1
|
Wen Q, Wittens MMJ, Engelborghs S, van Herwijnen MHM, Tsamou M, Roggen E, Smeets B, Krauskopf J, Briedé JJ. Beyond CSF and Neuroimaging Assessment: Evaluating Plasma miR-145-5p as a Potential Biomarker for Mild Cognitive Impairment and Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1042-1054. [PMID: 38407050 PMCID: PMC10921410 DOI: 10.1021/acschemneuro.3c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. New strategies for the early detection of MCI and sporadic AD are crucial for developing effective treatment options. Current techniques used for diagnosis of AD are invasive and/or expensive, so they are not suitable for population screening. Cerebrospinal fluid (CSF) biomarkers such as amyloid β1-42 (Aβ1-42), total tau (T-tau), and phosphorylated tau181 (P-tau181) levels are core biomarkers for early diagnosis of AD. Several studies have proposed the use of blood-circulating microRNAs (miRNAs) as potential novel early biomarkers for AD. We therefore applied a novel approach to identify blood-circulating miRNAs associated with CSF biomarkers and explored the potential of these miRNAs as biomarkers of AD. In total, 112 subjects consisting of 28 dementia due to AD cases, 63 MCI due to AD cases, and 21 cognitively healthy controls were included. We identified seven Aβ1-42-associated plasma miRNAs, six P-tau181-associated plasma miRNAs, and nine Aβ1-42-associated serum miRNAs. These miRNAs were involved in AD-relevant biological processes, such as PI3K/AKT signaling. Based on this signaling pathway, we constructed an miRNA-gene target network, wherein miR-145-5p has been identified as a hub. Furthermore, we showed that miR-145-5p performs best in the prediction of both AD and MCI. Moreover, miR-145-5p also improved the prediction performance of the mini-mental state examination (MMSE) score. The performance of this miRNA was validated using different datasets including an RT-qPCR dataset from plasma samples of 23 MCI cases and 30 age-matched controls. These findings indicate that blood-circulating miRNAs that are associated with CSF biomarkers levels and specifically plasma miR-145-5p alone or combined with the MMSE score can potentially be used as noninvasive biomarkers for AD or MCI screening in the general population, although studies in other AD cohorts are necessary for further validation.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Sebastiaan Engelborghs
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Marcel H. M. van Herwijnen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Maria Tsamou
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Erwin Roggen
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Bert Smeets
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Julian Krauskopf
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Azlan A, Yunus MA, Abdul Halim M, Azzam G. Revised Annotation and Characterization of Novel Aedes albopictus miRNAs and Their Potential Functions in Dengue Virus Infection. BIOLOGY 2022; 11:biology11101536. [PMID: 36290439 PMCID: PMC9598099 DOI: 10.3390/biology11101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary Aedes albopictus (Ae. albopictus) is an important vector of the dengue virus. Genetics and molecular studies of virus infection in mosquito vectors are important to uncover the basic biology of the virus. It has been reported that miRNAs are important and possess functional roles in virus infection in Ae. albopictus. Here, we report a comprehensive catalog of miRNAs using the latest genome version of Ae. albopictus. We discovered a total of 72 novel mature miRNAs, 44 of which were differentially expressed in C6/36 cells infected with the dengue virus. Target prediction analysis revealed that the differentially expressed miRNAs were involved in lipid metabolism and protein processing in the endoplasmic reticulum. Results from this study provide a valuable resource for researchers to study miRNAs in this mosquito vector, especially in host–virus interactions. Abstract The Asian tiger mosquito, Ae. albopictus, is a highly invasive species that transmits several arboviruses including dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV). Although several studies have identified microRNAs (miRNAs) in Ae. albopictus, it is crucial to extend and improve current annotations with both the newly improved genome assembly and the increased number of small RNA-sequencing data. We combined our high-depth sequence data and 26 public datasets to re-annotate Ae. albopictus miRNAs and found a total of 72 novel mature miRNAs. We discovered that the expression of novel miRNAs was lower than known miRNAs. Furthermore, compared to known miRNAs, novel miRNAs are prone to expression in a stage-specific manner. Upon DENV infection, a total of 44 novel miRNAs were differentially expressed, and target prediction analysis revealed that miRNA-target genes were involved in lipid metabolism and protein processing in endoplasmic reticulum. Taken together, the miRNA annotation profile provided here is the most comprehensive to date. We believed that this would facilitate future research in understanding virus–host interactions, particularly in the role of miRNAs.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
| | - Muhammad Amir Yunus
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Mardani Abdul Halim
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (M.A.H.); (G.A.)
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia
- Correspondence: (M.A.H.); (G.A.)
| |
Collapse
|
3
|
Differential Expression of MicroRNAs in Dark-Cutting Meat from Beef Carcasses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
“Dark-cutting” meat in beef carcasses can result from conditions such as long-term stress and depleted glycogen stores, but some aspects of the physiological mechanisms that cause dark-cutting phenotypes remain poorly understood. Certain responses to stress factors in fully developed tissues are known to be regulated by specific microRNAs. We investigated microRNA expression in Longissimus lumborum biopsies from carcasses derived from a contemporary group of 78 steers from which a high incidence of dark-cutting meat occurred. Our objective was to identify any potential microRNA signatures that reflect the impact of environmental factors and stresses on genetic signaling networks and result in dark-cutting beef (also known as dark, firm, and dry, or DFD) in some animals. MicroRNA expression was quantified by Illumina NextSeq small RNA sequencing. When RNA extracts from DFD muscle biopsy samples were compared with normal, non-DFD (NON) samples, 29 differentially expressed microRNAs were identified in which expression was at least 20% different in the DFD samples (DFD/NON fold ratio ≤0.8 or ≥1.2). When correction for multiple testing was applied, a single microRNA bta-miR-2422 was identified at a false discovery probability (FDR) of 5.4%. If FDR was relaxed to 30%, additional microRNAs were differentially expressed (bta-miR-10174-5p, bta-miR-1260b, bta-miR-144, bta-miR-142-5p, bta-miR-2285at, bta-miR-2285e, bta-miR-3613a). These microRNAs may play a role in regulating aspects of stress responses that ultimately result in dark-cutting beef carcasses.
Collapse
|
4
|
Kuji T, Sugasawa T, Fujita SI, Ono S, Kawakami Y, Takekoshi K. A Pilot Study of miRNA Expression Profile as a Liquid Biopsy for Full-Marathon Participants. Sports (Basel) 2021; 9:sports9100134. [PMID: 34678915 PMCID: PMC8539081 DOI: 10.3390/sports9100134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomal microRNA (miRNA) in plasma and urine has attracted attention as a novel diagnostic tool for pathological conditions. However, the mechanisms of miRNA dynamics in the exercise physiology field are not well understood in terms of monitoring sports performance. This pilot study aimed to reveal the miRNA dynamics in urine and plasma of full-marathon participants. Plasma and urine samples were collected from 26 marathon participants before, immediately after, 2 h after, and one day after a full marathon. The samples were pooled, and exosomal miRNAs were extracted and analyzed using next-generation sequencing. We determined that the exosomal miRNA expression profile changed under time dependency in full marathon. New uncharacterized exosomal miRNAs such as hsa-miR-582-3p and hsa-miR-199a-3p could be potential biomarkers reflecting physical stress of full marathon in plasma and urine. In addition, some muscle miRNAs in plasma and urine have supported the utility for monitoring physical stress. Furthermore, some inflammation-related exosomal miRNAs were useful only in plasma. These results suggest that these exosomal miRNAs in plasma and/or urine are highly sensitive biomarkers for physical stress in full marathons. Thus, our findings may yield valuable insights into exercise physiology.
Collapse
Affiliation(s)
- Tomoaki Kuji
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; or
- Research and Development Division, Blue Industries Inc., ArcaCentral Bldg. 14F, 1-2-1 Kinshi, Sumida, Tokyo 130-0013, Japan
| | - Takehito Sugasawa
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (S.-i.F.); (Y.K.)
| | - Shin-ichiro Fujita
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (S.-i.F.); (Y.K.)
| | - Seiko Ono
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan;
| | - Yasushi Kawakami
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (S.-i.F.); (Y.K.)
| | - Kazuhiro Takekoshi
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (S.-i.F.); (Y.K.)
- Correspondence: ; Tel.: +81-29-853-3209
| |
Collapse
|
5
|
A Set of 17 microRNAs Common for Brain and Cerebrospinal Fluid Differentiates Primary Central Nervous System Lymphoma from Non-Malignant Brain Tumors. Biomolecules 2021; 11:biom11091395. [PMID: 34572608 PMCID: PMC8466839 DOI: 10.3390/biom11091395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The diagnosis of primary central nervous system (CNS) lymphoma, which is predominantly of the diffuse large B-cell lymphoma type (CNS DLBCL), is challenging. MicroRNAs (miRs) are gene expression-regulating non-coding RNAs that are potential biomarkers. We aimed to distinguish miR expression patterns differentiating CNS DLBCL and non-malignant CNS diseases with tumor presentation (n-ML). Next generation sequencing-based miR profiling of cerebrospinal fluids (CSFs) and brain tumors was performed. Sample source-specific (CSF vs. brain tumor) miR patterns were revealed. Even so, a set of 17 miRs differentiating CNS DLBCL from n-ML, no matter if assessed in CSF or in a tumor, was identified. Along with the results of pathway analyses, this suggests their pathogenic role in CNS DLBCL. A combination of just four of those miRs (miR-16-5p, miR-21-5p, miR-92a-3p, and miR-423-5p), assessed in CSFs, discriminated CNS DLBCL from n-ML samples with 100% specificity and 67.0% sensitivity. Analyses of paired CSF-tumor samples from patients with CNS DLBCL showed significantly lower CSF levels of miR-26a, and higher CSF levels of miR-15a-5p, miR-15b-5p, miR-19a-3p, miR-106b-3p, miR-221-3p, and miR-423-5p. Noteworthy, the same miRs belonged to the abovementioned set differentiating CNS DLBCL from non-malignant CNS diseases. Our results not only add to the basic knowledge, but also hold significant translational potential.
Collapse
|
6
|
Khatun MS, Alam MA, Shoombuatong W, Mollah MNH, Kurata H, Hasan MM. Recent development of bioinformatics tools for microRNA target prediction. Curr Med Chem 2021; 29:865-880. [PMID: 34348604 DOI: 10.2174/0929867328666210804090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. High-throughput experimental approaches for miRNA target identification are costly and time-consuming, depending on various factors. It is vitally important to develop the bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies specially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.
Collapse
Affiliation(s)
- Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112. United States
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700. Thailand
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh. 5Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083. Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| |
Collapse
|
7
|
Geraci F, Manzini G. EZcount: An all-in-one software for microRNA expression quantification from NGS sequencing data. Comput Biol Med 2021; 133:104352. [PMID: 33852974 DOI: 10.1016/j.compbiomed.2021.104352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are short endogenous molecules of RNA that influence cell regulation by suppressing genes. Their ubiquity throughout all branches of the tree of life has suggested their central role in many cellular functions. Nowadays, several personalized medicine applications rely on miRNAs as biomarkers for diagnoses, prognoses, and prediction of drug response. The increasing ease of sequencing miRNAs contrasts with the difficulty of accurately quantifying their concentration. The use of general purpose aligners is only a partial solution as they have limited possibilities to accurately solve ambiguous mapping due to the short length of these sequences. We developed EZcount, an all-in-one software that, with a single command, performs the entire quantification process: from raw fastq files to read counts. Experiments show that EZcount is more sensitive and accurate than methods based on sequence alignment, independently of the library preparation protocol and sequencing machine. The parallel architecture of EZcount makes it fast enough to process a sample in minutes using a standard workstation. EZcount runs on all of the most common operating systems (Linux, Windows and MacOS) and is freely available for download at https://gitlab.com/BioAlgo/miR-pipe. A detailed description of the datasets, the raw experimental results, and all the scripts used for testing are available as supplementary material.
Collapse
Affiliation(s)
- Filippo Geraci
- Institute for Informatics and Telematics, CNR, Pisa, 56124, Italy.
| | - Giovanni Manzini
- Institute for Informatics and Telematics, CNR, Pisa, 56124, Italy; Department of Computer Science, University of Pisa, Pisa, 56127, Italy.
| |
Collapse
|
8
|
Meregalli C, Bonomo R, Cavaletti G, Carozzi VA. Blood molecular biomarkers for chemotherapy-induced peripheral neuropathy: From preclinical models to clinical practice. Neurosci Lett 2021; 749:135739. [PMID: 33600907 DOI: 10.1016/j.neulet.2021.135739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) has long been recognized as a clinically significant issue in patients treated with antineoplastic drugs. This common long-term toxic side-effect which negatively impacts the outcome of the disease can lead to disability and have detrimental effects on patients' quality of life. Since axonal injury is a prominent feature of CIPN, responsible for several sensory symptoms, including pain, sensory loss and hypersensitivity to mechanical and/or cold stimuli in the hands and feet, neurophysiological assessments remain the gold standard for clinical diagnosis of CIPN. Given the large impact of CIPN on cancer patients, there is increasing emphasis on biomarkers of adverse outcomes in safety assessment and translational research, to prevent permanent neuroaxonal damage. Since the results on reliable blood molecular markers for axonal degeneration are still controversial, here we provide a brief overview of blood molecular biomarkers used for assessing and/or predicting CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- C Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy
| | - R Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy; PhD Program in Neuroscience, University of Milan Bicocca, Monza, Italy
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy
| | - V A Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy; Young Against Pain Group, Italy.
| |
Collapse
|
9
|
Sarkar JP, Saha I, Sarkar A, Maulik U. Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers. Comput Biol Med 2021; 131:104244. [PMID: 33550016 DOI: 10.1016/j.compbiomed.2021.104244] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 12/25/2022]
Abstract
Breast cancer is the second leading cancer type among females. In this regard, it is found that microRNAs play an important role by regulating the gene expressions at the post-transcriptional phase. However, identification of the most influencing miRNAs in breast cancer subtypes is a challenging task, while the recent advancement in Next Generation Sequencing techniques allows analyzing high throughput expression data of miRNAs. Thus, we have conducted this research with the help of NGS data of breast cancer in order to identify the most significant miRNA biomarkers. The selected miRNA biomarkers are highly associated with the multiple breast cancer subtypes. For this purpose, a two-phase technique, called Machine Learning Integrated Ensemble of Feature Selection Methods, followed by survival analysis, is proposed. In the first phase, we have selected the best among seven machine learning techniques based on classification accuracy using the entire set of features (in this case miRNAs). Subsequently, eight different feature selection methods are used separately in order to rank the features and validate each set of top features using the selected machine learning technique by considering a multi-class classification task of the breast cancer subtypes. In the second phase, based on the classification accuracy values, the top features from each feature selection method are considered to make an ensemble to provide further categorization of the miRNAs as 8*, 7* up to 1*. The 8* miRNAs provide the highest average classification accuracy of 86% after 10-fold cross-validation. Thereafter, 27 miRNAs are identified from the list that is confined within 8* to 4* miRNAs based on their importance in survival for breast cancer subtypes using Cox regression based survival analysis. Moreover, expression analysis, regulatory network analysis, protein-protein interaction analysis, KEGG pathway and gene ontology enrichment analysis are performed in order to validate biological significance of the proposed solution. Additionally, we have prepared a miRNA-protein-drug interaction network to identify possible drug for the selected miRNAs. Thus, our findings may be considered during a clinical trial for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Jnanendra Prasad Sarkar
- Larsen & Toubro Infotech Ltd., Pune, India; Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers' Training & Research, Kolkata, 700106, India.
| | - Anasua Sarkar
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
10
|
Crouser ED, Julian MW, Bicer S, Ghai V, Kim TK, Maier LA, Gillespie M, Hamzeh NY, Wang K. Circulating exosomal microRNA expression patterns distinguish cardiac sarcoidosis from myocardial ischemia. PLoS One 2021; 16:e0246083. [PMID: 33497386 PMCID: PMC7837479 DOI: 10.1371/journal.pone.0246083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Objective Cardiac sarcoidosis is difficult to diagnose, often requiring expensive and inconvenient advanced imaging techniques. Circulating exosomes contain genetic material, such as microRNA (miRNA), that are derived from diseased tissues and may serve as potential disease-specific biomarkers. We thus sought to determine whether circulating exosome-derived miRNA expression patterns would distinguish cardiac sarcoidosis (CS) from acute myocardial infarction (AMI). Methods Plasma and serum samples conforming to CS, AMI or disease-free controls were procured from the Biologic Specimen and Data Repository Information Coordinating Center repository and National Jewish Health. Next generation sequencing (NGS) was performed on exosome-derived total RNA (n = 10 for each group), and miRNA expression levels were compared after normalization using housekeeping miRNA. Quality assurance measures excluded poor quality RNA samples. Differentially expressed (DE) miRNA patterns, based upon >2-fold change (p < 0.01), were established in CS compared to controls, and in CS compared to AMI. Relative expression of several DE-miRNA were validated by qRT-PCR. Results Despite the advanced age of the stored samples (~5–30 years), the quality of the exosome-derived miRNA was intact in ~88% of samples. Comparing plasma exosomal miRNA in CS versus controls, NGS yielded 18 DE transcripts (12 up-regulated, 6 down-regulated), including miRNA previously implicated in mechanisms of myocardial injury (miR-92, miR-21) and immune responses (miR-618, miR-27a). NGS further yielded 52 DE miRNA in serum exosomes from CS versus AMI: 5 up-regulated in CS; 47 up-regulated in AMI, including transcripts previously detected in AMI patients (miR-1-1, miR-133a, miR-208b, miR-423, miR-499). Five miRNAs with increased DE in CS included two isoforms of miR-624 and miR-144, previously reported as markers of cardiomyopathy. Conclusions MiRNA patterns of exosomes derived from CS and AMI patients are distinct, suggesting that circulating exosomal miRNA patterns could serve as disease biomarkers. Further studies are required to establish their specificity relative to other cardiac disorders.
Collapse
Affiliation(s)
- Elliott D. Crouser
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| | - Mark W. Julian
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sabahattin Bicer
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Vikas Ghai
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Lisa A. Maier
- Department of Medicine, Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, Colorado, United States of America
| | - May Gillespie
- Department of Medicine, Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, Colorado, United States of America
| | - Nabeel Y. Hamzeh
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, United States of America
| |
Collapse
|
11
|
Siddika T, Heinemann IU. Bringing MicroRNAs to Light: Methods for MicroRNA Quantification and Visualization in Live Cells. Front Bioeng Biotechnol 2021; 8:619583. [PMID: 33537295 PMCID: PMC7848212 DOI: 10.3389/fbioe.2020.619583] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
MiRNAs are small non-coding RNAs that interact with their target mRNAs for posttranscriptional gene regulation. Finely controlled miRNA biogenesis, target recognition and degradation indicate that maintaining miRNA homeostasis is essential for regulating cell proliferation, growth, differentiation and apoptosis. Increasingly, miRNAs have been recognized as a potential biomarker for disease diagnosis. MiRNAs can be found in blood, plasma, and tissues, and miRNA expression and activity differ in developmental stages, tissues and in response to external stimuli. MiRNA transcripts are matured from pri-miRNA over pre-miRNA to mature miRNA, a process that includes multiple steps and enzymes. Many tools are available to identify and quantify specific miRNAs, ranging from measuring total miRNA, specific miRNA activity, miRNA arrays and miRNA localization. The various miRNA assays differ in accuracy, cost, efficiency and convenience of monitoring miRNA dynamics. To acknowledge the significance and increasing research interest in miRNAs, we summarize the traditional as well as novel methods of miRNA quantification with strengths and limitations of various techniques in biochemical and medical research.
Collapse
Affiliation(s)
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Bluette CT, Shoieb AM, Peng Q, Manickam B, Huang W, Shin E, Zhang W, Song YH, Liu CN. Behavioral, Histopathologic, and Molecular Biological Responses of Nanoparticle- and Solution-Based Formulations of Vincristine in Mice. Int J Toxicol 2020; 40:40-51. [PMID: 33148080 DOI: 10.1177/1091581820968255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clinical use of the chemotherapeutic agent vincristine (VCR) is limited by chemotherapy-induced peripheral neuropathy (CiPN). A new formulation of VCR encapsulated by nanoparticles has been proposed and developed to alleviate CiPN. We hypothesized in nonclinical animals that the nanoparticle drug would be less neurotoxic due to different absorption and distribution properties to the peripheral nerve from the unencapsulated free drug. Here, we assessed whether VCR encapsulation in nanoparticles alleviates CiPN using behavioral gait analysis (CatWalk), histopathologic and molecular biological (RT-qPCR) approaches. Adult male C57BL/6 mice were assigned to 3 groups (empty nanoparticle, nano-VCR, solution-based VCR, each n = 8). After 15 days of dosing, animals were euthanized for tissue collection. It was shown that intraperitoneal administration of nano-VCR (0.15 mg/kg, every other day) and the empty nanoparticle resulted in no changes in gait parameters; whereas, injection of solution-based VCR resulted in decreased run speed and increased step cycle and stance (P < 0.05). There were no differences in incidence and severity of degeneration in the sciatic nerves between the nano-VCR-dosed and solution-based VCR-dosed animals. Likewise, decreased levels of a nervous tissue-enriched microRNA-183 in circulating blood did not show a significant difference between the nano- and solution-based VCR groups (P > 0.05). Empty nanoparticle administration did not cause any behavioral, microRNA, or structural changes. In conclusion, this study suggests that the nano-VCR formulation may alleviate behavioral changes in CiPN, but it does not improve the structural changes of CiPN in peripheral nerve. Nanoparticle properties may need to be optimized to improve biological observations.
Collapse
Affiliation(s)
- Crystal T Bluette
- Comparative Medicine, 105623Pfizer Worldwide RD&M, Cambridge, MA, USA
| | - Ahmed M Shoieb
- Drug Safety R&D, 105623Pfizer Worldwide RD&M, Groton, CT, USA
| | - Qinghai Peng
- Drug Safety R&D, 105623Pfizer Worldwide RD&M, San Diego, CA, USA
| | | | - Wenhu Huang
- Drug Safety R&D, 105623Pfizer Worldwide RD&M, San Diego, CA, USA
| | - Eyoung Shin
- Oncology, 105623Pfizer Worldwide RD&M, Pearl River, NY, USA
| | - Wei Zhang
- Oncology, 105623Pfizer Worldwide RD&M, Pearl River, NY, USA
| | - Young-Ho Song
- Oncology, 105623Pfizer Worldwide RD&M, Pearl River, NY, USA
| | - Chang-Ning Liu
- Comparative Medicine, 105623Pfizer Worldwide RD&M, Groton, CT, USA. Peng is now with Protego Biopharma, San Diego, CA, USA
| |
Collapse
|
13
|
Abstract
We report a systematic unbiased analysis of small RNA molecule expression in 11 different tissues of the model organism mouse. We discovered uncharacterized noncoding RNA molecules and identified that ∼30% of total noncoding small RNA transcriptome are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. Distinct distribution patterns of small RNA across the body suggest the existence of tissue-specific mechanisms involved in noncoding RNA processing. Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to “arm switching” between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease.
Collapse
|
14
|
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9:9430. [PMID: 31263129 PMCID: PMC6603045 DOI: 10.1038/s41598-019-45636-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48 h after transfection and 177 and 172 up- and down-regulated, respectively, 72 h after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor β (TGFβ) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFβ signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
15
|
Jiang J, Zhang Z, Yu Y, Luan M, Ma Z, Gao F, Yu S. Screening of NogoA/NTR-related differential genes in rat sciatic nerve injury signal pathway. Per Med 2019; 16:93-105. [PMID: 30693815 DOI: 10.2217/pme-2018-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM To screen the differential genes in NogoA/NTR-related pathways that associate with sciatic nerve injury. RESULTS There was no difference in the expression of NogoA, NTR and Ntrk2. Differential genes existed in 11 differential pathways that include NogoA, NTR and Ntrk2. Pathways closely related to sciatic nerve injury are MAPK, endophagocytosis, apoptosis, neurotrophin signaling and inflammatory mediators. NTRK1, FASLG, LDLR ADRB1 and HTR2A in model rats were downregulated compared with control rats, IL1R1, CSF1R, BCL2L1 and HRH1 in model rats were upregulated compared with control rats. CONCLUSION MAPK, endophagocytic, apoptotic, neurotrophic factor and inflammatory mediators of ductal mediators may be involved in the sciatic nerve injury in rats. The differentially expressed genes in these pathways may play important roles in sciatic nerve injury.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, PR China
| | - Zhiwu Zhang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, PR China
| | - Yuanchen Yu
- Department of Hand Surgery, Yantaishan Hospital, Yantai, PR China
| | - Mingchun Luan
- Department of Hand Surgery, Yantaishan Hospital, Yantai, PR China
| | - Zhenjie Ma
- Department of Hand Surgery, Yantaishan Hospital, Yantai, PR China
| | - Fei Gao
- Department of Hand Surgery, Yantaishan Hospital, Yantai, PR China
| | - Shengjun Yu
- Department of Hand Surgery, Yantaishan Hospital, Yantai, PR China
| |
Collapse
|
16
|
Peng Q, Mechanic J, Shoieb A, Pardo ID, Schaevitz L, Fenyk-Melody J, Vitsky A, Boucher M, Somps C, Cook JC, Liu CN. Circulating microRNA and automated motion analysis as novel methods of assessing chemotherapy-induced peripheral neuropathy in mice. PLoS One 2019; 14:e0210995. [PMID: 30677061 PMCID: PMC6345499 DOI: 10.1371/journal.pone.0210995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/02/2019] [Indexed: 11/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CiPN) is a serious adverse effect in the clinic, but nonclinical assessment methods in animal studies are limited to labor intensive behavioral tests or semi-quantitative microscopic evaluation. Hence, microRNA (miRNA) biomarkers and automated in-life behavioral tracking were assessed for their utility as non-invasive methods. To address the lack of diagnostic biomarkers, we explored miR-124, miR-183 and miR-338 in a CiPN model induced by paclitaxel, a well-known neurotoxic agent. In addition, conventional and Vium's innovative Digital Vivarium technology-based in-life behavioral tests and postmortem microscopic examination of the dorsal root ganglion (DRG) and the sciatic nerve were performed. Terminal blood was collected on days 8 or 16, after 20 mg/kg paclitaxel was administered every other day for total of 4 or 7 doses, respectively, for plasma miRNA quantification by RT-qPCR. DRG and sciatic nerve samples were collected from mice sacrificed on day 16 for miRNA quantification. Among the three miRNAs analyzed, only miR-124 was statistically significantly increased (5 fold and 10 fold on day 8 and day 16, respectively). The increase in circulating miR-124 correlated with cold allodynia and axonal degeneration in both DRG and sciatic nerve. Automated home cage motion analysis revealed for the first time that nighttime motion was significantly decreased (P < 0.05) in paclitaxel-dosed animals. Although both increase in circulating miR-124 and decrease in nighttime motion are compelling, our results provide positive evidence warranting further testing using additional peripheral nerve toxicants and diverse experimental CiPN models.
Collapse
Affiliation(s)
- Qinghai Peng
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, La Jolla, California, United States of America
| | | | - Ahmed Shoieb
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Ingrid D. Pardo
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | | | - Judith Fenyk-Melody
- Comparative Medicine, Pfizer Worldwide Research & Development, Cambridge, Massachusetts, United States of America
| | - Allison Vitsky
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, La Jolla, California, United States of America
| | - Magalie Boucher
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, Cambridge, Massachusetts, United States of America
| | - Chris Somps
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Jon C. Cook
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Chang-Ning Liu
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hovhannisyan H, Gabaldón T. Transcriptome Sequencing Approaches to Elucidate Host-Microbe Interactions in Opportunistic Human Fungal Pathogens. Curr Top Microbiol Immunol 2019; 422:193-235. [PMID: 30128828 DOI: 10.1007/82_2018_122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infections caused by opportunistic human fungal pathogens are a source of increasing medical concern, due to their growing incidence, the emergence of novel pathogenic species, and the lack of effective diagnostics tools. Fungal pathogens are phylogenetically diverse, and their virulence mechanisms can differ widely across species. Despite extensive efforts, the molecular bases of virulence in pathogenic fungi and their interactions with the human host remain poorly understood for most species. In this context, next-generation sequencing approaches hold the promise of helping to close this knowledge gap. In particular, high-throughput transcriptome sequencing (RNA-Seq) enables monitoring the transcriptional profile of both host and microbes to elucidate their interactions and discover molecular mechanisms of virulence and host defense. Here, we provide an overview of transcriptome sequencing techniques and approaches, and survey their application in studying the interplay between humans and fungal pathogens. Finally, we discuss novel RNA-Seq approaches in studying host-pathogen interactions and their potential role in advancing the clinical diagnostics of fungal infections.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
18
|
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2018; 234:5451-5465. [PMID: 30471116 DOI: 10.1002/jcp.27486] [Citation(s) in RCA: 1201] [Impact Index Per Article: 171.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs, which function in posttranscriptional regulation of gene expression. They are powerful regulators of various cellular activities including cell growth, differentiation, development, and apoptosis. They have been linked to many diseases, and currently miRNA-mediated clinical trial has shown promising results for treatment of cancer and viral infection. This review provides an overview and update on miRNAs biogenesis, regulation of miRNAs expression, their biological functions, and role of miRNAs in epigenetics and cell-cell communication. In addition, alteration of miRNAs following exercise, their association with diseases, and therapeutic potential will be explained. Finally, miRNA bioinformatics tools and conventional methods for miRNA detection and quantification will be discussed.
Collapse
Affiliation(s)
- Kioomars Saliminejad
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahrzad Soleymani Fard
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidollah Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Hu Y, Dingerdissen H, Gupta S, Kahsay R, Shanker V, Wan Q, Yan C, Mazumder R. Identification of key differentially expressed MicroRNAs in cancer patients through pan-cancer analysis. Comput Biol Med 2018; 103:183-197. [PMID: 30384176 DOI: 10.1016/j.compbiomed.2018.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
Abstract
microRNAs (miRNAs) functioning in gene silencing have been associated with cancer progression. However, common abnormal miRNA expression patterns and their potential roles in cancer have not yet been evaluated. To account for individual differences between patients, we retrieved miRNA sequencing data for 575 patients with both tumor and adjacent non-tumorous tissues from 14 cancer types from The Cancer Genome Atlas (TCGA). We then performed differential expression analysis using DESeq2 and edgeR. Results showed that cancer types can be grouped based on the distribution of miRNAs with different expression patterns between tumor and non-tumor samples. We found 81 significantly differentially expressed miRNAs (SDEmiRNAs) in a single cancer. We also found 21 key SDEmiRNAs (nine over-expressed and 12 under-expressed) associated with at least eight cancers each and enriched in more than 60% of patients per cancer, including four newly identified SDEmiRNAs (hsa-mir-4746, hsa-mir-3648, hsa-mir-3687, and hsa-mir-1269a). The downstream effects of these 21 SDEmiRNAs on cellular function were evaluated through enrichment and pathway analysis of 7186 protein-coding gene targets mined from literature reports of differential expression of miRNAs in cancer. This analysis enables identification of SDEmiRNA functional similarity in cell proliferation control across a wide range of cancers, and assembly of common regulatory networks over cancer-related pathways. These findings were validated by construction of a regulatory network in the PI3K pathway. This study provides evidence for the value of further analysis of SDEmiRNAs as potential biomarkers and therapeutic targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Hu
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Hayley Dingerdissen
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Samir Gupta
- Department of Computer and Information Science, University of Delaware, Newark, DE, 19716, USA.
| | - Robel Kahsay
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Vijay Shanker
- Department of Computer and Information Science, University of Delaware, Newark, DE, 19716, USA.
| | - Quan Wan
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Cheng Yan
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Raja Mazumder
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA; The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
20
|
Devi K, Dey KK, Singh S, Mishra SK, Modi MK, Sen P. Identification and validation of plant miRNA from NGS data—an experimental approach. Brief Funct Genomics 2018; 18:13-22. [DOI: 10.1093/bfgp/ely034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kamalakshi Devi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Kuntal Kumar Dey
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Sanjay Singh
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | | | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Priyabrata Sen
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| |
Collapse
|
21
|
The microRNA miR-192/215 family is upregulated in mucinous ovarian carcinomas. Sci Rep 2018; 8:11069. [PMID: 30038317 PMCID: PMC6056508 DOI: 10.1038/s41598-018-29332-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
Different microRNAs are dysregulated in ovarian cancer where some of them have proved to be valid biomarkers. miRNA profiling analyses have shown that the different histotypes of ovarian carcinoma display differential expression of specific miRNAs. In the present study, we used miRNA-sequencing and Real-Time qPCR to detect the expression levels of miRNAs belonging to the miRNA-192/215 family, namely miR-192, miR-194, and miR-215, in different types of ovarian neoplasia, finding that miR-192, miR-194, and miR-215 were upregulated in ovarian carcinomas of the mucinous subtype, but downregulated in other types of carcinoma and in sex cord-stromal tumors. The expression of the said miRNAs was 6-fold higher in mucinous tumors compared to the other histotypes making them candidates for a possible role as diagnostic biomarkers.
Collapse
|
22
|
Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer. mSystems 2018; 3:mSystems00205-17. [PMID: 29795787 PMCID: PMC5954203 DOI: 10.1128/msystems.00205-17] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent studies have found an association between colorectal cancer (CRC) and the gut microbiota. One potential mechanism by which the microbiota can influence host physiology is through affecting gene expression in host cells. MicroRNAs (miRNAs) are small noncoding RNA molecules that can regulate gene expression and have important roles in cancer development. Here, we investigated the link between the gut microbiota and the expression of miRNA in CRC. We found that dozens of miRNAs are differentially regulated in CRC tumors and adjacent normal colon and that these miRNAs are correlated with the abundance of microbes in the tumor microenvironment. Moreover, we found that microbes that have been previously associated with CRC are correlated with miRNAs that regulate genes related to interactions with microbes. Notably, these miRNAs likely regulate glycan production, which is important for the recruitment of pathogenic microbial taxa to the tumor. This work provides a first systems-level map of the association between microbes and host miRNAs in the context of CRC and provides targets for further experimental validation and potential interventions. Although variation in gut microbiome composition has been linked with colorectal cancer (CRC), the factors that mediate the interactions between CRC tumors and the microbiome are poorly understood. MicroRNAs (miRNAs) are known to regulate CRC progression and are associated with patient survival outcomes. In addition, recent studies suggested that host miRNAs can also regulate bacterial growth and influence the composition of the gut microbiome. Here, we investigated the association between miRNA expression and microbiome composition in human CRC tumor and normal tissues. We identified 76 miRNAs as differentially expressed (DE) in tissue from CRC tumors and normal tissue, including the known oncogenic miRNAs miR-182, miR-503, and mir-17~92 cluster. These DE miRNAs were correlated with the relative abundances of several bacterial taxa, including Firmicutes, Bacteroidetes, and Proteobacteria. Bacteria correlated with DE miRNAs were enriched with distinct predicted metabolic categories. Additionally, we found that miRNAs that correlated with CRC-associated bacteria are predicted to regulate targets that are relevant for host-microbiome interactions and highlight a possible role for miRNA-driven glycan production in the recruitment of pathogenic microbial taxa. Our work characterized a global relationship between microbial community composition and miRNA expression in human CRC tissues. IMPORTANCE Recent studies have found an association between colorectal cancer (CRC) and the gut microbiota. One potential mechanism by which the microbiota can influence host physiology is through affecting gene expression in host cells. MicroRNAs (miRNAs) are small noncoding RNA molecules that can regulate gene expression and have important roles in cancer development. Here, we investigated the link between the gut microbiota and the expression of miRNA in CRC. We found that dozens of miRNAs are differentially regulated in CRC tumors and adjacent normal colon and that these miRNAs are correlated with the abundance of microbes in the tumor microenvironment. Moreover, we found that microbes that have been previously associated with CRC are correlated with miRNAs that regulate genes related to interactions with microbes. Notably, these miRNAs likely regulate glycan production, which is important for the recruitment of pathogenic microbial taxa to the tumor. This work provides a first systems-level map of the association between microbes and host miRNAs in the context of CRC and provides targets for further experimental validation and potential interventions.
Collapse
|
23
|
Bisgin H, Gong B, Wang Y, Tong W. Evaluation of Bioinformatics Approaches for Next-Generation Sequencing Analysis of microRNAs with a Toxicogenomics Study Design. Front Genet 2018; 9:22. [PMID: 29467792 PMCID: PMC5808213 DOI: 10.3389/fgene.2018.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators that affect protein translation by targeting mRNAs. Their role in disease etiology and toxicity are well recognized. Given the rapid advancement of next-generation sequencing techniques, miRNA profiling has been increasingly conducted with RNA-seq, namely miRNA-seq. Analysis of miRNA-seq data requires several steps: (1) mapping the reads to miRBase, (2) considering mismatches during the hairpin alignment (windowing), and (3) counting the reads (quantification). The choice made in each step with respect to the parameter settings could affect miRNA quantification, differentially expressed miRNAs (DEMs) detection and novel miRNA identification. Furthermore, these parameters do not act in isolation and their joint effects impact miRNA-seq results and interpretation. In toxicogenomics, the variation associated with parameter setting should not overpower the treatment effect (such as the dose/time-dependent effect). In this study, four commonly used miRNA-seq analysis tools (i.e., miRDeep2, miRExpress, miRNAkey, sRNAbench) were comparatively evaluated with a standard toxicogenomics study design. We tested 30 different parameter settings on miRNA-seq data generated from thioacetamide-treated rat liver samples for three dose levels across four time points, followed by four normalization options. Because both miRExpress and miRNAkey yielded larger variation than that of the treatment effects across multiple parameter settings, our analyses mainly focused on the side-by-side comparison between miRDeep2 and sRNAbench. While the number of miRNAs detected by miRDeep2 was almost the subset of those detected by sRNAbench, the number of DEMs identified by both tools was comparable under the same parameter settings and normalization method. Change in the number of nucleotides out of the mature sequence in the hairpin alignment (window option) yielded the largest variation for miRNA quantification and DEMs detection. However, such a variation is relatively small compared to the treatment effect when the study focused on DEMs that are more critical to interpret the toxicological effect. While the normalization methods introduced a large variation in DEMs, toxic behavior of thioacetamide showed consistency in the trend of time-dose responses. Overall, miRDeep2 was found to be preferable over other choices when the window option allowed up to three nucleotides from both ends.
Collapse
Affiliation(s)
- Halil Bisgin
- Department of Computer Science, Engineering, and Physics, University of Michigan-Flint, Flint, MI, United States
| | - Binsheng Gong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (FDA), Jefferson, AR, United States
| | - Yuping Wang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (FDA), Jefferson, AR, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (FDA), Jefferson, AR, United States
| |
Collapse
|
24
|
Waller R, Wyles M, Heath PR, Kazoka M, Wollff H, Shaw PJ, Kirby J. Small RNA Sequencing of Sporadic Amyotrophic Lateral Sclerosis Cerebrospinal Fluid Reveals Differentially Expressed miRNAs Related to Neural and Glial Activity. Front Neurosci 2018; 11:731. [PMID: 29375285 PMCID: PMC5767269 DOI: 10.3389/fnins.2017.00731] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinical subtype of motor neurone disease (MND), a fatal neurodegenerative disease involving the loss of both the upper and lower motor neurones from the motor cortex, brainstem, and spinal cord. Identifying specific disease biomarkers would help to not only improve diagnostic delay but also to classify disease subtypes, monitor response to therapeutic drugs and track disease progression. miRNAs are small non-coding RNA responsible for regulating gene expression and ultimately protein expression and have been used as biomarkers for many cancers and neurodegenerative disorders. Investigating the detection of miRNAs in cerebrospinal fluid (CSF), the fluid that bathes the central nervous system (CNS) is a prime target for identifying potential biomarkers for ALS. This is the first study to investigate the expression of miRNAs in the CSF of ALS patients using small RNA sequencing. We detected 11 differentially expressed miRNAs in the CSF of sporadic ALS (sALS) patients related to neural and glial activity. Additionally, miRNAs involved in glucose metabolism and the regulation of oxidative stress were also identified. Detecting the presence of potential CSF derived miRNA biomarkers in sALS could open up a whole new area of knowledge to help gain a better understanding of disease pathophysiology. Additionally, with further investigation, the tracking of CSF miRNA over the disease course could be used to follow the disease progression and monitor the effect of novel therapeutics that could be personalized to an individual disease phenotype.
Collapse
Affiliation(s)
- Rachel Waller
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Matthew Wyles
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Paul R Heath
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Mbombe Kazoka
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Helen Wollff
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
Juzenas S, Venkatesh G, Hübenthal M, Hoeppner MP, Du ZG, Paulsen M, Rosenstiel P, Senger P, Hofmann-Apitius M, Keller A, Kupcinskas L, Franke A, Hemmrich-Stanisak G. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res 2017; 45:9290-9301. [PMID: 28934507 PMCID: PMC5766192 DOI: 10.1093/nar/gkx706] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
With this study, we provide a comprehensive reference dataset of detailed miRNA expression profiles from seven types of human peripheral blood cells (NK cells, B lymphocytes, cytotoxic T lymphocytes, T helper cells, monocytes, neutrophils and erythrocytes), serum, exosomes and whole blood. The peripheral blood cells from buffy coats were typed and sorted using FACS/MACS. The overall dataset was generated from 450 small RNA libraries using high-throughput sequencing. By employing a comprehensive bioinformatics and statistical analysis, we show that 3′ trimming modifications as well as composition of 3′ added non-templated nucleotides are distributed in a lineage-specific manner—the closer the hematopoietic progenitors are, the higher their similarities in sequence variation of the 3′ end. Furthermore, we define the blood cell-specific miRNA and isomiR expression patterns and identify novel cell type specific miRNA candidates. The study provides the most comprehensive contribution to date towards a complete miRNA catalogue of human peripheral blood, which can be used as a reference for future studies. The dataset has been deposited in GEO and also can be explored interactively following this link: http://134.245.63.235/ikmb-tools/bloodmiRs.
Collapse
Affiliation(s)
- Simonas Juzenas
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany.,Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas LT 44307, Lithuania
| | - Geetha Venkatesh
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Zhipei Gracie Du
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Maren Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Philipp Senger
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66125 Saarbrücken, Germany
| | - Limas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas LT 44307, Lithuania.,Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas LT 50161, Lithuania
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
26
|
Arias Sosa LA. [Use of microRNAs in heart failure management]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2017; 87:205-224. [PMID: 28292573 DOI: 10.1016/j.acmx.2017.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022] Open
Abstract
Heart failure (HF) is a high impact disease that affects all human populations, demanding the development of new strategies and methods to manage this pathology. That's why microRNAs, small noncoding RNAs that regulate gene expression, appear as an important option in the diagnosis, prognosis and treatment of this disease. MiRNAs seems to have a future on HF handling, because can be isolated from body fluids such as blood, and changes in its levels can be associated with the presence, stage and specific disease features, which makes them an interesting option as biomarkers. Also, due to the important role of these molecules on regulation of gene expression and cell homeostasis, it has been explored its potential use as a therapeutic method to prevent or treat HF. That is why this review seeks to show the importance of biomedical research involving the use of miRNAs as a method to approach the HF, showing the impact of disease in the world, aspects of miRNAs biology, and their use as biomarkers and as important therapeutic targets.
Collapse
Affiliation(s)
- Luis Alejandro Arias Sosa
- Grupo de Investigación en Ciencias Biomédicas UPTC, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
| |
Collapse
|
27
|
Rasnic R, Linial N, Linial M. Enhancing identification of cancer types via lowly-expressed microRNAs. Nucleic Acids Res 2017; 45:5048-5060. [PMID: 28379430 PMCID: PMC5435932 DOI: 10.1093/nar/gkx210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
The primary function of microRNAs (miRNAs) is to maintain cell homeostasis. In cancerous tissues miRNAs' expression undergo drastic alterations. In this study, we use miRNA expression profiles from The Cancer Genome Atlas of 24 cancer types and 3 healthy tissues, collected from >8500 samples. We seek to classify the cancer's origin and tissue identification using the expression from 1046 reported miRNAs. Despite an apparent uniform appearance of miRNAs among cancerous samples, we recover indispensable information from lowly expressed miRNAs regarding the cancer/tissue types. Multiclass support vector machine classification yields an average recall of 58% in identifying the correct tissue and tumor types. Data discretization had led to substantial improvement, reaching an average recall of 91% (95% median). We propose a straightforward protocol as a crucial step in classifying tumors of unknown primary origin. Our counter-intuitive conclusion is that in almost all cancer types, highly expressing miRNAs mask the significant signal that lower expressed miRNAs provide.
Collapse
Affiliation(s)
- Roni Rasnic
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Nathan Linial
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem 91904, Israel
| |
Collapse
|
28
|
Manegold C, Dingemans AMC, Gray JE, Nakagawa K, Nicolson M, Peters S, Reck M, Wu YL, Brustugun OT, Crinò L, Felip E, Fennell D, Garrido P, Huber RM, Marabelle A, Moniuszko M, Mornex F, Novello S, Papotti M, Pérol M, Smit EF, Syrigos K, van Meerbeeck JP, van Zandwijk N, Yang JCH, Zhou C, Vokes E. The Potential of Combined Immunotherapy and Antiangiogenesis for the Synergistic Treatment of Advanced NSCLC. J Thorac Oncol 2016; 12:194-207. [PMID: 27729297 DOI: 10.1016/j.jtho.2016.10.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/30/2016] [Accepted: 10/02/2016] [Indexed: 01/05/2023]
Abstract
Over the past few years, there have been considerable advances in the treatments available to patients with metastatic or locally advanced NSCLC, particularly those who have progressed during first-line treatment. Some of the treatment options available to patients are discussed here, with a focus on checkpoint inhibitor immunotherapies (nivolumab and pembrolizumab) and antiangiogenic agents (bevacizumab, ramucirumab, and nintedanib). It is hypothesized that combining immunotherapy with antiangiogenic treatment may have a synergistic effect and enhance the efficacy of both treatments. In this review, we explore the theory and potential of this novel treatment option for patients with advanced NSCLC. We discuss the growing body of evidence that proangiogenic factors can modulate the immune response (both by reducing T-cell infiltration into the tumor microenvironment and through systemic effects on immune-regulatory cell function), and we examine the preclinical evidence for combining these treatments. Potential challenges are also considered, and we review the preliminary evidence of clinical efficacy and safety with this novel combination in a variety of solid tumor types.
Collapse
Affiliation(s)
- Christian Manegold
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Anne-Marie C Dingemans
- Department of Pulmonary Diseases, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jhanelle E Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Marianne Nicolson
- Oncology Department, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Martin Reck
- Department of Thoracic Oncology, Lung Clinic Grosshansdorf, Airway Research Center North, Grosshansdorf, Germany
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Odd Terje Brustugun
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Lucio Crinò
- Medical Oncology Department, Perugia University Medical School, Perugia, Italy
| | - Enriqueta Felip
- Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Dean Fennell
- Department of Oncology, University of Leicester and Leicester University Hospitals, Leicester, United Kingdom
| | - Pilar Garrido
- Servicio de Oncología Médica, IRYCIS Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rudolf M Huber
- Ludwig-Maximilians-Universität München, University Hospital, Division of Respiratory Medicine and Thoracic Oncology, Münich, Germany
| | - Aurélien Marabelle
- Gustave Roussy, Université Paris-Saclay, Département d'Innovation Thérapeutique et d'Essais Précoces, INSERM U1015, Villejuif, France
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Françoise Mornex
- Department of Radiation Oncology, Centre Hospitalier Lyon Sud, Université Claude Bernard, Lyon, France
| | - Silvia Novello
- Department of Oncology, University of Turin, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Maurice Pérol
- Département de Cancérologie, Médicale Centre Léon Bérard, Lyon, France
| | - Egbert F Smit
- Department of Pulmonary Diseases and Department of Thoracic Oncology, VU University Medical Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kostas Syrigos
- Oncology Unit GPP, Sotiria General Hospital, Athens University School of Medicine, Athens, Greece
| | - Jan P van Meerbeeck
- Thoracic Oncology, Antwerp University Hospital and Ghent University, Edegem, Belgium
| | - Nico van Zandwijk
- Asbestos Diseases Research Institute, University of Sydney, New South Wales, Australia
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai, People's Republic of China
| | - Everett Vokes
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
29
|
Gao F, Wang N, Li H, Liu J, Fu C, Xiao Z, Wei C, Lu X, Feng J, Zhou Y. Identification of drought-responsive microRNAs and their targets in Ammopiptanthus mongolicus by using high-throughput sequencing. Sci Rep 2016; 6:34601. [PMID: 27698373 PMCID: PMC5048172 DOI: 10.1038/srep34601] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/15/2016] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) regulate target gene expression to modulate plant growth, development, and biotic and abiotic stress response at the post-transcriptional level. Ammopiptanthus mongolicus, an ecologically important desert plant, is increasingly used as a model for studying stress tolerance in plants. The miRNA-mediated gene regulatory network might remarkably contribute to the high stress tolerance of A. mongolicus. However, a genome-wide identification of miRNAs and their targets is still lacking in A. mongolicus. In this study, 170 conserved and 156 non-conserved miRNAs were identified in A. mongolicus. We experimentally identified 298 miRNA-target pairs from the degradome data. Quantitative real-time polymerase chain reaction analyses identified 28 drought-responsive miRNAs in leaves and 15 in roots. Some characteristics of the miRNA-mediated regulatory network were found in A. mongolicus. Multiple miRNAs, including 2 newly identified non-conserved miRNAs, miR-P11 and miR-P14, generated from the precursors of miR169, were found to be involved in drought stress response. Further, miR2118 and miR858 participated in drought stress response by up-regulating OZF1 gene and certain MYB genes that were involved in the regulation of flavonol biosynthesis in A. mongolicus. The findings of this study might provide new insights for understanding the functions of miRNA in stress response in plants.
Collapse
Affiliation(s)
- Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ning Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Huayun Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jisheng Liu
- College of Life Sciences, Qilu Normal University, Jinan 250013, China
| | - Chenxi Fu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Zihua Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chunxiang Wei
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaoduo Lu
- College of Life Sciences, Qilu Normal University, Jinan 250013, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
30
|
Buschmann D, Haberberger A, Kirchner B, Spornraft M, Riedmaier I, Schelling G, Pfaffl MW. Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow. Nucleic Acids Res 2016; 44:5995-6018. [PMID: 27317696 PMCID: PMC5291277 DOI: 10.1093/nar/gkw545] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
Small RNA-Seq has emerged as a powerful tool in transcriptomics, gene expression profiling and biomarker discovery. Sequencing cell-free nucleic acids, particularly microRNA (miRNA), from liquid biopsies additionally provides exciting possibilities for molecular diagnostics, and might help establish disease-specific biomarker signatures. The complexity of the small RNA-Seq workflow, however, bears challenges and biases that researchers need to be aware of in order to generate high-quality data. Rigorous standardization and extensive validation are required to guarantee reliability, reproducibility and comparability of research findings. Hypotheses based on flawed experimental conditions can be inconsistent and even misleading. Comparable to the well-established MIQE guidelines for qPCR experiments, this work aims at establishing guidelines for experimental design and pre-analytical sample processing, standardization of library preparation and sequencing reactions, as well as facilitating data analysis. We highlight bottlenecks in small RNA-Seq experiments, point out the importance of stringent quality control and validation, and provide a primer for differential expression analysis and biomarker discovery. Following our recommendations will encourage better sequencing practice, increase experimental transparency and lead to more reproducible small RNA-Seq results. This will ultimately enhance the validity of biomarker signatures, and allow reliable and robust clinical predictions.
Collapse
Affiliation(s)
- Dominik Buschmann
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Goethestraße 29, 80336 München, Germany
| | - Anna Haberberger
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Melanie Spornraft
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Irmgard Riedmaier
- Eurofins Medigenomix Forensik GmbH, Anzinger Straße 7a, 85560 Ebersberg, Germany Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 München, Germany
| | - Gustav Schelling
- Department of Physiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
31
|
miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering. J Biotechnol 2016; 225:31-43. [PMID: 27002234 DOI: 10.1016/j.jbiotec.2016.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 01/01/2023]
Abstract
Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering.
Collapse
|
32
|
Laganà A, Veneziano D, Spata T, Tang R, Zhu H, Mohler PJ, Kilic A. Identification of General and Heart-Specific miRNAs in Sheep (Ovis aries). PLoS One 2015; 10:e0143313. [PMID: 26599010 PMCID: PMC4657999 DOI: 10.1371/journal.pone.0143313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small regulatory RNAs crucial for modulation of signaling pathways in multiple organs. While the link between miRNAs and heart disease has grown more readily apparent over the past three years, these data are primarily limited to small animal models or cell-based systems. Here, we performed a high-throughput RNA sequencing (RNAseq) analysis of left ventricle and other tissue from a pre-clinical ovine model. We identified 172 novel miRNA precursors encoding a total of 264 mature miRNAs. Notably, 84 precursors were detected in both the left ventricle and other tissues. However, 10 precursors, encoding 11 mature sequences, were specific to the left ventricle. Moreover, the total 168 novel miRNA precursors included 22 non-conserved ovine-specific sequences. Our data identify and characterize novel miRNAs in the left ventricle of sheep, providing fundamental new information for our understanding of protein regulation in heart and other tissues.
Collapse
Affiliation(s)
- Alessandro Laganà
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
- * E-mail: (AL); (AK)
| | - Dario Veneziano
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Tyler Spata
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Richard Tang
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
| | - Peter J. Mohler
- The Davis Heart and Lung Research Institute, Departments of Physiology & Cell Biology and Internal Medicine, The Ohio State University Medical Center, Columbus, OH, United States of America
| | - Ahmet Kilic
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
- * E-mail: (AL); (AK)
| |
Collapse
|
33
|
Farrell D, Shaughnessy RG, Britton L, MacHugh DE, Markey B, Gordon SV. The Identification of Circulating MiRNA in Bovine Serum and Their Potential as Novel Biomarkers of Early Mycobacterium avium subsp paratuberculosis Infection. PLoS One 2015; 10:e0134310. [PMID: 26218736 PMCID: PMC4517789 DOI: 10.1371/journal.pone.0134310] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/07/2015] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic enteritis in ruminants that causes substantial economic loses to agriculture worldwide. Current diagnostic assays are hampered by low sensitivity and specificity that seriously complicate disease control; a new generation of diagnostic and prognostic assays are therefore urgently needed. Circulating microRNAs (miRNAs) have been shown to have significant potential as novel biomarkers for a range of human diseases, but their potential application in the veterinary sphere has been less well characterised. The aim of this study was therefore to apply RNA-sequencing approaches to serum from an experimental JD infection model as a route to identify novel diagnostic and prognostic miRNA biomarkers. Sera from experimental MAP-challenged calves (n = 6) and age-matched controls (n = 6) were used. We identified a subset of known miRNAs from bovine serum across all samples, with approximately 90 being at potentially functional abundance levels. The majority of known bovine miRNAs displayed multiple isomiRs that differed from the canonical sequences. Thirty novel miRNAs were identified after filtering and were found within sera from all animals tested. No significant differential miRNA expression was detected when comparing sera from MAP-challenged animals to their age-matched controls at six-month's post-infection. However, comparing sera from pre-infection bleeds to six-month's post-infection across all 12 animals did identify increased miR-205 (2-fold) and decreased miR-432 (2-fold) within both challenged and control groups, which suggests changes in circulating miRNA profiles due to ageing or development (P<0.00001). In conclusion our study has identified a range of novel miRNA in bovine serum, and shown the utility of small RNA sequencing approaches to explore the potential of miRNA as novel biomarkers for infectious disease in cattle.
Collapse
Affiliation(s)
- Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Louise Britton
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Bryan Markey
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Rounge TB, Lauritzen M, Langseth H, Enerly E, Lyle R, Gislefoss RE. microRNA Biomarker Discovery and High-Throughput DNA Sequencing Are Possible Using Long-term Archived Serum Samples. Cancer Epidemiol Biomarkers Prev 2015; 24:1381-7. [PMID: 26108462 DOI: 10.1158/1055-9965.epi-15-0289] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The impacts of long-term storage and varying preanalytical factors on the quality and quantity of DNA and miRNA from archived serum have not been fully assessed. Preanalytical and analytical variations and degradation may introduce bias in representation of DNA and miRNA and may result in loss or corruption of quantitative data. METHODS We have evaluated DNA and miRNA quantity, quality, and variability in samples stored up to 40 years using one of the oldest prospective serum collections in the world, the Janus Serumbank, a biorepository dedicated to cancer research. RESULTS miRNAs are present and stable in archived serum samples frozen at -25°C for at least 40 years. Long-time storage did not reduce miRNA yields; however, varying preanalytical conditions had a significant effect and should be taken into consideration during project design. Of note, 500 μL serum yielded sufficient miRNA for qPCR and small RNA sequencing and on average 650 unique miRNAs were detected in samples from presumably healthy donors. Of note, 500 μL serum yielded sufficient DNA for whole-genome sequencing and subsequent SNP calling, giving a uniform representation of the genomes. CONCLUSIONS DNA and miRNA are stable during long-term storage, making large prospectively collected serum repositories an invaluable source for miRNA and DNA biomarker discovery. IMPACT Large-scale biomarker studies with long follow-up time are possible utilizing biorepositories with archived serum and state-of-the-art technology.
Collapse
Affiliation(s)
- Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
| | | | - Hilde Langseth
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Espen Enerly
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | |
Collapse
|
35
|
Mobuchon L, Marthey S, Boussaha M, Le Guillou S, Leroux C, Le Provost F. Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches. BMC Genomics 2015; 16:285. [PMID: 25888052 PMCID: PMC4430871 DOI: 10.1186/s12864-015-1471-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNA) are small endogenous non-coding RNA involved in the post-transcriptional regulation of specific mRNA targets. The first whole goat genome sequence became available in 2013, with few annotations. Our goal was to establish a list of the miRNA expressed in the mammary gland of lactating goats, thus enabling implementation of the goat miRNA repertoire and considerably enriching annotation of the goat genome. Results Here, we performed high throughput RNA sequencing on 10 lactating goat mammary glands. The bioinformatic detection of miRNA was carried out using miRDeep2 software. Three different methods were used to predict, quantify and annotate the sequenced reads. The first was a de novo approach based on the prediction of miRNA from the goat genome only. The second approach used bovine miRNA as an external reference whereas the last one used recently available goat miRNA. The three methods enabled the prediction and annotation of hundreds of miRNA, more than 95% were commonly identified. Using bovine miRNA, 1,178 distinct miRNA were detected, together with the annotation of 88 miRNA for which corresponding precursors could not be retrieved in the goat genome, and which were not detected using the de novo approach or with the use of goat miRNA. Each chromosomal coordinate of the precursors determined here were generated and depicted on a reference localisation map. Forty six goat miRNA clusters were also reported. The study revealed 263 precursors located in goat protein-coding genes, amongst which the location of 43 precursors was conserved between human, mouse and bovine, revealing potential new gene regulations in the goat mammary gland. Using the publicly available cattle QTL database, and cow precursors conserved in the goat and expressed in lactating mammary gland, 114 precursors were located within known QTL regions for milk production and composition. Conclusions The results reported here represent the first major identification study on miRNA expressed in the goat mammary gland at peak lactation. The elements generated by this study will now be used as references to decipher the regulation of miRNA expression in the goat mammary gland and to clarify their involvement in the lactation process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1471-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lenha Mobuchon
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France. .,INRA, UMR1213 Herbivores, F-63122, Saint Genès Champanelle, France. .,Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France.
| | - Sylvain Marthey
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| | - Mekki Boussaha
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| | - Sandrine Le Guillou
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| | - Christine Leroux
- INRA, UMR1213 Herbivores, F-63122, Saint Genès Champanelle, France. .,Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France.
| | - Fabienne Le Provost
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| |
Collapse
|
36
|
Kang W, Friedländer MR. Computational Prediction of miRNA Genes from Small RNA Sequencing Data. Front Bioeng Biotechnol 2015; 3:7. [PMID: 25674563 PMCID: PMC4306309 DOI: 10.3389/fbioe.2015.00007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/07/2015] [Indexed: 01/19/2023] Open
Abstract
Next-generation sequencing now for the first time allows researchers to gage the depth and variation of entire transcriptomes. However, now as rare transcripts can be detected that are present in cells at single copies, more advanced computational tools are needed to accurately annotate and profile them. microRNAs (miRNAs) are 22 nucleotide small RNAs (sRNAs) that post-transcriptionally reduce the output of protein coding genes. They have established roles in numerous biological processes, including cancers and other diseases. During miRNA biogenesis, the sRNAs are sequentially cleaved from precursor molecules that have a characteristic hairpin RNA structure. The vast majority of new miRNA genes that are discovered are mined from small RNA sequencing (sRNA-seq), which can detect more than a billion RNAs in a single run. However, given that many of the detected RNAs are degradation products from all types of transcripts, the accurate identification of miRNAs remain a non-trivial computational problem. Here, we review the tools available to predict animal miRNAs from sRNA sequencing data. We present tools for generalist and specialist use cases, including prediction from massively pooled data or in species without reference genome. We also present wet-lab methods used to validate predicted miRNAs, and approaches to computationally benchmark prediction accuracy. For each tool, we reference validation experiments and benchmarking efforts. Last, we discuss the future of the field.
Collapse
Affiliation(s)
- Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
37
|
Guo C, Li L, Wang X, Liang C. Alterations in siRNA and miRNA expression profiles detected by deep sequencing of transgenic rice with siRNA-mediated viral resistance. PLoS One 2015; 10:e0116175. [PMID: 25559820 PMCID: PMC4283965 DOI: 10.1371/journal.pone.0116175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022] Open
Abstract
RNA-mediated gene silencing has been demonstrated to serve as a defensive mechanism against viral pathogens by plants. It is known that specifically expressed endogenous siRNAs and miRNAs are involved in the self-defense process during viral infection. However, research has been rarely devoted to the endogenous siRNA and miRNA expression changes under viral infection if the resistance has already been genetically engineered in plants. Aiming to gain a deeper understanding of the RNA-mediated gene silencing defense process in plants, the expression profiles of siRNAs and miRNAs before and after viral infection in both wild type and transgenic anti-Rice stripe virus (RSV) rice plants were examined by small RNA high-throughput sequencing. Our research confirms that the newly generated siRNAs, which are derived from the engineered inverted repeat construct, is the major contributor of the viral resistance in rice. Further analysis suggests the accuracy of siRNA biogenesis might be affected when siRNAs machinery is excessively used in the transgenic plants. In addition, the expression levels of many known miRNAs are dramatically changed due to RSV infection on both wild type and transgenic rice plants, indicating potential function of those miRNAs involved in plant-virus interacting process.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | - Li Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun Liang
- Department of Biology, Miami University, Oxford, Ohio, United States of America; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Department of Computer Science and Software Engineering, Miami University, Oxford, Ohio, United States of America
| |
Collapse
|
38
|
Abstract
Pain is an important protective system that alerts organisms to actual or possible tissue damage. However, a variety of pathologies can lead to chronic pain that is no longer beneficial. Lesions or diseases of the somatosensory nervous system cause intractable neuropathic pain that occasionally lasts even after the original pathology subsides. Chronic inflammatory diseases like arthritis are also associated with severe pain. Because conventional analgesics such as non-steroidal anti-inflammatory drugs and opioids have limited efficacy and/or severe adverse events associated with long-term use, chronic pain remains a major problem in clinical practice. Recently, causal roles of microRNAs in chronic pain and their therapeutic potential have been emerging. microRNA expressions are altered not only at the primary origin of pain, but also along the somatosensory pathways. Notably, microRNA expressions are differentially affected depending on the causes of chronic pain. This chapter summarizes current insights into the roles of microRNAs in pain based on the underlying pathologies.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
39
|
Pimentel F, Bonilla P, Ravishankar YG, Contag A, Gopal N, LaCour S, Lee T, Niemz A. Technology in MicroRNA Profiling: Circulating MicroRNAs as Noninvasive Cancer Biomarkers in Breast Cancer. ACTA ACUST UNITED AC 2014; 20:574-88. [PMID: 25524488 DOI: 10.1177/2211068214561788] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 12/13/2022]
Abstract
This report describes technologies to identify and quantify microRNAs (miRNAs) as potential cancer biomarkers, using breast cancer as an example. Most breast cancer patients are not diagnosed until the disease has advanced to later stages, which decreases overall survival rates. Specific miRNAs are up- or downregulated in breast cancer patients at various stages, can be detected in plasma and serum, and have shown promising preliminary clinical sensitivity and specificity for early cancer diagnosis or staging. Nucleic acid testing methods to determine relative concentrations of selected miRNAs include reverse transcription, followed by quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS). Of these methods, NGS is the most powerful approach for miRNA biomarker discovery, whereas RT-qPCR shows the most promise for eventual clinical diagnostic applications.
Collapse
Affiliation(s)
- Fernando Pimentel
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Patricia Bonilla
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | | | - Alec Contag
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Nimish Gopal
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Sarah LaCour
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Trenton Lee
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Angelika Niemz
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| |
Collapse
|
40
|
Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T, Shill H, Adler C, Sabbagh M, Villa S, Tembe W, Craig D, Van Keuren-Jensen K. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PLoS One 2014; 9:e94839. [PMID: 24797360 PMCID: PMC4010405 DOI: 10.1371/journal.pone.0094839] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/13/2014] [Indexed: 01/09/2023] Open
Abstract
The discovery and reliable detection of markers for neurodegenerative diseases have been complicated by the inaccessibility of the diseased tissue--such as the inability to biopsy or test tissue from the central nervous system directly. RNAs originating from hard to access tissues, such as neurons within the brain and spinal cord, have the potential to get to the periphery where they can be detected non-invasively. The formation and extracellular release of microvesicles and RNA binding proteins have been found to carry RNA from cells of the central nervous system to the periphery and protect the RNA from degradation. Extracellular miRNAs detectable in peripheral circulation can provide information about cellular changes associated with human health and disease. In order to associate miRNA signals present in cell-free peripheral biofluids with neurodegenerative disease status of patients with Alzheimer's and Parkinson's diseases, we assessed the miRNA content in cerebrospinal fluid and serum from postmortem subjects with full neuropathology evaluations. We profiled the miRNA content from 69 patients with Alzheimer's disease, 67 with Parkinson's disease and 78 neurologically normal controls using next generation small RNA sequencing (NGS). We report the average abundance of each detected miRNA in cerebrospinal fluid and in serum and describe 13 novel miRNAs that were identified. We correlated changes in miRNA expression with aspects of disease severity such as Braak stage, dementia status, plaque and tangle densities, and the presence and severity of Lewy body pathology. Many of the differentially expressed miRNAs detected in peripheral cell-free cerebrospinal fluid and serum were previously reported in the literature to be deregulated in brain tissue from patients with neurodegenerative disease. These data indicate that extracellular miRNAs detectable in the cerebrospinal fluid and serum are reflective of cell-based changes in pathology and can be used to assess disease progression and therapeutic efficacy.
Collapse
Affiliation(s)
- Kasandra Burgos
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Ivana Malenica
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Raghu Metpally
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Amanda Courtright
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Benjamin Rakela
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Thomas Beach
- Neurology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Holly Shill
- Neurology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charles Adler
- Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Marwan Sabbagh
- Neurology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Stephen Villa
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Waibhav Tembe
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - David Craig
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Kendall Van Keuren-Jensen
- Neurogenomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
41
|
Marcinkiewicz KM, Gudas LJ. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells. Exp Cell Res 2013; 320:128-43. [PMID: 24076275 DOI: 10.1016/j.yexcr.2013.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/18/2022]
Abstract
To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes.
Collapse
Affiliation(s)
- Katarzyna M Marcinkiewicz
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
42
|
Harini K, Sowdhamini R. Molecular Modelling of Oligomeric States of DmOR83b, an Olfactory Receptor in D. Melanogaster. Bioinform Biol Insights 2012; 6:33-47. [PMID: 22493562 PMCID: PMC3320116 DOI: 10.4137/bbi.s8990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
After the discovery of the complete repertoire of D. melanogaster Olfactory Receptors (ORs), candidate ORs have been identified from at least 12 insect species from four orders (Coleoptera, Lepidoptera, Diptera, and Hymenoptera), including species of economic or medical importance. Although all ORs share the same G-protein coupled receptor structure with seven transmembrane domains, they share poor sequence identity within and between species, and have been identified mainly through genomic data analyses. To date, D. melanogaster remains the only insect species where ORs have been extensively studied, from expression pattern establishment to functional investigations. These studies have confirmed several observations made in vertebrates: one OR type is selectively expressed in a subtype of olfactory receptor neurons, and one olfactory neuron expresses only one type of OR. The olfactory mechanism, further, appears to be conserved between insects and vertebrates. Understanding the function of insect ORs will greatly contribute to the understanding of insect chemical communication mechanisms, particularly with agricultural pests and disease vectors, and could result in future strategies to reduce their negative effects. In this study, we propose molecular models for insect olfactory receptor co-receptor OR83b and its possible functional oligomeric states. The functional similarity of OR83b to GPCRs and ion channels has been exploited for understanding the structure of OR83b. We could observe that C-terminal region (TM4-7) of OR83b is involved in homodimer amd heterodimer formation (with OR22a) which suggests why C-terminus of insect ORs are highly conserved across different species. We also propose two possible ion channel pathways in OR83b: one formed by TM4-5 region with intracellular pore-forming domain and the other formed by TM5-6 with extracellular pore forming domain using analysis of the electrostatics distribution of the pore forming domain.
Collapse
Affiliation(s)
- K. Harini
- National Centre for Biological Sciences (TIFR), UAS-GKVK Campus, Bellary Road, Bangalore, India
| | - R. Sowdhamini
- National Centre for Biological Sciences (TIFR), UAS-GKVK Campus, Bellary Road, Bangalore, India
| |
Collapse
|