1
|
Sharma M, Pal P, Gupta SK. Deciphering the role of miRNAs in Alzheimer's disease: Predictive targeting and pathway modulation - A systematic review. Ageing Res Rev 2024; 101:102483. [PMID: 39236856 DOI: 10.1016/j.arr.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's Disease (AD), a multifaceted neurodegenerative disorder, is increasingly understood through the regulatory lens of microRNAs (miRNAs). This review comprehensively examines the pivotal roles of miRNAs in AD pathogenesis, shedding light on their influence across various pathways. We delve into the biogenesis and mechanisms of miRNAs, emphasizing their significant roles in brain function and regulation. The review then navigates the complex landscape of AD pathogenesis, identifying key genetic, environmental, and molecular factors, with a focus on hallmark pathological features like amyloid-beta accumulation and tau protein hyperphosphorylation. Central to our discussion is the intricate involvement of miRNAs in these processes, highlighting their altered expression patterns in AD and subsequent functional implications, from amyloid-beta metabolism to tau pathology, neuroinflammation, oxidative stress, and synaptic dysfunction. The predictive analysis of miRNA targets using computational methods, complemented by experimental validations, forms a crucial part of our discourse, unraveling the contributions of specific miRNAs to AD. Moreover, we explore the therapeutic potential of miRNAs as biomarkers and in miRNA-based interventions, while addressing the challenges in translating these findings into clinical practice. This review aims to enhance understanding of miRNAs in AD, offering a foundation for future research directions and novel therapeutic strategies.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
2
|
de Lourdes Signorini-Souza I, Tureck LV, Batistela MS, Coutinho de Almeida R, Monteiro de Almeida S, Furtado-Alle L, Lehtonen Rodrigues Souza R. The potential of five c-miRNAs as serum biomarkers for Late-Onset Alzheimer's disease diagnosis: miR-10a-5p, miR-29b-2-5p, miR-125a-5p, miR-342-3p, and miR-708-5p. Brain Res 2024; 1841:149090. [PMID: 38880411 DOI: 10.1016/j.brainres.2024.149090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The nervous system is rich in miRNAs, indicating an important role of these molecules in regulating processes associated with cognition, memory, and others. Therefore, qualitative and quantitative imbalances involving such miRNAs may be involved in dementia contexts, including Late-Onset Alzheimer's Disease (LOAD). To test the viability of circulating miRNAs (c-miRNAs) as biomarkers for LOAD, we proceed accordingly to the following reasoning. The first stage was to discover and identify profile of c-miRNAs by RNA sequencing (RNA-Seq). For this purpose, blood serum samples were used from LOAD patients (n = 5) and cognitively healthy elderly control group (CTRL_CH) (n = 5), all over 70 years old. We identified seven c-miRNAs differentially expressed (p ≤ 0.05) in the serum of LOAD patients compared to CTRL_CH (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p, miR-380-5p and miR-340-3p). Of these, five (p ≤ 0.01) were selected for in silico analysis (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p), for which 44 relevant target genes were found regulated by these c-miRNAs and related to LOAD. Through the analysis of these target genes in databases, it was possible to observe that they have functions related to the development and progress of LOAD, directly or indirectly connecting the different Alzheimer's pathways. Thus, this work found five promising serum c-miRNAs as options for biomarkers contributing to LOAD diagnosis. Our study shows the complex network between these molecules and LOAD, supporting the relevance of studies using c-miRNAs in dementia contexts.
Collapse
Affiliation(s)
- Isadora de Lourdes Signorini-Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Luciane Viater Tureck
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Meire Silva Batistela
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, LUMC, Leiden, the Netherlands
| | | | - Lupe Furtado-Alle
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Ricardo Lehtonen Rodrigues Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil.
| |
Collapse
|
3
|
Ransom LS, Liu CS, Dunsmore E, Palmer CR, Nicodemus J, Ziomek D, Williams N, Chun J. Human brain small extracellular vesicles contain selectively packaged, full-length mRNA. Cell Rep 2024; 43:114061. [PMID: 38578831 DOI: 10.1016/j.celrep.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.
Collapse
Affiliation(s)
- Linnea S Ransom
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christine S Liu
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emily Dunsmore
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Carter R Palmer
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juliet Nicodemus
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Derya Ziomek
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa Williams
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Qu Y, Bai Y, Wu Z, Yang D, Liu H, Mao H. Non-invasive detection of tumor markers in salivary extracellular vesicles based on digital PCR chips. Clin Chim Acta 2023; 548:117488. [PMID: 37442360 DOI: 10.1016/j.cca.2023.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The World Health Organization (WHO) has stated that countless cancer patients could be saved if early detection and treatment were available. However, current clinical evaluation of tumors still relies primarily on imaging examinations and tissue biopsies. These methods not only require sophisticated equipment, but also have high false positive rates or invasive problems. Here, we describe a digital polymerase chain reaction (dPCR) chip for the detection of biomarkers in salivary extracellular vesicles (SEVs), which can be used to identify markers for the early diagnosis of tumors. Based on microfluidic technology fine microstructure and microfluidics operations, this dPCR chip can accurate quantitative SEVs in a variety of tumor markers, and shows extremely strong sensitivity (10 copies). In the detection of clinical samples, the chip can effectively distinguish lung cancer cases from normal controls (P < 0.001; two-tailed t-test), and in the detection of extremely low concentration samples, it shows considerably higher precise quantitative ability than quantitative real-time polymerase chain reaction (qPCR). Overall, this study may shed new light on non-invasive early screening of tumor markers by detecting extracellular vesicle-associated markers in saliva.
Collapse
Affiliation(s)
- Youlan Qu
- Department of Stomatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yanan Bai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Sataer X, Qifeng Z, Yingying Z, Chunhua H, Bingzhenga F, Zhiran X, Wanli L, Yuwei Y, Shuangfeng C, Lingling W, Hongri H, Jibing C, Xiaoping R, Hongjun G. Exosomal microRNAs as diagnostic biomarkers and therapeutic applications in neurodegenerative diseases. Neurol Res 2023; 45:191-199. [PMID: 36184105 DOI: 10.1080/01616412.2022.2129768] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
Abstract
Originating from slow irreversible and progressive loss and dysfunction of neurons and synapses in the nervous system, neurodegenerative diseases (NDDs) affect millions of people worldwide. Common NDDs include Parkinson's disease, Alzheimer's disease multiple sclerosis, Huntington's disease, and amyotrophic lateral sclerosis. Currently, no sensitive biomarkers are available to monitor the progression and treatment response of NDDs or to predict their prognosis. Exosomes (EXOs) are small bilipid layer-enclosed extracellular vesicles containing numerous biomolecules, including proteins, nucleic acids, and lipids. Recent evidence indicates that EXOs are pathogenic participants in the spread of neurodegenerative diseases, contributing to disease progression and spread. EXOs are also important tools for diagnosis and treatment. Recently, studies have proposed exosomal microRNAs (miRNAs) as the targets for therapies or biomarkers of NDDs. In this review, we outline the latest research on the roles of exosomal miRNAs in NDDs and their applications as potential diagnostic and therapeutic biomarkers, targets, and drugs for NDDs.
Collapse
Affiliation(s)
- Xuehereti Sataer
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China.,Department of Urology Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 830054 Urumqi, China
| | - Zhu Qifeng
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Zhang Yingying
- Department of Foreign Language, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - He Chunhua
- Department of Urology Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 830054 Urumqi, China
| | - Feng Bingzhenga
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Xu Zhiran
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Li Wanli
- Department of Foreign Language, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Yang Yuwei
- Department of Foreign Language, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Chen Shuangfeng
- Department of Urology Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 830054 Urumqi, China
| | - Wu Lingling
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Huang Hongri
- R & D Center, Guangxi Taimei Rensheng Biotechnology Co Ltd, 530006 Nanning, China
| | - Chen Jibing
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Ren Xiaoping
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Gao Hongjun
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| |
Collapse
|
6
|
Transcriptomic and Physiological Analyses Reveal Potential Genes Involved in Photoperiod-Regulated β-Carotene Accumulation Mechanisms in the Endocarp of Cucumber ( Cucumis sativus L.) Fruit. Int J Mol Sci 2022; 23:ijms232012650. [PMID: 36293506 PMCID: PMC9604348 DOI: 10.3390/ijms232012650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
The accumulation of carotenoids in plants is a key nutritional quality in many horticultural crops. Although the structural genes encoding the biosynthetic enzymes are well-characterized, little is known regarding photoperiod-mediated carotenoid accumulation in the fruits of some horticultural crops. Herein, we performed physiological and transcriptomic analyses using two cucumber genotypes, SWCC8 (XIS-orange-fleshed and photoperiod-sensitive) and CC3 (white-fleshed and photoperiod-non-sensitive), established under two photoperiod conditions (8L/16D vs. 12L/12D) at four fruit developmental stages. Day-neutral treatments significantly increased fruit β-carotene content by 42.1% compared to short day (SD) treatments in SWCC8 at 40 DAP with no significant changes in CC3. Day-neutral condition elevated sugar levels of fruits compared to short-day treatments. According to GO and KEGG analyses, the predominantly expressed genes were related to photosynthesis, carotenoid biosynthesis, plant hormone signaling, circadian rhythms, and carbohydrates. Consistent with β-carotene accumulation in SWCC8, the day-neutral condition elevated the expression of key carotenoid biosynthesis genes such as PSY1, PDS, ZDS1, LYCB, and CHYB1 during later stages between 30 to 40 days of fruit development. Compared to SWCC8, CC3 showed an expression of DEGs related to carotenoid cleavage and oxidative stresses, signifying reduced β-carotene levels in CC3 cucumber. Further, a WGCNA analysis revealed co-expression between carbohydrate-related genes (pentose-phosphatase synthase, β-glucosidase, and trehalose-6-phosphatase), photoperiod-signaling genes (LHY, APRR7/5, FKF1, PIF3, COP1, GIGANTEA, and CK2) and carotenoid-biosynthetic genes, thus suggesting that a cross-talk mechanism between carbohydrates and light-related genes induces β-carotene accumulation. The results highlighted herein provide a framework for future gene functional analyses and molecular breeding towards enhanced carotenoid accumulation in edible plant organs.
Collapse
|
7
|
Liu X, Fan K, Lin Q, Tang M, Wang Q, Huang E, Zhang W, Chen T, Ou Q. Serum-Derived Exosomal miR-140-5p as a Promising Biomarker for Differential Diagnosis of Anti-NMDAR Encephalitis With Viral Encephalitis. Front Immunol 2022; 13:840003. [PMID: 35273615 PMCID: PMC8902043 DOI: 10.3389/fimmu.2022.840003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is the most common type of autoimmune encephalitis. Early recognition and treatment, especially distinguishing from viral encephalitis (VE) in the early stages, are crucial for the outcomes of patients with anti-NMDAR encephalitis. Compared with plasma microRNAs (miRNAs), exosomal miRNAs are more abundant and not easy to degrade. Moreover, exosomes can pass through the blood–brain barrier. This study aimed to explore the clinical value of serum exosomal miRNAs in the differential diagnosis of anti-NMDAR encephalitis with VE. Method Serum samples from a total of 30 patients with anti-NMDAR encephalitis, 30 patients with VE, and 30 cases of control patients hospitalized in the same period were collected. Firstly, the serum exosomes were isolated and identified by transmission electron microscope (TEM), nanoparticle-tracking analyzer (NTA), and Western blot (WB). The expression levels of let-7b and miR-140-5p from serum exosomes were detected by real-time quantitative PCR (qPCR). At the same time, we also detected complement 3 (C3), complement 4 (C4), and high sensitivity CRP (hs-CRP) expression levels in three groups. Finally, we analyzed the difference and diagnostic value of the test results. Results Isolated particles showed identical characteristics to the exosomes through TEM, NTA, and WB analyses. Compared with the VE group and control group, the expression of miR-140-5p was significantly upregulated in serum exosomes of the NMDAR group. In contrast, the serum C3 in the NMDAR group was significantly lower than the other two groups. ROC curve analysis showed the area under the curve (AUC) of serum exosomal miR-140-5p and serum C3 was 0.748 (76.67% sensitivity and 73.33% specificity) and 0.724 (76.67% sensitivity and 60% specificity) to distinguish anti-NMDAR encephalitis from VE, respectively. The AUC of serum exosomal miR-140-5p combined with serum C3 was 0.811, the sensitivity was 70.00%, and the specificity was 86.67%. Conclusion Serum exosomal miR-140-5p combined with serum C3 would be a promising marker in the differential diagnosis of anti-NMDAR encephalitis with VE.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Gene Diagnosis Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kengna Fan
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingwen Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Minjie Tang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Er Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weiqing Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Gene Diagnosis Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Gene Diagnosis Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Varesi A, Carrara A, Pires VG, Floris V, Pierella E, Savioli G, Prasad S, Esposito C, Ricevuti G, Chirumbolo S, Pascale A. Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview. Cells 2022; 11:1367. [PMID: 35456047 PMCID: PMC9044750 DOI: 10.3390/cells11081367] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1-42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Vitor Gomes Pires
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
9
|
Liu Y, Cheng L, Zhan H, Li H, Li X, Huang Y, Li Y. The Roles of Noncoding RNAs in Systemic Sclerosis. Front Immunol 2022; 13:856036. [PMID: 35464474 PMCID: PMC9024074 DOI: 10.3389/fimmu.2022.856036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNAs) constitute more than 90% of the RNAs in the human genome. In the past decades, studies have changed our perception of ncRNAs from “junk” transcriptional products to functional regulatory molecules that mediate critical processes, including chromosomal modifications, mRNA splicing and stability, and translation, as well as key signaling pathways. Emerging evidence suggests that ncRNAs are abnormally expressed in not only cancer but also autoimmune diseases, such as systemic sclerosis (SSc), and may serve as novel biomarkers and therapeutic targets for the diagnosis and treatment of SSc. However, the functions and underlying mechanisms of ncRNAs in SSc remain incompletely understood. In this review, we discuss the current findings on the biogenetic processes and functions of ncRNAs, including microRNAs and long noncoding RNAs, as well as explore emerging ncRNA-based diagnostics and therapies for SSc.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Yongzhe Li,
| |
Collapse
|
10
|
Lokossou GAG, Kouakanou L, Schumacher A, Zenclussen AC. Human Breast Milk: From Food to Active Immune Response With Disease Protection in Infants and Mothers. Front Immunol 2022; 13:849012. [PMID: 35450064 PMCID: PMC9016618 DOI: 10.3389/fimmu.2022.849012] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Breastfeeding is associated with long-term wellbeing including low risks of infectious diseases and non-communicable diseases such as asthma, cancer, autoimmune diseases and obesity during childhood. In recent years, important advances have been made in understanding the human breast milk (HBM) composition. Breast milk components such as, non-immune and immune cells and bioactive molecules, namely, cytokines/chemokines, lipids, hormones, and enzymes reportedly play many roles in breastfed newborns and in mothers, by diseases protection and shaping the immune system of the newborn. Bioactive components in HBM are also involved in tolerance and appropriate inflammatory response of breastfed infants if necessary. This review summarizes the current literature on the relationship between mother and her infant through breast milk with regard to disease protection. We will shed some light on the mechanisms underlying the roles of breast milk components in the maintenance of health of both child and mother.
Collapse
Affiliation(s)
- Gatien A. G. Lokossou
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, Department Human Biology Engineering, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Léonce Kouakanou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Anne Schumacher
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ana C. Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Park H, Park H, Park J. Circulating microRNA‑423 attenuates the phosphorylation of calcium handling proteins in atrial fibrillation. Mol Med Rep 2022; 25:186. [PMID: 35348192 PMCID: PMC8985206 DOI: 10.3892/mmr.2022.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/24/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are small non‑coding RNAs that control patterns of gene expression by inducing the degradation of mRNAs. In addition, miRNAs are known to serve an important role in the pathogenesis of atrial fibrillation (AF). In general, AF is diagnosed using electrocardiography. However, the present study investigated whether specific miRNAs derived from microarray analysis of human urine could regulate AF through the inhibition of calcium handling protein phosphorylation in an AF model. Microarray analysis of the transcriptome in the human urine of patients with paroxysmal supraventricular tachycardia and AF revealed that 7 differentially expressed miRNAs were significantly downregulated (miR‑3613, 6763, 423, 3162, 1180, 6511, 3197) in patients with AF. In addition, quantitative PCR results demonstrated that collagen I, collagen III, fibronectin and TGF‑β, which are fibrosis‑related genes, were upregulated in patients with AF. Furthermore, fibrosis‑related genes were upregulated in angiotensin II‑induced atrial myocytes, which demonstrated that these genes may be targets of miR‑423. In the AF cell model transfected with miR‑423, the expression of calcium handling proteins, including phosphorylated calmodulin‑dependent protein kinase II, was reduced. The transfection of miR‑423 attenuated damage to cardiac cells caused by calcium handling proteins. The findings highlight the importance of calcium handling protein phosphorylation changes in fibrosis‑induced AF and support miR‑423 detection in human urine as a potential novel approach of AF diagnosis.
Collapse
Affiliation(s)
- Hyewon Park
- Department of Cardiology, College of Medicine, Ewha Womans University School of Medicine, Seoul 07985, Republic of Korea
| | - Hyelim Park
- Department of Otorhinolaryngology‑Head and Neck Surgery, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Junbeom Park
- Department of Cardiology, College of Medicine, Ewha Womans University School of Medicine, Seoul 07985, Republic of Korea
| |
Collapse
|
12
|
Padmasekar M, Savai R, Seeger W, Pullamsetti SS. Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8280. [PMID: 34444030 PMCID: PMC8392481 DOI: 10.3390/ijerph18168280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022]
Abstract
Humans on earth inhabit a wide range of environmental conditions and some environments are more challenging for human survival than others. However, many living beings, including humans, have developed adaptive mechanisms to live in such inhospitable, harsh environments. Among different difficult environments, high-altitude living is especially demanding because of diminished partial pressure of oxygen and resulting chronic hypobaric hypoxia. This results in poor blood oxygenation and reduces aerobic oxidative respiration in the mitochondria, leading to increased reactive oxygen species generation and activation of hypoxia-inducible gene expression. Genetic mechanisms in the adaptation to high altitude is well-studied, but there are only limited studies regarding the role of epigenetic mechanisms. The purpose of this review is to understand the epigenetic mechanisms behind high-altitude adaptive and maladaptive phenotypes. Hypobaric hypoxia is a form of cellular hypoxia, which is similar to the one suffered by critically-ill hypoxemia patients. Thus, understanding the adaptive epigenetic signals operating in in high-altitude adjusted indigenous populations may help in therapeutically modulating signaling pathways in hypoxemia patients by copying the most successful epigenotype. In addition, we have summarized the current information about exosomes in hypoxia research and prospects to use them as diagnostic tools to study the epigenome of high-altitude adapted healthy or maladapted individuals.
Collapse
Affiliation(s)
- Manju Padmasekar
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Seeger
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| |
Collapse
|
13
|
Yuen SC, Liang X, Zhu H, Jia Y, Leung SW. Prediction of differentially expressed microRNAs in blood as potential biomarkers for Alzheimer's disease by meta-analysis and adaptive boosting ensemble learning. Alzheimers Res Ther 2021; 13:126. [PMID: 34243793 PMCID: PMC8272278 DOI: 10.1186/s13195-021-00862-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Blood circulating microRNAs that are specific for Alzheimer's disease (AD) can be identified from differentially expressed microRNAs (DEmiRNAs). However, non-reproducible and inconsistent reports of DEmiRNAs hinder biomarker development. The most reliable DEmiRNAs can be identified by meta-analysis. To enrich the pool of DEmiRNAs for potential AD biomarkers, we used a machine learning method called adaptive boosting for miRNA disease association (ABMDA) to identify eligible candidates that share similar characteristics with the DEmiRNAs identified from meta-analysis. This study aimed to identify blood circulating DEmiRNAs as potential AD biomarkers by augmenting meta-analysis with the ABMDA ensemble learning method. METHODS Studies on DEmiRNAs and their dysregulation states were corroborated with one another by meta-analysis based on a random-effects model. DEmiRNAs identified by meta-analysis were collected as positive examples of miRNA-AD pairs for ABMDA ensemble learning. ABMDA identified similar DEmiRNAs according to a set of predefined criteria. The biological significance of all resulting DEmiRNAs was determined by their target genes according to pathway enrichment analyses. The target genes common to both meta-analysis- and ABMDA-identified DEmiRNAs were collected to construct a network to investigate their biological functions. RESULTS A systematic database search found 7841 studies for an extensive meta-analysis, covering 54 independent comparisons of 47 differential miRNA expression studies, and identified 18 reliable DEmiRNAs. ABMDA ensemble learning was conducted based on the meta-analysis results and the Human MicroRNA Disease Database, which identified 10 additional AD-related DEmiRNAs. These 28 DEmiRNAs and their dysregulated pathways were related to neuroinflammation. The dysregulated pathway related to neuronal cell cycle re-entry (CCR) was the only statistically significant pathway of the ABMDA-identified DEmiRNAs. In the biological network constructed from 1865 common target genes of the identified DEmiRNAs, the multiple core ubiquitin-proteasome system, that is involved in neuroinflammation and CCR, was highly connected. CONCLUSION This study identified 28 DEmiRNAs as potential AD biomarkers in blood, by meta-analysis and ABMDA ensemble learning in tandem. The DEmiRNAs identified by meta-analysis and ABMDA were significantly related to neuroinflammation, and the ABMDA-identified DEmiRNAs were related to neuronal CCR.
Collapse
Affiliation(s)
- Sze Chung Yuen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078 Macao China
| | - Xiaonan Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078 Macao China
| | - Hongmei Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078 Macao China
| | - Yongliang Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078 Macao China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Siu-wai Leung
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
- Edinburgh Bayes Centre for AI Research in Shenzhen, College of Science and Engineering, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
14
|
Shrivastava S, Morris KV. The Multifunctionality of Exosomes; from the Garbage Bin of the Cell to a Next Generation Gene and Cellular Therapy. Genes (Basel) 2021; 12:genes12020173. [PMID: 33513776 PMCID: PMC7912150 DOI: 10.3390/genes12020173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are packaged with a variety of cellular cargo including RNA, DNA, lipids and proteins. For several decades now there has been ongoing debate as to what extent exosomes are the garbage bin of the cell or if these entities function as a distributer of cellular cargo which acts in a meaningful mechanistic way on target cells. Are the contents of exosomes unwanted excess cellular produce or are they selective nucleic acid packaged nanoparticles used to communicate in a paracrine fashion? Overexpressed RNAs and fragments of DNA have been shown to collect into exosomes which are jettisoned from cells in response to particular stimuli to maintain homeostasis suggesting exosomes are functional trash bins of the cell. Other studies however have deciphered selective packaging of particular nucleic acids into exosomes. Nucleic acids packaged into exosomes are increasingly reported to exert transcriptional control on recipient cells, supporting the notion that exosomes may provide a role in signaling and intracellular communication. We survey the literature and conclude that exosomes are multifunctional entities, with a plethora of roles that can each be taken advantage to functionally modulate cells. We also note that the potential utility of developing exosomes as a next generation genetic therapy may in future transform cellular therapies. We also depict three models of methodologies which can be adopted by researchers intending to package nucleic acid in exosomes for developing gene and cell therapy.
Collapse
Affiliation(s)
- Surya Shrivastava
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA;
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA 91010, USA
| | - Kevin V. Morris
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA;
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA 91010, USA
- School of Medical Science, Gold Coast Campus, Griffith University, Southport 4222, Australia
- Correspondence:
| |
Collapse
|
15
|
Seol W, Kim H, Son I. Urinary Biomarkers for Neurodegenerative Diseases. Exp Neurobiol 2020; 29:325-333. [PMID: 33154195 PMCID: PMC7649089 DOI: 10.5607/en20042] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Global incidence of neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) is rapidly increasing, but the diagnosis of these diseases at their early stage is challenging. Therefore, the availability of reproducible and reliable biomarkers to diagnose such diseases is more critical than ever. In addition, biomarkers could be used not only to diagnose diseases but also to monitor the development of disease therapeutics. Urine is an excellent biofluid that can be utilized as a source of biomarker to diagnose not only several renal diseases but also other diseases because of its abundance in invasive sampling. However, urine was conventionally regarded as inappropriate as a source of biomarker for neurodegenerative diseases because it is anatomically distant from the central nervous system (CNS), a major pathologic site of NDD, in comparison to other biofluids such as cerebrospinal fluid (CSF) and plasma. However, recent studies have suggested that urine could be utilized as a source of NDD biomarker if an appropriate marker is predetermined by metabolomic and proteomic approaches in urine and other samples. In this review, we summarize such studies related to NDD.
Collapse
Affiliation(s)
- Wongi Seol
- InAm Neuroscience Research Center, Gunpo 15865, Korea
| | - Hyejung Kim
- InAm Neuroscience Research Center, Gunpo 15865, Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Gunpo 15865, Korea
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo 15865, Korea
| |
Collapse
|
16
|
Zhou R, Wang L, Zhao G, Chen D, Song X, Momtazi-Borojeni AA, Yuan H. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure: Mega bio-roles of a nano bio-particle. IUBMB Life 2020; 72:2546-2562. [PMID: 33053610 DOI: 10.1002/iub.2396] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are nano-sized extracellular vesicles containing a cell-specific biologically active cargo of proteins and genetic materials. Exosomes are constitutively released from almost all cell-types and affect neighboring or distant cells through a complex intercellular exchange of the genetic information and/or regulation of certain gene expressions that change the function and behavior of recipient cells. Those released into body fluids are the major mediators of intercellular communications. The success of the biological functions of exosomes is highly mediated by the effective transfer of microRNAs (miRs). Exosomes secreted by a damaged or diseased heart can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a "signature" or "fingerprint" of the donor cell. It has been shown that the transportation of cardiac-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in heart diseases. Currently, the search for new biomarkers of heart diseases remains a large and increasing enterprise. Notably, circulating exosomal miRs (Exo-miRs) have successfully gained huge interests for their diagnostic and prognostic potentials. The present review highlights circulating Exo-miRs explored for diagnosis/prognosis and outcome prediction in patients with heart failure (HF). To this end, we explain the feasibility of exosomes as clinical biomarkers, discuss the priority of circulating Exo-miRs over non-exosomal ones as a biomarker, and then outline reported circulating Exo-miRs having the biomarker function in HF patients, together with their mechanism of action. In conclusion, circulating Exo-miRs represent emerging diagnostic (Exo-miR-92b-5p, Exo-miR-146a, Exo-miR-181c, and Exo-miR-495) and prognostic (Exo-miR-192, Exo-miR-194, Exo-miR-34a, Exo-miR-425, Exo-miR-744) biomarkers for HF.
Collapse
Affiliation(s)
- Runfa Zhou
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiyan Wang
- Clinical Skill Training Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Chen
- Department of Cardiology Electrocardiogram Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoning Song
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Amir A Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
17
|
Ibáñez F, Ureña-Peralta JR, Costa-Alba P, Torres JL, Laso FJ, Marcos M, Guerri C, Pascual M. Circulating MicroRNAs in Extracellular Vesicles as Potential Biomarkers of Alcohol-Induced Neuroinflammation in Adolescence: Gender Differences. Int J Mol Sci 2020; 21:ijms21186730. [PMID: 32937997 PMCID: PMC7555060 DOI: 10.3390/ijms21186730] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/27/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Current studies evidence the role of miRNAs in extracellular vesicles (EVs) as key regulators of pathological processes, including neuroinflammation and neurodegeneration. As EVs can cross the blood–brain barrier, and EV miRNAs are very stable in peripheral circulation, we evaluated the potential gender differences in inflammatory-regulated miRNAs levels in human and murine plasma EVs derived from alcohol-intoxicated female and male adolescents, and whether these miRNAs could be used as biomarkers of neuroinflammation. We demonstrated that while alcohol intoxication lowers anti-inflammatory miRNA (mir-146a-5p, mir-21-5p, mir-182-5p) levels in plasma EVs from human and mice female adolescents, these EV miRNAs increased in males. In mice brain cortices, ethanol treatment lowers mir-146a-5p and mir-21-5p levels, while triggering a higher expression of inflammatory target genes (Traf6, Stat3, and Camk2a) in adolescent female mice. These results indicate, for the first time, that female and male adolescents differ as regards the ethanol effects associated with the inflammatory-related plasma miRNAs EVs profile, and suggest that female adolescents are more vulnerable than males to the inflammatory effects of binge alcohol drinking. These findings also support the view that circulating miRNAs in EVs could be useful biomarkers for screening ethanol-induced neuroinflammation and brain damage in adolescence.
Collapse
Affiliation(s)
- Francesc Ibáñez
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, 46012 Valencia, Spain; (F.I.); (J.R.U.-P.); (C.G.)
| | - Juan R. Ureña-Peralta
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, 46012 Valencia, Spain; (F.I.); (J.R.U.-P.); (C.G.)
| | - Pilar Costa-Alba
- Emergency Department, University Hospital of Salamanca-IBSAL, 37007 Salamanca, Spain;
| | - Jorge-Luis Torres
- Department of Internal Medicine, University Hospital of Salamanca, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (J.-L.T.); (F.-J.L.); (M.M.)
| | - Francisco-Javier Laso
- Department of Internal Medicine, University Hospital of Salamanca, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (J.-L.T.); (F.-J.L.); (M.M.)
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (J.-L.T.); (F.-J.L.); (M.M.)
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, 46012 Valencia, Spain; (F.I.); (J.R.U.-P.); (C.G.)
| | - María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, 46012 Valencia, Spain; (F.I.); (J.R.U.-P.); (C.G.)
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-961-625-635; Fax: +34-963-864-642
| |
Collapse
|
18
|
MicroRNA-451 as an Early Predictor of Chronic Kidney Disease in Diabetic Nephropathy. Int J Nephrol 2020; 2020:8075376. [PMID: 32855824 PMCID: PMC7443237 DOI: 10.1155/2020/8075376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
Background Diabetes mellitus is the leading cause of end-stage renal disease worldwide. Microalbuminuria is the cornerstone for the diagnosis of diabetic nephropathy. However, it is an inadequate marker for early diagnosis. MicroRNAs are not only new and promising markers for early diagnosis but also, but they may also play a role in the prevention of disease progression. Methods This study included ninety patients with type 2 DM in addition to 30 control subjects. MicroRNA-451 expression in blood and plasma using real-time PCR was evaluated in addition to the classic diabetic nephropathy markers (serum creatinine, urinary albumin, and eGFR). Results There was a significant difference between the studied groups versus control regarding serum creatinine, eGFR, urinary, and plasma microRNA-451 with p=0.0001. Patients with eGFR 60 ml/min/1.73 m2 showed a significantly higher plasma microRNA-451 (29.6 ± 1.6) and significantly lower urinary microRNA-451 (21 ± 0.9) in comparison to patients with eGFR >60 ml/min/1.73 m2 and p=0.0001. eGFR showed a positive correlation with urinary microRNA-451 and negative correlation with both plasma microRNA-451 and urinary albumin. Both plasma and urinary microRNA-451 are highly sensitive and specific markers for chronicity in diabetic nephropathy patients with sensitivity of 90.9% and 95.5% and specificity of 67.6% and 95.6%, respectively. Conclusion MicroRNA-451 is a promising early biomarker for chronic kidney disease in diabetic nephropathy with high sensitivity and specificity.
Collapse
|
19
|
Wu HZY, Thalamuthu A, Cheng L, Fowler C, Masters CL, Sachdev P, Mather KA. Differential blood miRNA expression in brain amyloid imaging-defined Alzheimer's disease and controls. ALZHEIMERS RESEARCH & THERAPY 2020; 12:59. [PMID: 32414413 PMCID: PMC7229622 DOI: 10.1186/s13195-020-00627-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Background Peripheral blood microRNAs (miRNA) have been identified as potential biomarkers for Alzheimer’s disease (AD). Study results have generally been inconsistent and limited by sample heterogeneity. The aim of this study is to establish candidate blood miRNA biomarkers for AD by comparing differences in miRNA expression between participants with brain amyloid imaging-defined AD and normal cognition. Methods Blood RNA was extracted from a subset of participants from the Australian Imaging Biomarkers Lifestyle Study of Ageing cohort (AIBL) with brain amyloid imaging results. MiRNA profiling was performed using small RNA sequencing on 71 participants, comprising 40 AD with high brain amyloid burden on imaging (amyloid positive) and 31 cognitively normal controls with low brain amyloid burden (amyloid negative). Cross-sectional comparisons were made between groups to examine differential miRNA expression levels using Fisher’s exact tests. Replication of results was undertaken using a publicly available dataset of blood miRNA data of AD and controls. In silico analysis of downstream messenger RNA targets of candidate miRNAs was performed to elucidate potential biological function. Results After quality control, 816 miRNAs were available for analysis. There were 71 significantly differentially expressed miRNAs between the AD and control groups (p < 0.05). Two of these miRNAs, miR-146b-5p and miR-15b-5p, were also significant in the replication cohort. Pathways analysis showed these miRNAs to be involved in innate immune system and regulation of the cell cycle, respectively, both of which have relevance to AD pathogenesis. Conclusion Blood miR-146b-5p and miR15b-5p showed consistent differential expression in AD compared to controls. Further replication and translational studies in strictly phenotyped cohorts are needed to establish their role as biomarkers for AD to have clinical utility.
Collapse
Affiliation(s)
- Helen Zong Ying Wu
- Centre for Healthy Brain and Ageing, University of New South Wales, Sydney, Australia. .,Neuroscience Research Australia, Sydney, Australia.
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain and Ageing, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | | | - Colin L Masters
- Florey Institute, University of Melbourne, Melbourne, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing, University of New South Wales, Sydney, Australia.,Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Karen A Mather
- Centre for Healthy Brain and Ageing, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia
| | | |
Collapse
|
20
|
microRNA neural networks improve diagnosis of acute coronary syndrome (ACS). J Mol Cell Cardiol 2020; 151:155-162. [PMID: 32305360 DOI: 10.1016/j.yjmcc.2020.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cardiac troponins are the preferred biomarkers of acute myocardial infarction. Despite superior sensitivity, serial testing of Troponins to identify patients suffering acute coronary syndromes is still required in many cases to overcome limited specificity. Moreover, unstable angina pectoris relies on reported symptoms in the troponin-negative group. In this study, we investigated genome-wide miRNA levels in a prospective cohort of patients with clinically suspected ACS and determined their diagnostic value by applying an in silico neural network. METHODS PAXgene blood and serum samples were drawn and hsTnT was measured in patients at initial presentation to our Chest-Pain Unit. After clinical and diagnostic workup, patients were adjudicated by senior cardiologists in duty to their final diagnosis: STEMI, NSTEMI, unstable angina pectoris and non-ACS patients. ACS patients and a cohort of healthy controls underwent deep transcriptome sequencing. Machine learning was implemented to construct diagnostic miRNA classifiers. RESULTS We developed a neural network model which incorporates 34 validated ACS miRNAs, showing excellent classification results. By further developing additional machine learning models and selecting the best miRNAs, we achieved an accuracy of 0.96 (95% CI 0.96-0.97), sensitivity of 0.95, specificity of 0.96 and AUC of 0.99. The one-point hsTnT value reached an accuracy of 0.89, sensitivity of 0.82, specificity of 0.96, and AUC of 0.96. CONCLUSIONS Here we show the concept of neural network based biomarkers for ACS. This approach also opens the possibility to include multi-modal data points to further increase precision and perform classification of other ACS differential diagnoses.
Collapse
|
21
|
Wang L, Zhang L. Circulating Exosomal miRNA as Diagnostic Biomarkers of Neurodegenerative Diseases. Front Mol Neurosci 2020; 13:53. [PMID: 32351363 PMCID: PMC7174585 DOI: 10.3389/fnmol.2020.00053] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are a group of diseases caused by chronic and progressive degeneration of neural tissue. The main pathological manifestations are neuronal degeneration and loss in the brain and/or spinal cord. Common NDDs include Alzheimer disease (AD), Parkinson disease (PD), Huntington disease (HD), and amyotrophic lateral sclerosis (ALS). The complicated pathological characteristics and different clinical manifestations of NDDs result in a lack of sensitive and efficient diagnostic methods. In addition, no sensitive biomarkers are available to monitor the course of NDDs, predict their prognosis, and monitor the therapeutic response. Despite extensive research in recent years, analysis of amyloid β (Aβ) and α-synuclein has failed to effectively improve NDD diagnosis. Although recent studies have indicated circulating miRNAs as promising diagnostic biomarkers of NDDs, the miRNA in the peripheral circulation is susceptible to interference by other components, making circulating miRNA results less consistent. Exosomes are small membrane vesicles with a diameter of approximately 30-100 nm that transport proteins, lipids, mRNA, and miRNA. Because recent studies have shown that exosomes have a double-membrane structure that can resist ribonuclease in the blood, giving exosomal miRNA high stability and making them resistant to degradation, they may become an ideal biomarker of circulating fluids. In this review, we discuss the applicability of circulating exosomal miRNAs as biomarkers, highlight the technical aspects of exosomal miRNA analysis, and review studies that have used circulating exosomal miRNAs as candidate diagnostic biomarkers of NDDs.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
DeMarshall C, Oh E, Kheirkhah R, Sieber F, Zetterberg H, Blennow K, Nagele RG. Detection of early-stage Alzheimer's pathology using blood-based autoantibody biomarkers in elderly hip fracture repair patients. PLoS One 2019; 14:e0225178. [PMID: 31730624 PMCID: PMC6857922 DOI: 10.1371/journal.pone.0225178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022] Open
Abstract
Post-operative delirium (POD) is the most common complication following major surgery in non-demented older (>65 y/o) patients. Patients experiencing POD show increased risk for future cognitive decline, including mild cognitive impairment (MCI) and Alzheimer’s disease (AD) and, conversely, patients with cognitive decline at surgery show increased risk for POD. Here, we demonstrate that a previously established panel of AD-driven MCI (ADMCI) autoantibody (aAB) biomarkers can be used to detect prodromal AD pre-surgically in individuals admitted into the hospital for hip fracture repair (HFR) surgery. Plasma from 39 STRIDE (STRIDE: A Strategy to Reduce the Incidence of Postoperative Delirium in Elderly Patients) HFR patients and sera from 25 age- and sex-matched non-demented and non-surgical controls were screened using human protein microarrays to measure expression of a panel of 44 previously identified MCI aAB biomarkers. The predictive classification accuracy of the aAB biomarker panel was evaluated using Random Forest (RF). The ADMCI aAB biomarkers successfully distinguished 21 STRIDE HFR patients (CDR = 0.5) from 25 matched non-surgical controls with an overall accuracy of 91.3% (sensitivity = 95.2%; specificity = 88.0%). The ADMCI aAB panel also correctly identified six patients with preoperative CDR = 0 who later converted to CDR = 0.5 or >1 at one-year follow-up. Lastly, the majority of cognitively normal (CDR = 0) STRIDE HFR subjects that were positive for CSF AD biomarkers based on the A/T/N classification system were likewise classified as ADMCI aAB-positive using the biomarker panel. Results suggest that pre-surgical detection of ADMCI aAB biomarkers can readily identify HFR patients with likely early-stage AD pathology using pre-surgery blood samples, opening up the potential for early, blood-based AD detection and improvements in peri- and postoperative patient management.
Collapse
Affiliation(s)
- Cassandra DeMarshall
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, United States of America
- Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, United States of America
| | - Esther Oh
- Department of Medicine, Psychiatry and Behavioral Sciences, Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States of America
| | - Rahil Kheirkhah
- Graduate School of Biomedical Sciences (GSBS), Rowan University, Stratford, New Jersey, United States of America
| | - Frederick Sieber
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, England, United Kingdom
- UK Dementia Research Institute at UCL, London, England, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Robert G. Nagele
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, United States of America
- Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
23
|
Ryan MM, Guévremont D, Mockett BG, Abraham WC, Williams JM. Circulating Plasma microRNAs are Altered with Amyloidosis in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2019; 66:835-852. [PMID: 30347618 DOI: 10.3233/jad-180385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological changes underlying Alzheimer's disease (AD) begin decades before the classical symptoms of memory loss become evident. As microRNAs are released from neurons and enter the bloodstream, circulating microRNAs may be reflective of AD progression and are ideal candidates as biomarkers for early-stage disease detection. Here, we provide a novel, in-depth analysis of how plasma microRNAs alter with aging, the most prominent risk factor for AD, and with development of amyloid-β (Aβ) plaque deposition. We assessed the circulating microRNAs in APPswe/PSEN1dE9 transgenic mice and wild-type controls at 4, 8 and 15 m (n = 8-10) using custom designed Taqman arrays representing 185 neuropathology-related microRNAs. We performed a linear mixed-effects model to investigate the effects of age and genotype on plasma microRNAs expression. Following this analysis, we found 8 microRNAs were significantly affected by age alone in wild-type animals and 12 microRNAs altered in APPswe/PSEN1dE9 mice, either prior to Aβ plaque deposition (4 m) or during the development of AD-like pathogenesis (8 m or 15 m). Importantly, we found that differing sets of microRNAs were identified at each time point. Functional analysis of these data revealed that while common biological pathways, such as Inflammatory Response, were enriched throughout the disease process, Free Radical Scavenging, Immunological Disease, and Apoptosis Signaling were specifically enriched later in the disease process. Overall, this study reinforces that distinct biological processes underpin the early versus late stages of AD-like pathogenesis and highlights potential pre-symptomatic microRNAs biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margaret M Ryan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Diane Guévremont
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Bruce G Mockett
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Luo X, Wang W, Li D, Xu C, Liao B, Li F, Zhou X, Qin W, Liu J. Plasma Exosomal miR-450b-5p as a Possible Biomarker and Therapeutic Target for Transient Ischaemic Attacks in Rats. J Mol Neurosci 2019; 69:516-526. [PMID: 31368061 DOI: 10.1007/s12031-019-01341-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Transient ischaemic attack (TIA) and cerebral infarction are difficult to identify within the thrombolytic time window. Blood markers are efficient, economical and noninvasive and can be beneficial in the diagnosis of many diseases. Plasma exosomal biomarkers are rarely reported in TIA. Exosomal microRNAs (miRNAs) were extracted from plasma and cerebrospinal fluid after middle cerebral artery occlusion (MCAo) in rats (0 min, 5 min, 10 min, 2 h). Deep sequencing was used to detect exosomal miRNAs in rat plasma and confirm significant differentially expressed miRNAs. Polymerase chain reaction (PCR) was used to detect the differentially expressed miRNAs in plasma and cerebrospinal fluid. Exosomal miRNAs with the same expression trends in plasma and cerebrospinal fluid were selected, and bioinformatics analysis was then carried out. Finally, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was determined to assess the diagnostic accuracy of miRNAs for TIA in rats. First, high-throughput sequencing was used to detect the expression level of plasma exosome miRNA, and rno-miR-450b-5p with a decreasing expression level was screened. Second, the expression levels of exosomal miRNAs were verified in cerebrospinal fluid and plasma samples by PCR, and the results indicated that exosomal rno-miR-450b-5p was similarly expressed in cerebrospinal fluid and plasma. ROC analysis showed high AUC values for rno-miR-450b-5p (0.880) in the 10 min ischaemia rats compared with the control rats. Finally, bioinformatic analysis indicated that exosomal rno-miR-450b-5p may be involved in cerebral ischaemia. Plasma exosomal rno-miR-450b-5p has a high diagnostic value and may become a therapeutic target for rat TIA.
Collapse
Affiliation(s)
- XiuMei Luo
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Wei Wang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - DongBin Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chen Xu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Bao Liao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - FengMei Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Wu Qin
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
25
|
Chen JJ, Yang G, Yan QQ, Zhao J, Li S. Exosome-encapsulated microRNAs as promising biomarkers for Alzheimer’s disease. Rev Neurosci 2019; 31:77-87. [DOI: 10.1515/revneuro-2019-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease that locks into long clinical latency and low curative ratio. Therefore, early diagnosis before the clinical phase is quite essential and may be effective for therapeutic prevention. Peripheral blood or cerebrospinal fluid biomarkers symbolizing functional neuronal impairment are gradually applied to diagnose AD in research studies. Exosomes have generated immense interest in the diagnosis field of neurodegenerative disorders after confirmation of their roles as mediators, delivering important proteins and microRNAs (miRNAs) in intercellular communication. Compelling research results reveal that miRNAs released from exosomes modulate expression and function of amyloid precursor proteins and tau proteins. These findings open up possibility that dysfunctional exosomal miRNAs may influence AD progression. In this review, we summarized the existing knowledge of exosomal miRNAs and their involvement in AD, emphasizing their potential to serve as diagnostic biomarkers during the preclinical phase of AD.
Collapse
Affiliation(s)
- Jian-jiao Chen
- Department of General Surgery , Jinhua Hospital of Zhejiang University (Jinhua Municipal Central Hospital) , Jinhua City 321000, Zhejiang Province , P.R. China
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University , Dalian City 116044, Liaoning Province , P.R. China
| | - Guang Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan City 430030, Hubei Province , P.R. China
| | - Qing-qing Yan
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences , Dalian Medical University , 9 Western District, Lvshun South Road, Dalian City 116044 , Liaoning Province , P.R. China
| | - Jie Zhao
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences , Dalian Medical University , 9 Western District, Lvshun South Road, Dalian City 116044 , Liaoning Province , P.R. China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases , Dalian Medical University , Dalian 116000 , China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences , Dalian Medical University , 9 Western District, Lvshun South Road, Dalian City 116044 , Liaoning Province , P.R. China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases , Dalian Medical University , Dalian 116000 , China
| |
Collapse
|
26
|
Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcón M. Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders. Front Aging Neurosci 2019; 11:151. [PMID: 31312134 PMCID: PMC6614495 DOI: 10.3389/fnagi.2019.00151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Platelets are anucleate cells that circulate in blood and are essential components of the hemostatic system. During aging, platelet numbers decrease and their aggregation capacity is reduced. Platelet dysfunctions associated with aging can be linked to molecular alterations affecting several cellular systems that include cytoskeleton rearrangements, signal transduction, vesicular trafficking, and protein degradation. Age platelets may adopt a phenotype characterized by robust secretion of extracellular vesicles that could in turn account for about 70-90% of blood circulating vesicles. Interestingly these extracellular vesicles are loaded with messenger RNAs and microRNAs that may have a profound impact on protein physiology at the systems level. Age platelet dysfunction is also associated with accumulation of reactive oxygen species. Thereby understanding the mechanisms of aging in platelets as well as their age-dependent dysfunctions may be of interest when evaluating the contribution of aging to the onset of age-dependent pathologies, such as those affecting the nervous system. In this review we summarize the findings that link platelet dysfunctions to neurodegenerative diseases including Alzheimer's Disease, Parkinson's Disease, Multiple Sclerosis, Huntington's Disease, and Amyotrophic Lateral Sclerosis. We discuss the role of platelets as drivers of protein dysfunctions observed in these pathologies, their association with aging and the potential clinical significance of platelets, and related miRNAs, as peripheral biomarkers for diagnosis and prognosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Espinosa-Parrilla
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
- Laboratory of Molecular Medicine-LMM, Center for Education, Healthcare and Investigation-CADI, Universidad de Magallanes, Punta Arenas, Chile
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
| | - Christian Gonzalez-Billault
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism GERO, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA, United States
| | - Eduardo Fuentes
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Ivan Palomo
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| |
Collapse
|
27
|
Decoding epigenetic cell signaling in neuronal differentiation. Semin Cell Dev Biol 2019; 95:12-24. [PMID: 30578863 DOI: 10.1016/j.semcdb.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Neurogenesis is the process by which new neurons are generated in the brain. Neural stem cells (NSCs) are differentiated into neurons, which are integrated into the neural network. Nowadays, pluripotent stem cells, multipotent stem cells, and induced pluripotent stem cells can be artificially differentiated into neurons utilizing several techniques. Specific transcriptional profiles from NSCs during differentiation are frequently used to approach and observe phenotype alteration and functional determination of neurons. In this context, the role of non-coding RNA, transcription factors and epigenetic changes in neuronal development and differentiation has gained importance. Epigenetic elucidation has become a field of intense research due to distinct patterns of normal conditions and different neurodegenerative disorders, which can be explored to develop new diagnostic methods or gene therapies. In this review, we discuss the complexity of transcription factors, non-coding RNAs, and extracellular vesicles that are responsible for guiding and coordinating neural development.
Collapse
|
28
|
Ghorbanmehr N, Gharbi S, Korsching E, Tavallaei M, Einollahi B, Mowla SJ. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate 2019; 79:88-95. [PMID: 30194772 DOI: 10.1002/pros.23714] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Early detection of cancers improves patients' survival and decreases the treatment cost. Unfortunately, the current methods for diagnosis of bladder and prostate cancers, two most common urothelial malignancies, suffer from a low sensitivity and specificity. MicroRNAs, as a group of endogenously produced non-coding RNAs, regulate gene expression and their expression is observed to be altered in many cancers and cancer progression phenomena. The remarkable stability of microRNAs in biofluids and their unique expression pattern in different pathological conditions make them an appealing, noninvasive diagnostic method in cancer diagnosis. Our objective is to identify microRNAs as biomarkers in urine samples of bladder and prostate cancers to improve the existing diagnostic methods in this field. MATERIALS AND METHODS In this study, urine samples from 110 men with either bladder (n = 45) or prostate (n = 23) cancer, benign prostatic hyperplasia (n = 22) and healthy controls (n = 20) were collected. qPCR was used to evaluate the expression level of miR-21-5p, miR-141-3p, and miR-205-5p in these samples. The sensitivity and specificity of these microRNAs were determined using ROC curve analysis. RESULTS The analysis of the data revealed that miR-21-5p, miR-141-3p, and miR-205-5p are differentially expressed in urine of bladder and prostate cancer patients. All these three microRNAs were upregulated in these samples and they were also able to differentiate benign prostatic hyperplasia from malignant cases. The statistical analyses revealed a good specificity for each individual microRNA. CONCLUSION The results show that these three urine-based microRNAs might be a good choice to implement a specific and non-invasive diagnostic tool for bladder and prostate cancer. The expression pattern of all three microRNAs was particularly useful to distinguish benign and invasive tumors in prostate cases. From the patients' perspective the improvement of the diagnostic situation is awaited eagerly.
Collapse
Affiliation(s)
- Nassim Ghorbanmehr
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sedigheh Gharbi
- Department of Biology, Faculty of Basic Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Eberhard Korsching
- Institute of Bioinformatics, University Hospital of Münster, University of Münster, Münster, Germany
| | - Mahmood Tavallaei
- Genetic Research Center, Baqiyatallah Medical Sciences University, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C. Omics-based Biomarkers for the Early Alzheimer Disease Diagnosis and Reliable Therapeutic Targets Development. Curr Neuropharmacol 2019; 17:630-647. [PMID: 30255758 PMCID: PMC6712290 DOI: 10.2174/1570159x16666180926123722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most common cause of dementia in adulthood, has great medical, social, and economic impact worldwide. Available treatments result in symptomatic relief, and most of them are indicated from the early stages of the disease. Therefore, there is an increasing body of research developing accurate and early diagnoses, as well as diseasemodifying therapies. OBJECTIVE Advancing the knowledge of AD physiopathological mechanisms, improving early diagnosis and developing effective treatments from omics-based biomarkers. METHODS Studies using omics technologies to detect early AD, were reviewed with a particular focus on the metabolites/lipids, micro-RNAs and proteins, which are identified as potential biomarkers in non-invasive samples. RESULTS This review summarizes recent research on metabolomics/lipidomics, epigenomics and proteomics, applied to early AD detection. Main research lines are the study of metabolites from pathways, such as lipid, amino acid and neurotransmitter metabolisms, cholesterol biosynthesis, and Krebs and urea cycles. In addition, some microRNAs and proteins (microglobulins, interleukins), related to a common network with amyloid precursor protein and tau, have been also identified as potential biomarkers. Nevertheless, the reproducibility of results among studies is not good enough and a standard methodological approach is needed in order to obtain accurate information. CONCLUSION The assessment of metabolomic/lipidomic, epigenomic and proteomic changes associated with AD to identify early biomarkers in non-invasive samples from well-defined participants groups will potentially allow the advancement in the early diagnosis and improvement of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Consuelo Cháfer-Pericás
- Address correspondence to this author at the Health Research Institute La Fe, Avda de Fernando Abril Martorell, 106; 46026 Valencia, Spain;Tel: +34 96 124 66 61; Fax: + 34 96 124 57 46; E-mail:
| |
Collapse
|
30
|
Soekmadji C, Hill AF, Wauben MH, Buzás EI, Di Vizio D, Gardiner C, Lötvall J, Sahoo S, Witwer KW. Towards mechanisms and standardization in extracellular vesicle and extracellular RNA studies: results of a worldwide survey. J Extracell Vesicles 2018; 7:1535745. [PMID: 30370018 PMCID: PMC6201809 DOI: 10.1080/20013078.2018.1535745] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The discovery that extracellular vesicles (EVs) can transfer functional extracellular RNAs (exRNAs) between cells opened new avenues into the study of EVs in health and disease. Growing interest in EV RNAs and other forms of exRNA has given rise to research programmes including but not limited to the Extracellular RNA Communication Consortium (ERCC) of the US National Institutes of Health. In 2017, the International Society for Extracellular Vesicles (ISEV) administered a survey focusing on EVs and exRNA to canvass-related views and perceived needs of the EV research community. Here, we report the results of this survey. Overall, respondents emphasized opportunities for technical developments, unraveling of molecular mechanisms and standardization of methodologies to increase understanding of the important roles of exRNAs in the broader context of EV science. In conclusion, although exRNA biology is a relatively recent emphasis in the EV field, it has driven considerable interest and resource commitment. The ISEV community looks forward to continuing developments in the science of exRNA and EVs, but without excluding other important molecular constituents of EVs.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Marca H Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,MTA-SE Immuno-Proteogenomics Research Groups, Budapest, Hungary
| | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences, and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Chris Gardiner
- Research Department of Haematology, University College London, London, UK
| | - Jan Lötvall
- Krefting Research Centre, University of Gothenburg, Sweden
| | - Susmita Sahoo
- Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kenneth W Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology, The John Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
31
|
An electric potential modulated cascade of catalyzed hairpin assembly and rolling chain amplification for microRNA detection. Biosens Bioelectron 2018; 126:565-571. [PMID: 30500771 DOI: 10.1016/j.bios.2018.09.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
Abstract
MicroRNAs serve as a new type of biomarker for multifarious diseases due to its critical roles in post transcriptional gene regulation. Herein, we firstly integrate the catalyzed hairpin assembly (CHA) and rolling circle amplification (RCA) into an electrochemical biosensor for sensitive and specific detection of miR-21. Meanwhile, an electric potential was employed to modulate the efficiency of CHA occurred on the electrode, which offer a simple but effective method to surmount the accessibility problem of probes. The biosensor achieved an ultrasensitive determination of miR-21 with a low limit of detection of 13.5 fM and a linear range from 15 fM to 250 pM. This research encourages us to challenge the hyphenated multiple amplification strategies and provides a stable and effective method for the detection of diseases-related miRNAs in peripheral biofluids, as well as paves a road for the future clinical diagnostics and treatment of disease.
Collapse
|
32
|
Singh S, Gupta SK, Seth PK. Biomarkers for detection, prognosis and therapeutic assessment of neurological disorders. Rev Neurosci 2018; 29:771-789. [PMID: 29466244 DOI: 10.1515/revneuro-2017-0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/17/2017] [Indexed: 10/24/2023]
Abstract
Neurological disorders have aroused a significant concern among the health scientists globally, as diseases such as Parkinson's, Alzheimer's and dementia lead to disability and people have to live with them throughout the life. Recent evidence suggests that a number of environmental chemicals such as pesticides (paraquat) and metals (lead and aluminum) are also the cause of these diseases and other neurological disorders. Biomarkers can help in detecting the disorder at the preclinical stage, progression of the disease and key metabolomic alterations permitting identification of potential targets for intervention. A number of biomarkers have been proposed for some neurological disorders based on laboratory and clinical studies. In silico approaches have also been used by some investigators. Yet the ideal biomarker, which can help in early detection and follow-up on treatment and identifying the susceptible populations, is not available. An attempt has therefore been made to review the recent advancements of in silico approaches for discovery of biomarkers and their validation. In silico techniques implemented with multi-omics approaches have potential to provide a fast and accurate approach to identify novel biomarkers.
Collapse
Affiliation(s)
- Sarita Singh
- Distinguished Scientist Laboratory, Biotech Park, Sector-G Jankipram, Kursi Road, Lucknow 226021, Uttar Pradesh, India
| | - Sunil Kumar Gupta
- Distinguished Scientist Laboratory, Biotech Park, Lucknow 226021, Uttar Pradesh, India
| | - Prahlad Kishore Seth
- Distinguished Scientist Laboratory, Biotech Park, Lucknow 226021, Uttar Pradesh, India
| |
Collapse
|
33
|
Macro roles for microRNAs in neurodegenerative diseases. Noncoding RNA Res 2018; 3:154-159. [PMID: 30175288 PMCID: PMC6114258 DOI: 10.1016/j.ncrna.2018.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) are typically adult-onset progressive disorders that perturb neuronal function, plasticity and health that arise through a host of one or more genetic and/or environmental factors. Over the last decade, numerous studies have shown that mutations in RNA binding proteins and changes in miRNA profiles within the brain are significantly altered during the progression towards NDs – suggesting miRNAs may be one of these contributing factors. Interestingly, the molecular and cellular functions of miRNAs in NDs is largely understudied and could remain a possible avenue for exploring therapeutic treatments for various NDs. In this review, I describe findings which have implicated miRNAs in various NDs and discuss how future studies focused around miRNA-mediated gene silencing could aid in furthering our understanding of maintaining a healthy brain.
Collapse
|
34
|
Insect-specific viruses: from discovery to potential translational applications. Curr Opin Virol 2018; 33:33-41. [PMID: 30048906 DOI: 10.1016/j.coviro.2018.07.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Over the past decade the scientific community has experienced a new age of virus discovery in arthropods in general, and in insects in particular. Next generation sequencing and advanced bioinformatics tools have provided new insights about insect viromes and viral evolution. In this review, we discuss some high-throughput sequencing technologies used to discover viruses in insects and the challenges raised in data interpretations. Additionally, the discovery of these novel viruses that are considered as insect-specific viruses (ISVs) has gained increasing attention in their potential use as biological agents. As example, we show how the ISV Nhumirim virus was used to reduce West Nile virus transmission when co-infecting the mosquito vector. We also discuss new translational opportunities of using ISVs to limit insect vector competence by using them to interfere with pathogen acquisition, to directly target the insect vector or to confer pathogen resistance by the insect vector.
Collapse
|
35
|
Hicks SD, Khurana N, Williams J, Dowd Greene C, Uhlig R, Middleton FA. Diurnal oscillations in human salivary microRNA and microbial transcription: Implications for human health and disease. PLoS One 2018; 13:e0198288. [PMID: 30020932 PMCID: PMC6051604 DOI: 10.1371/journal.pone.0198288] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
The microbiome plays a vital role in human health and disease. Interaction between human hosts and the microbiome occurs through a number of mechanisms, including transcriptomic regulation by microRNA (miRNA). In animal models, circadian variations in miRNA and microbiome elements have been described, but patterns of co-expression and potential diurnal interaction in humans have not. We investigated daily oscillations in salivary miRNA and microbial RNA to explore relationships between these components of the gut-brain-axis and their implications in human health. Nine subjects provided 120 saliva samples at designated times, on repeated days. Samples were divided into three sets for exploration and cross-validation. Identification and quantification of host miRNA and microbial RNA was performed using next generation sequencing. Three stages of statistical analyses were used to identify circadian oscillators: 1) a two-way analysis of variance in the first two sample sets identified host miRNAs and microbial RNAs whose abundance varied with collection time (but not day); 2) multivariate modeling identified subsets of these miRNAs and microbial RNAs strongly-associated with collection time, and evaluated their predictive ability in an independent hold-out sample set; 3) regulation of circadian miRNAs and microbial RNAs was explored in data from autistic children with disordered sleep (n = 77), relative to autistic peers with typical sleep (n = 63). Eleven miRNAs and 11 microbial RNAs demonstrated consistent diurnal oscillation across sample sets and accurately predicted collection time in the hold-out set. Associations among five circadian miRNAs and four circadian microbial RNAs were observed. We termed the 11 miRNAs CircaMiRs. These CircaMiRs had 1,127 predicted gene targets, with enrichment for both circadian gene targets and metabolic signaling processes. Four CircaMiRs had "altered" expression patterns among children with disordered sleep. Thus, novel and correlated circadian oscillations in human miRNA and microbial RNA exist and may have distinct implications in human health and disease.
Collapse
Affiliation(s)
- Steven D. Hicks
- Department of Pediatrics, Penn State University Hershey Medical Center, Hershey, PA, United States of America
| | - Neil Khurana
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, United States of America
- Quadrant Biosciences, Inc., Syracuse, NY, United States of America
| | - Jeremy Williams
- Quadrant Biosciences, Inc., Syracuse, NY, United States of America
| | | | - Richard Uhlig
- Quadrant Biosciences, Inc., Syracuse, NY, United States of America
| | - Frank A. Middleton
- Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States of America
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, United States of America
| |
Collapse
|
36
|
Circulating microRNAs disclose biology of normal cognitive function in healthy elderly people - a discovery twin study. Eur J Hum Genet 2018; 26:1378-1387. [PMID: 29720677 DOI: 10.1038/s41431-018-0157-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 12/15/2022] Open
Abstract
Neurobiology is regulated by miRNA. Here circulating plasma miRNAs were assayed on a 754 miRNA OpenArray platform using 90 monozygotic elderly twins (73-95 year of age) and associated with mini mental state examination (MMSE) and a five-component cognitive score (CCS) in an explorative study. Both ordinary individual and twin-pair analyses were performed with level of cognitive scores. Candidate miRNAs were further associated with cognitive decline over 10 years using up to six repeated assessments. A total of 278 miRNAs were expressed in plasma from at least ten participants and 23 miRNAs were nominally associated (i.e., at an uncorrected p < 0.05) with CCS or MMSE in the paired analyses. Generally, elderly individuals with poor cognitive function had increase miRNA expression compared with equivalent individuals who performed better on the cognitive scale. Three miRNAs, miR-151a-3p, miR-212-3p and miR-1274b were associated with CCS both in the paired and the individual analysis. Four miRNAs found to be associated with CCS in cross-sectional analysis were also found to show an association in longitudinal analysis such that increase miRNA expression was associated with steeper cognitive decline. We propose a shared biological path underlies dementia and normative cognitive aging.
Collapse
|
37
|
Moradifard S, Hoseinbeyki M, Ganji SM, Minuchehr Z. Analysis of microRNA and Gene Expression Profiles in Alzheimer's Disease: A Meta-Analysis Approach. Sci Rep 2018; 8:4767. [PMID: 29555910 PMCID: PMC5859169 DOI: 10.1038/s41598-018-20959-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Understanding the molecular mechanisms underlying Alzheimer’s disease (AD) is necessary for the diagnosis and treatment of this neurodegenerative disorder. It is therefore important to detect the most important genes and miRNAs, which are associated with molecular events, and studying their interactions for recognition of AD mechanisms. Here we focus on the genes and miRNAs expression profile, which we have detected the miRNA target genes involved in AD. These are the most quintessential to find the most important miRNA, to target genes and their important pathways. A total of 179 differentially expressed miRNAs (DEmiRs) and 1404 differentially expressed genes (DEGs) were obtained from a comprehensive meta-analysis. Also, regions specific genes with their molecular function in AD have been demonstrated. We then focused on miRNAs which regulated most genes in AD, alongside we analyzed their pathways. The miRNA-30a-5p and miRNA-335 elicited a major function in AD after analyzing the regulatory network, we showed they were the most regulatory miRNAs in the AD. In conclusion, we demonstrated the most important genes, miRNAs, miRNA-mRNA interactions and their related pathways in AD using Bioinformatics methods. Accordingly, our defined genes and miRNAs could be used for future molecular studies in the context of AD.
Collapse
Affiliation(s)
- Shirin Moradifard
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Moslem Hoseinbeyki
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Zarrin Minuchehr
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
38
|
Li DB, Liu JL, Wang W, Luo XM, Zhou X, Li JP, Cao XL, Long XH, Chen JG, Qin C. Plasma Exosomal miRNA-122-5p and miR-300-3p as Potential Markers for Transient Ischaemic Attack in Rats. Front Aging Neurosci 2018; 10:24. [PMID: 29467645 PMCID: PMC5808157 DOI: 10.3389/fnagi.2018.00024] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/19/2018] [Indexed: 12/04/2022] Open
Abstract
Background: Differentiation of transient ischaemic attack (TIA) from ischaemic stroke within the thrombolysis time window is difficult. Although TIA may be diagnosed within this window, the latest imaging technologies are complex and costly. Serum markers, which are non-invasive, rapid and economic, are used for diagnosis and prognosis of various diseases. Exosome-derived miRNA markers for TIA are unknown. Methods: We examined focal brain ischaemia produced by occlusion of the middle cerebral artery (MCAo) for 5 min, 10 min, and 2 h in rats. Exosomal miRNAs with consistent trends in cerebrospinal fluid (CSF) and plasma were identified by deep sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). The areas under the curve (AUC) of the receiver operating characteristic (ROC) curve were used to evaluate the diagnostic accuracy of these miRNAs for TIA in rats. Results: Rno-miR-122-5p and rno-miR-300-3p were selected. Plasma exosomal rno-miR-122-5p was significantly downregulated in 10 min ischaemic rats compared with control and 5 min plasma. Plasma exosomal rno-miR-300-3p was significantly upregulated in 5 min ischaemic rats compared with control, 10 min and 2 h rats. Plasma and CSF levels of these miRNAs were correlated. ROC analysis showed high AUC values for rno-miR-122-5p (0.960) and rno-miR-300-3p (0.970) in the 10 and 5 min rats, respectively, compared with controls. Conclusions: Plasma exosomal rno-miR-122-5p and rno-miR-300-3p may be blood-based TIA biomarkers.
Collapse
Affiliation(s)
- Dong-Bin Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jing-Li Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Wei Wang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiu-Mei Luo
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jin-Pin Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiao-Li Cao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiao-Hong Long
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jia-Gui Chen
- Public Health School of Guangxi Medical University, Nanning, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
39
|
Chen C, Lu C, Qian Y, Li H, Tan Y, Cai L, Weng H. Urinary miR-21 as a potential biomarker of hypertensive kidney injury and fibrosis. Sci Rep 2017; 7:17737. [PMID: 29255279 PMCID: PMC5735153 DOI: 10.1038/s41598-017-18175-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/06/2017] [Indexed: 12/17/2022] Open
Abstract
Kidney biopsy is considered the golden criterion for diagnosing the etiology of kidney disease but accompanied by non-negligible complications. We explored the possibility of using urinary microRNA (miRNA) as a non-invasive biomarker for hypertensive kidney injury. We assessed differential miRNA expressions in the kidneys and urine of hypertensive mice with kidney injury induced by deoxycorticosterone acetate (DOCA)-salt compared to the controls. DOCA-salt treatment significantly increased renal tubular lesions from day 2 and mRNA expression of fibrosis-related genes from day 4 compared to the controls, respectively. Urinary albumin and N-acetyl-beta-D-glucosaminidase was significantly increased on day 8 compared to the controls. Array results showed that 20 out of 585 miRNAs were highly expressed in the kidneys and significantly increased on day 8 compared to the controls, including miR-21, miR-146b, miR-155 and miR-132, which were confirmed by real-time polymerase chain reaction and were significantly higher from day 4. The miR-21/creatinine in the urine from day 4 was significantly higher than that of the controls and was detected earlier than urinary albumin. In conclusion, we have identified urinary miR-21 that correlates with histopathological lesions and functional markers of kidney damage to facilitate a potential noninvasive detection for hypertensive kidney injury.
Collapse
Affiliation(s)
- Congcong Chen
- Chinese-American Research Institute for Pediatrics & Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China
| | - Chaosheng Lu
- Chinese-American Research Institute for Pediatrics & Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Qian
- Chinese-American Research Institute for Pediatrics & Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyan Li
- Chinese-American Research Institute for Pediatrics & Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Tan
- Chinese-American Research Institute for Pediatrics & Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China.,Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology University of Louisville, Louisville, Kentucky, USA
| | - Lu Cai
- Chinese-American Research Institute for Pediatrics & Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Department of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China. .,Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology University of Louisville, Louisville, Kentucky, USA.
| | - Huachun Weng
- Chinese-American Research Institute for Pediatrics & Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
40
|
Wei TY, Fu Y, Chang KH, Lin KJ, Lu YJ, Cheng CM. Point-of-Care Devices Using Disease Biomarkers To Diagnose Neurodegenerative Disorders. Trends Biotechnol 2017; 36:290-303. [PMID: 29242004 DOI: 10.1016/j.tibtech.2017.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are highly prevalent and immensely destructive to the health and well-being of individuals and their families across the globe. Neurodegenerative diseases are characterized by the gradual loss of neural tissue in the central nervous system. Clearly, early diagnosis of the onset of neurodegeneration is vital and beneficial. Current diagnostic methods rely heavily on symptoms or autopsy results, thus overlooking early diagnosis, the only opportunity for amelioration. However, appropriately selected and used biomarker diagnostics provide a solution. This article reviews the development and application of biomarker-related diagnostics for neurodegenerative disease with specific recommendations for point-of-care (POC) methodology. These advantageous approaches may offer a solution to existing obstacles and limitations to neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Ting-Yen Wei
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; These authors contributed equally
| | - Yun Fu
- Department of Dermatology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 33305, Taiwan; These authors contributed equally
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kun-Ju Lin
- Animal Molecular Imaging Center and Department of Nuclear Medicine, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 33305, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
41
|
Croese T, Furlan R. Extracellular vesicles in neurodegenerative diseases. Mol Aspects Med 2017; 60:52-61. [PMID: 29137922 DOI: 10.1016/j.mam.2017.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are released by all neural cells, including neurons, oligodendrocytes, astrocytes, and microglia. The lack of adequate technology has not halted neuroscientists from investigating EVs as a mean to decipher neurodegenerative disorders, still in search of comprehensible pathogenic mechanisms and efficient treatment. EVs are thought to be one of ways neurodegenerative pathologies spread in the brain, but also one of the ways the brain tries to displace toxic proteins, making their meaning in pathogenesis uncertain. EVs, however do reach biological fluids where they can be analyzed, and might therefore constitute clinically decisive biomarkers for neurodegenerative diseases in the future. Finally, if they constitute a physiological inter-cell communication system, they may represent also a very specific drug delivery tool for a difficult target such as the brain. We try to resume here available information on the role of EVs in neurodegeneration, with a special focus on Alzheimer's disease, progressive multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Tommaso Croese
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
42
|
Wei J, Blenkiron C, Tsai P, James JL, Chen Q, Stone PR, Chamley LW. Placental trophoblast debris mediated feto-maternal signalling via small RNA delivery: implications for preeclampsia. Sci Rep 2017; 7:14681. [PMID: 29089639 PMCID: PMC5665858 DOI: 10.1038/s41598-017-14180-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/03/2017] [Indexed: 11/09/2022] Open
Abstract
To profile the small RNA cargo carried by trophoblast debris derived from the placenta during normal and preeclamptic pregnancies and to determine whether trophoblast debris can deliver its small RNAs to endothelial cells with functional consequences. We confirmed that trophoblast debris can deliver its small RNAs contents to recipient endothelial cells during the co-culture. Next generation sequencing was employed to profile the small RNA contents in both normotensive and preeclamptic trophoblast debris. We identified 1278 mature miRNAs and 2646 non-miRNA small RNA fragments contained. Differential expression analysis identified 16 miRNAs (including miR-145), 5 tRNA fragments from 3 different tRNAs, 13 snRNA fragments and 85 rRNA fragments that were present in different levels between preeclamptic and normotensive trophoblast debris. We loaded a miR-145 mimic into normotensive trophoblast debris via transfection of placental explants from which the debris was derived and found the miR-145 loaded debris induced transcriptomic changes in endothelial cells similar to those induced by preeclamptic trophoblast debris. Trophoblast debris deported into maternal circulation can deliver its small RNA contents to maternal cells thereby contributing to feto-maternal communication. Small RNAs that are dysregulated in preeclamptic trophoblast debris might contribute to the endothelial cell activation which is a hallmark of preeclampsia.
Collapse
Affiliation(s)
- Jia Wei
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand. .,Department of Obstetrics and Gynaecology, Tongji Hospital affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Cherie Blenkiron
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Yoon H, Belmonte KC, Kasten T, Bateman R, Kim J. Intra- and Inter-individual Variability of microRNA Levels in Human Cerebrospinal Fluid: Critical Implications for Biomarker Discovery. Sci Rep 2017; 7:12720. [PMID: 28983117 PMCID: PMC5629256 DOI: 10.1038/s41598-017-13031-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs are emerging as promising biomarkers for diagnosis of various diseases. Notably, cerebrospinal fluid (CSF) contains microRNAs that may serve as biomarkers for neurological diseases. However, there has been a lack of consistent findings among CSF microRNAs studies. Although such inconsistent results have been attributed to various technical issues, inherent biological variability has not been adequately considered as a confounding factor. To address this critical gap in our understanding of microRNA variability, we evaluated intra-individual variability of microRNAs by measuring their levels in the CSF from healthy individuals at two time points, 0 and 48 hours. Surprisingly, the levels of most microRNAs were stable between the two time points. This suggests that microRNAs in CSF may be a good resource for the identification of biomarkers. However, the levels of 12 microRNAs (miR-19a-3p, miR-19b-3p, miR-23a-3p, miR-25a-3p, miR-99a-5p, miR-101-3p, miR-125b-5p, miR-130a-3p, miR-194-5p, miR-195-5p, miR-223-3p, and miR-451a) were significantly altered during the 48 hours interval. Importantly, miRNAs with variable expression have been identified as biomarkers in previous studies. Our data strongly suggest that these microRNAs may not be reliable biomarkers given their intrinsic variability even within the same individual. Taken together, our results provide a critical baseline resource for future microRNA biomarker studies.
Collapse
Affiliation(s)
- Hyejin Yoon
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA.,Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Krystal C Belmonte
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Tom Kasten
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Randall Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA. .,Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA.
| |
Collapse
|
44
|
Ham S, Kim TK, Lee S, Tang YP, Im HI. MicroRNA Profiling in Aging Brain of PSEN1/PSEN2 Double Knockout Mice. Mol Neurobiol 2017; 55:5232-5242. [PMID: 28879407 DOI: 10.1007/s12035-017-0753-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/23/2017] [Indexed: 01/09/2023]
Abstract
MicroRNAs are small non-coding RNAs that function as regulators of gene expression. The altered expression of microRNAs influences the pathogenesis of Alzheimer's disease. Many researchers have focused on studies based on the relatively distinctive etiology of familial Alzheimer's disease due to the absence of risk factors in the pathogenesis of sporadic Alzheimer's disease. Although there is a limitation in Alzheimer's disease studies, both Alzheimer's disease types have a common risk factor-aging. No study to date has examined the aging factor in Alzheimer's disease animal models with microRNAs. To investigate the effect of aging on the changes in microRNA expressions in the Alzheimer's disease animal model, we selected 37 hippocampal microRNAs whose expression in 12- and 18-month aged mice changed significantly using microRNA microarray. On the basis of bioinformatics databases, 30 hippocampal microRNAs and their putative targets of PSEN1/PSEN2 double knockout mice were included in 28 pathways such as the wnt signaling pathway and ubiquitin-mediated proteolysis pathway. Cortical microRNAs and its putative targets involved in pathological aging were included in only four pathways such as the heparin sulfate biosynthesis. The altered expressions of these hippocampal microRNAs were associated to the imbalance between neurotoxic and neuroprotective functions and seemed to affect neurodegeneration in PSEN1/PSEN2 double knockout mice more severely than in wild-type mice. This microRNA profiling suggests that microRNAs play potential roles in the normal aging process, as well as in the Alzheimer's disease process.
Collapse
Affiliation(s)
- Suji Ham
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Tae Kyoo Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Department of Biology, Boston University, Boston, 02215, USA
| | - Sangjoon Lee
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ya-Ping Tang
- Neuroscience Center of Excellence, Louisiana State University Health New Orleans Sciences Center, New Orleans, LA, 70112, USA
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea. .,Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
45
|
Chen JJ, Zhao B, Zhao J, Li S. Potential Roles of Exosomal MicroRNAs as Diagnostic Biomarkers and Therapeutic Application in Alzheimer's Disease. Neural Plast 2017; 2017:7027380. [PMID: 28770113 PMCID: PMC5523215 DOI: 10.1155/2017/7027380] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are bilipid layer-enclosed vesicles derived from endosomes and are released from neural cells. They contain a diversity of proteins, mRNAs, and microRNAs (miRNAs) that are delivered to neighboring cells and/or are transported to distant sites. miRNAs released from exosomes appear to be associated with multiple neurodegenerative conditions linking to Alzheimer's disease (AD) which is marked by hyperphosphorylated tau proteins and accumulation of Aβ plaques. Exciting findings reveal that miRNAs released from exosomes modulate the expression and function of amyloid precursor proteins (APP) and tau proteins. These open up the possibility that dysfunctional exosomal miRNAs may influence AD progression. In addition, it has been confirmed that the interaction between miRNAs released by exosomes and Toll-like receptors (TLR) initiates inflammation. In exosome support-deprived neurons, exosomal miRNAs may regulate neuroplasticity to relieve neurological damage. In this review, we summarize the literature on the function of exosomal miRNAs in AD pathology, the potential of these miRNAs as diagnostic biomarkers in AD, and the use of exosomes in the delivery of miRNAs which may lead to major advances in the field of macromolecular drug delivery.
Collapse
Affiliation(s)
- Jian-jiao Chen
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian City, Liaoning Province 116044, China
- Department of General Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou City, Jiangsu Province 225000, China
| | - Bin Zhao
- Technology Centre of Target-Based Nature Products for Prevention and Treatment of Aging-Related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Jie Zhao
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian City, Liaoning Province 116044, China
- Technology Centre of Target-Based Nature Products for Prevention and Treatment of Aging-Related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian City, Liaoning Province 116044, China
| |
Collapse
|
46
|
Plasma and White Blood Cells Show Different miRNA Expression Profiles in Parkinson's Disease. J Mol Neurosci 2017; 62:244-254. [PMID: 28540642 DOI: 10.1007/s12031-017-0926-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) diagnosis is based on the assessment of motor symptoms, which manifest when more than 50% of dopaminergic neurons are degenerated. To date, no validated biomarkers are available for the diagnosis of PD. The aims of the present study are to evaluate whether plasma and white blood cells (WBCs) are interchangeable biomarker sources and to identify circulating plasma-based microRNA (miRNA) biomarkers for an early detection of PD. We profiled plasma miRNA levels in 99 L-dopa-treated PD patients from two independent data collections, in ten drug-naïve PD patients, and in unaffected controls matched by sex and age. We evaluated expression levels by reverse transcription and quantitative real-time PCR (RT-qPCR) and combined the results from treated PD patients using a fixed effect inverse-variance weighted meta-analysis. We revealed different expression profiles comparing plasma and WBCs and drug-naïve and L-dopa-treated PD patients. We observed an upregulation trend for miR-30a-5p in L-dopa-treated PD patients and investigated candidate target genes by integrated in silico analyses. We could not analyse miR-29b-3p, normally expressed in WBCs, due to the very low expression in plasma. We observed different expression profiles in WBCs and plasma, suggesting that they are both suitable but not interchangeable peripheral sources for biomarkers. We revealed miR-30a-5p as a potential biomarker for PD in plasma. In silico analyses suggest that miR-30a-5p might have a regulatory role in mitochondrial dynamics and autophagy. Further investigations are needed to confirm miR-30a-5p deregulation and targets and to investigate the influence of L-dopa treatment on miRNA expression levels.
Collapse
|
47
|
Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28130830 DOI: 10.1002/wrna.1413] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/15/2022]
Abstract
Cells release a range of membrane-enclosed extracellular vesicles (EVs) into the environment. Among them, exosomes and microvesicles (collectively measuring 40-1000 nm in diameter) carry proteins, signaling lipids, and nucleic acids from donor cells to recipient cells, and thus have been proposed to serve as intercellular mediators of communication. EVs transport cellular materials in many physiologic processes, including differentiation, stem cell homeostasis, immune responses, and neuronal signaling. EVs are also increasingly recognized as having a direct role in pathologies such as cancer and neurodegeneration. Accordingly, EVs have been the focus of intense investigation as biomarkers of disease, prognostic indicators, and even therapeutic tools. Here, we review the classes of RNAs present in EVs, both coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs). The rising attention to EV-resident RNAs as biomarkers stems from the fact that RNAs can be detected at extremely low quantities using a number of methods. To illustrate the interest in EV biology, we discuss EV RNAs in cancer and neurodegeneration, two major age-associated disease processes. WIREs RNA 2017, 8:e1413. doi: 10.1002/wrna.1413 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Maja Mustapic
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
48
|
Bellingham SA, Shambrook M, Hill AF. Quantitative Analysis of Exosomal miRNA via qPCR and Digital PCR. Methods Mol Biol 2017; 1545:55-70. [PMID: 27943207 DOI: 10.1007/978-1-4939-6728-5_5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles, such as exosomes and microvesicles, have been shown to contain potential microRNA (miRNA) biomarkers that may be utilized in the diagnosis of various diseases from cancer to neurological disorders. The unique nature of the extracellular vesicle bilayer allows miRNA to be protected from degradation making it an ideal source of material for biomarkers discovery from both fresh and archived samples. Here we describe the quantitative analysis of miRNA isolated from exosomes by quantitative PCR and digital PCR.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mitch Shambrook
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Room 415, LIMS1, Bundoora, Melbourne, VIC, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
49
|
Dinkins MB, Wang G, Bieberich E. Sphingolipid-Enriched Extracellular Vesicles and Alzheimer's Disease: A Decade of Research. J Alzheimers Dis 2017; 60:757-768. [PMID: 27662306 PMCID: PMC5360538 DOI: 10.3233/jad-160567] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), particularly exosomes, have emerged in the last 10 years as a new player in the progression of Alzheimer's disease (AD) with high potential for being useful as a diagnostic and treatment tool. Exosomes and other EVs are enriched with the sphingolipid ceramide as well as other more complex glycosphingolipids such as gangliosides. At least a subpopulation of exosomes requires neutral sphingomyelinase activity for their biogenesis and secretion. As ceramide is often elevated in AD, exosome secretion may be affected as well. Here, we review the available data showing that exosomes regulate the aggregation and clearance of amyloid-beta (Aβ) and discuss the differences in data from laboratories regarding Aβ binding, induction of aggregation, and glial clearance. We also summarize available data on the role of exosomes in extracellular tau propagation, AD-related exosomal mRNA/miRNA cargo, and the use of exosomes as biomarker and gene therapy vehicles for diagnosis and potential treatment.
Collapse
Affiliation(s)
- Michael B. Dinkins
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| |
Collapse
|
50
|
Quek C, Bellingham SA, Jung CH, Scicluna BJ, Shambrook MC, Sharples RA, Cheng L, Hill AF. Defining the purity of exosomes required for diagnostic profiling of small RNA suitable for biomarker discovery. RNA Biol 2016; 14:245-258. [PMID: 28005467 PMCID: PMC5324750 DOI: 10.1080/15476286.2016.1270005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Small non-coding RNAs (ncRNA), including microRNAs (miRNA), enclosed in exosomes are being utilised for biomarker discovery in disease. Two common exosome isolation methods involve differential ultracentrifugation or differential ultracentrifugation coupled with Optiprep gradient fractionation. Generally, the incorporation of an Optiprep gradient provides better separation and increased purity of exosomes. The question of whether increased purity of exosomes is required for small ncRNA profiling, particularly in diagnostic and biomarker purposes, has not been addressed and highly debated. Utilizing an established neuronal cell system, we used next-generation sequencing to comprehensively profile ncRNA in cells and exosomes isolated by these 2 isolation methods. By comparing ncRNA content in exosomes from these two methods, we found that exosomes from both isolation methods were enriched with miRNAs and contained a diverse range of rRNA, small nuclear RNA, small nucleolar RNA and piwi-interacting RNA as compared with their cellular counterparts. Additionally, tRNA fragments (30-55 nucleotides in length) were identified in exosomes and may act as potential modulators for repressing protein translation. Overall, the outcome of this study confirms that ultracentrifugation-based method as a feasible approach to identify ncRNA biomarkers in exosomes.
Collapse
Affiliation(s)
- Camelia Quek
- a Department of Biochemistry and Molecular Biology , Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne , VIC , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| | - Shayne A Bellingham
- a Department of Biochemistry and Molecular Biology , Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne , VIC , Australia
| | - Chol-Hee Jung
- c VLSCI Life Sciences Computation Centre, University of Melbourne , VIC , Australia
| | - Benjamin J Scicluna
- a Department of Biochemistry and Molecular Biology , Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne , VIC , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| | - Mitch C Shambrook
- b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| | - Robyn A Sharples
- a Department of Biochemistry and Molecular Biology , Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne , VIC , Australia
| | - Lesley Cheng
- b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| | - Andrew F Hill
- b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| |
Collapse
|