted feeding in a cross-over experimental design. Further, we scrutinized the role of photoperiod for physiological and behavioral seasonal changes by manipulating the amount of circulating melatonin. The deer were equipped with data loggers recording heart rate, core and peripheral Tb, and locomotor activity. Further, we regularly weighed the animals and measured their daily intake of food pellets. All physiological and behavioral parameters measured varied seasonally, with amplitudes exacerbated by restricted feeding, but with only few and inconsistent effects of supplementation with LA or ALA. Administering melatonin around the summer solstice caused a change into the winter phenotype weeks ahead of time in all traits measured. We conclude that red deer reduce energy expenditure for thermoregulation upon short daylength, a reaction amplified by food restriction.
Collapse
Affiliation(s)
- Kristina Gasch
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Manuela Habe
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Julie Sophie Krauss
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Johanna Painer-Gigler
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Walter Arnold
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| |
Collapse
|
7
|
Leimgruber P, Songsasen N, Stabach JA, Horning M, Reed D, Buk T, Harwood A, Layman L, Mathews C, Vance M, Marinari P, Helmick KE, Delaski KM, Ware LH, Jones JC, Silva JLP, Laske TG, Moraes RN. Providing baseline data for conservation-Heart rate monitoring in captive scimitar-horned oryx. Front Physiol 2023; 14:1079008. [PMID: 36909234 PMCID: PMC9998487 DOI: 10.3389/fphys.2023.1079008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/13/2023] [Indexed: 03/14/2023] Open
Abstract
Heart rate biologging has been successfully used to study wildlife responses to natural and human-caused stressors (e.g., hunting, landscape of fear). Although rarely deployed to inform conservation, heart rate biologging may be particularly valuable for assessing success in wildlife reintroductions. We conducted a case study for testing and validating the use of subcutaneous heart rate monitors in eight captive scimitar-horned oryx (Oryx dammah), a once-extinct species that is currently being restored to the wild. We evaluated biologger safety and accuracy while collecting long-term baseline data and assessing factors explaining variation in heart rate. None of the biologgers were rejected after implantation, with successful data capture for 16-21 months. Heart rate detection accuracy was high (83%-99%) for six of the individuals with left lateral placement of the biologgers. We excluded data from two individuals with a right lateral placement because accuracies were below 60%. Average heart rate for the six scimitar-horned oryx was 60.3 ± 12.7 bpm, and varied by about 12 bpm between individuals, with a minimum of 31 bpm and a maximum of 188 bpm across individuals. Scimitar-horned oryx displayed distinct circadian rhythms in heart rate and activity. Heart rate and activity were low early in the morning and peaked near dusk. Circadian rhythm in heart rate and activity were relatively unchanged across season, but hourly averages for heart rate and activity were higher in spring and summer, respectively. Variation in hourly heart rate averages was best explained by a combination of activity, hour, astronomical season, ambient temperature, and an interaction term for hour and season. Increases in activity appeared to result in the largest changes in heart rate. We concluded that biologgers are safe and accurate and can be deployed in free-ranging and reintroduced scimitar-horned oryx. In addition to current monitoring practices of reintroduced scimitar-horned oryx, the resulting biologging data could significantly aid in 1) evaluating care and management action prior to release, 2) characterizing different animal personalities and how these might affect reintroduction outcomes for individual animals, and 3) identifying stressors after release to determine their timing, duration, and impact on released animals. Heart rate monitoring in released scimitar-horned oryx may also aid in advancing our knowledge about how desert ungulates adapt to extreme environmental variation in their habitats (e.g., heat, drought).
Collapse
Affiliation(s)
- Peter Leimgruber
- Conservation Ecology Center, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Jared A Stabach
- Conservation Ecology Center, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Megan Horning
- Conservation Ecology Center, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States.,Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Dolores Reed
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Tara Buk
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Arielle Harwood
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Lawrence Layman
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Christopher Mathews
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Morgan Vance
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Paul Marinari
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Kelly E Helmick
- Department of Conservation Medicine, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Kristina M Delaski
- Department of Conservation Medicine, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Lisa H Ware
- Department of Conservation Medicine, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Julia C Jones
- Department of Conservation Medicine, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States
| | - Jose L P Silva
- Department of Statistics, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Timothy G Laske
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States.,Cardiac Ablation Solutions, Medtronic Inc., Mounds View, MN, United States
| | - Rosana Nogueira Moraes
- Center for Species Survival, Smithsonian National Zoo & Conservation Biology Institute, Front Royal, VA, United States.,Department of Physiology, Federal University of Parana, Curitiba, Paraná, Brazil
| |
Collapse
|
8
|
Græsli AR, Thiel A, Fuchs B, Stenbacka F, Neumann W, Malmsten J, Singh NJ, Ericsson G, Arnemo JM, Evans AL. Body temperature patterns during pregnancy and parturition in moose. J Therm Biol 2022; 109:103334. [DOI: 10.1016/j.jtherbio.2022.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
|
9
|
Large mammal telomere length variation across ecoregions. BMC Ecol Evol 2022; 22:105. [PMID: 36038827 PMCID: PMC9426267 DOI: 10.1186/s12862-022-02050-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Telomere length provides a physiological proxy for accumulated stress in animals. While there is a growing consensus over how telomere dynamics and their patterns are linked to life history variation and individual experience, knowledge on the impact of exposure to different stressors at a large spatial scale on telomere length is still lacking. How exposure to different stressors at a regional scale interacts with individual differences in life history is also poorly understood. To better understand large-scale regional influences, we investigated telomere length variation in moose (Alces alces) distributed across three ecoregions. We analyzed 153 samples of 106 moose representing moose of both sexes and range of ages to measure relative telomere lengths (RTL) in white blood cells. Results We found that average RTL was significantly shorter in a northern (montane) and southern (sarmatic) ecoregion where moose experience chronic stress related to severe summer and winter temperatures as well as high anthropogenic land-use compared to the boreal region. Our study suggests that animals in the northern boreal forests, with relatively homogenous land use, are less disturbed by environmental and anthropogenic stressors. In contrast, animals in areas experiencing a higher rate of anthropogenic and environmental change experience increased stress. Conclusion Although animals can often adapt to predictable stressors, our data suggest that some environmental conditions, even though predictable and ubiquitous, can generate population level differences of long-term stress. By measuring RTL in moose for the first time, we provide valuable insights towards our current understanding of telomere biology in free-ranging wildlife in human-modified ecosystems. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02050-5.
Collapse
|
10
|
Trondrud LM, Pigeon G, Albon S, Arnold W, Evans AL, Irvine RJ, Król E, Ropstad E, Stien A, Veiberg V, Speakman JR, Loe LE. Determinants of heart rate in Svalbard reindeer reveal mechanisms of seasonal energy management. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200215. [PMID: 34176322 PMCID: PMC8237166 DOI: 10.1098/rstb.2020.0215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/02/2023] Open
Abstract
Seasonal energetic challenges may constrain an animal's ability to respond to changing individual and environmental conditions. Here, we investigated variation in heart rate, a well-established proxy for metabolic rate, in Svalbard reindeer (Rangifer tarandus platyrhynchus), a species with strong seasonal changes in foraging and metabolic activity. In 19 adult females, we recorded heart rate, subcutaneous temperature and activity using biologgers. Mean heart rate more than doubled from winter to summer. Typical drivers of energy expenditure, such as reproduction and activity, explained a relatively limited amount of variation (2-6% in winter and 16-24% in summer) compared to seasonality, which explained 75% of annual variation in heart rate. The relationship between heart rate and subcutaneous temperature depended on individual state via body mass, age and reproductive status, and the results suggested that peripheral heterothermy is an important pathway of energy management in both winter and summer. While the seasonal plasticity in energetics makes Svalbard reindeer well-adapted to their highly seasonal environment, intraseasonal constraints on modulation of their heart rate may limit their ability to respond to severe environmental change. This study emphasizes the importance of encompassing individual state and seasonal context when studying energetics in free-living animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- L. Monica Trondrud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Gabriel Pigeon
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, Canada, J1 K 2R1
| | - Steve Albon
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Walter Arnold
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstr. 1, 1160 Vienna, Austria
| | - Alina L. Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2418 Elverum, Norway
| | - R. Justin Irvine
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- Frankfurt Zoological Society, PO Box 100003, South Africa Street, Addis Ababa, Ethiopia
| | - Elżbieta Król
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Erik Ropstad
- Faculty of Veterinary Science, Norwegian University of Life Sciences, PO Box 8146, NO-0033 Oslo, Norway
| | - Audun Stien
- Department of Arctic and Marine Biology, The Arctic University of Norway, PO Box 6050 Langnes, NO-9037 Tromsø, Norway
| | - Vebjørn Veiberg
- Norwegian Institute for Nature Research, PO Box 5685 Torgarden, NO-7485 Trondheim, Norway
| | - John R. Speakman
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming 650223, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Leif Egil Loe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
11
|
Linek N, Volkmer T, Shipley JR, Twining CW, Zúñiga D, Wikelski M, Partecke J. A songbird adjusts its heart rate and body temperature in response to season and fluctuating daily conditions. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200213. [PMID: 34121457 PMCID: PMC8200648 DOI: 10.1098/rstb.2020.0213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
In a seasonal world, organisms are continuously adjusting physiological processes relative to local environmental conditions. Owing to their limited heat and fat storage capacities, small animals, such as songbirds, must rapidly modulate their metabolism in response to weather extremes and changing seasons to ensure survival. As a consequence of previous technical limitations, most of our existing knowledge about how animals respond to changing environmental conditions comes from laboratory studies or field studies over short temporal scales. Here, we expanded beyond previous studies by outfitting 71 free-ranging Eurasian blackbirds (Turdus merula) with novel heart rate and body temperature loggers coupled with radio transmitters, and followed individuals in the wild from autumn to spring. Across seasons, blackbirds thermoconformed at night, i.e. their body temperature decreased with decreasing ambient temperature, but not so during daytime. By contrast, during all seasons blackbirds increased their heart rate when ambient temperatures became colder. However, the temperature setpoint at which heart rate was increased differed between seasons and between day and night. In our study, blackbirds showed an overall seasonal reduction in mean heart rate of 108 beats min-1 (21%) as well as a 1.2°C decrease in nighttime body temperature. Episodes of hypometabolism during cold periods likely allow the birds to save energy and, thus, help offset the increased energetic costs during the winter when also confronted with lower resource availability. Our data highlight that, similar to larger non-hibernating mammals and birds, small passerine birds such as Eurasian blackbirds not only adjust their heart rate and body temperature on daily timescales, but also exhibit pronounced seasonal changes in both that are modulated by local environmental conditions such as temperature. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- Nils Linek
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tamara Volkmer
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - J Ryan Shipley
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Cornelia W Twining
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Daniel Zúñiga
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Jesko Partecke
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Declining recruitment and mass of Swedish moose calves linked to hot, dry springs and snowy winters. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Fohringer C, Dudka I, Spitzer R, Stenbacka F, Rzhepishevska O, Cromsigt JPGM, Gröbner G, Ericsson G, Singh NJ. Integrating omics to characterize eco-physiological adaptations: How moose diet and metabolism differ across biogeographic zones. Ecol Evol 2021; 11:3159-3183. [PMID: 33841775 PMCID: PMC8019042 DOI: 10.1002/ece3.7265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
With accelerated land conversion and global heating at northern latitudes, it becomes crucial to understand, how life histories of animals in extreme environments adapt to these changes. Animals may either adapt by adjusting foraging behavior or through physiological responses, including adjusting their energy metabolism or both. Until now, it has been difficult to study such adaptations in free-ranging animals due to methodological constraints that prevent extensive spatiotemporal coverage of ecological and physiological data.Through a novel approach of combining DNA-metabarcoding and nuclear magnetic resonance (NMR)-based metabolomics, we aim to elucidate the links between diets and metabolism in Scandinavian moose Alces alces over three biogeographic zones using a unique dataset of 265 marked individuals.Based on 17 diet items, we identified four different classes of diet types that match browse species availability in respective ecoregions in northern Sweden. Individuals in the boreal zone consumed predominantly pine and had the least diverse diets, while individuals with highest diet diversity occurred in the coastal areas. Males exhibited lower average diet diversity than females.We identified several molecular markers indicating metabolic constraints linked to diet constraints in terms of food availability during winter. While animals consuming pine had higher lipid, phospocholine, and glycerophosphocholine concentrations in their serum than other diet types, birch- and willow/aspen-rich diets exhibit elevated concentrations of several amino acids. The individuals with highest diet diversity had increased levels of ketone bodies, indicating extensive periods of starvation for these individuals.Our results show how the adaptive capacity of moose at the eco-physiological level varies over a large eco-geographic scale and how it responds to land use pressures. In light of extensive ongoing climate and land use changes, these findings pave the way for future scenario building for animal adaptive capacity.
Collapse
Affiliation(s)
- Christian Fohringer
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Ilona Dudka
- Department of ChemistryUmeå UniversityUmeåSweden
| | - Robert Spitzer
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Fredrik Stenbacka
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | | | - Joris P. G. M. Cromsigt
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | | | - Göran Ericsson
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Navinder J. Singh
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
14
|
Græsli AR, Le Grand L, Thiel A, Fuchs B, Devineau O, Stenbacka F, Neumann W, Ericsson G, Singh NJ, Laske TG, Beumer LT, Arnemo JM, Evans AL. Physiological and behavioural responses of moose to hunting with dogs. CONSERVATION PHYSIOLOGY 2020; 8:coaa122. [PMID: 33408867 PMCID: PMC7772614 DOI: 10.1093/conphys/coaa122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/02/2020] [Accepted: 12/01/2020] [Indexed: 05/19/2023]
Abstract
Optimal management of hunted species requires an understanding of the impacts of hunting on both individual animal and population levels. Recent technological advancements in biologging enable us to obtain increasingly detailed information from free-ranging animals, covering longer periods of time, and providing the data needed to assess such impacts. In Sweden, more than 80 000 moose are harvested annually, mostly hunted with the use of baying dogs. The effects of this hunting method on animal welfare and stress are understudied. Here, we evaluated 6 real and 17 experimental hunting approaches with baying dogs [wearing global positioning system (GPS) collars] on 8 adult female moose equipped with ruminal temperature loggers, subcutaneous heart rate (HR) loggers and GPS collars with accelerometers. The obtained data were used to analyse the behavioural and physiological responses of moose to hunting with dogs. Successful experimental approaches (moose and dog were within 240 m for >10 min) resulted in higher maximum body temperature (Tb, 0.88°C higher) and a mean increase in HR of 24 bpm in moose at the day of the approach compared to the day after. The moose rested on average >90 min longer the day after the approach compared to the day of the approach. The moose travelled on average 4.2 km longer and had a 1.3 m/s higher maximum speed the day of the approach compared to the day after. Our results demonstrate that hunting with dogs increase moose energy expenditure and resting time (and consequently decrease time available for foraging) on an individual level. This could possibly affect body condition and reproduction rates if the hunting disturbances occur frequently.
Collapse
Affiliation(s)
- Anne Randi Græsli
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
- Corresponding author: Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway.
| | - Luc Le Grand
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Alexandra Thiel
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Boris Fuchs
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Olivier Devineau
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Fredrik Stenbacka
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Wiebke Neumann
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Navinder J Singh
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Timothy G Laske
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | | | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
| |
Collapse
|